summaryrefslogtreecommitdiffstats
path: root/third_party/python/ecdsa/README.md
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/python/ecdsa/README.md')
-rw-r--r--third_party/python/ecdsa/README.md595
1 files changed, 595 insertions, 0 deletions
diff --git a/third_party/python/ecdsa/README.md b/third_party/python/ecdsa/README.md
new file mode 100644
index 0000000000..0d310b90a0
--- /dev/null
+++ b/third_party/python/ecdsa/README.md
@@ -0,0 +1,595 @@
+# Pure-Python ECDSA
+
+[![build status](https://travis-ci.org/warner/python-ecdsa.png)](http://travis-ci.org/warner/python-ecdsa)
+[![Coverage Status](https://coveralls.io/repos/warner/python-ecdsa/badge.svg)](https://coveralls.io/r/warner/python-ecdsa)
+[![condition coverage](https://img.shields.io/badge/condition%20coverage-81%25-yellow)](https://travis-ci.org/warner/python-ecdsa/jobs/626479178#L776)
+[![Latest Version](https://img.shields.io/pypi/v/ecdsa.svg?style=flat)](https://pypi.python.org/pypi/ecdsa/)
+
+
+This is an easy-to-use implementation of ECDSA cryptography (Elliptic Curve
+Digital Signature Algorithm), implemented purely in Python, released under
+the MIT license. With this library, you can quickly create keypairs (signing
+key and verifying key), sign messages, and verify the signatures. The keys
+and signatures are very short, making them easy to handle and incorporate
+into other protocols.
+
+## Features
+
+This library provides key generation, signing, and verifying, for five
+popular NIST "Suite B" GF(p) (_prime field_) curves, with key lengths of 192,
+224, 256, 384, and 521 bits. The "short names" for these curves, as known by
+the OpenSSL tool (`openssl ecparam -list_curves`), are: `prime192v1`,
+`secp224r1`, `prime256v1`, `secp384r1`, and `secp521r1`. It includes the
+256-bit curve `secp256k1` used by Bitcoin. There is also support for the
+regular (non-twisted) variants of Brainpool curves from 160 to 512 bits. The
+"short names" of those curves are: `brainpoolP160r1`, `brainpoolP192r1`,
+`brainpoolP224r1`, `brainpoolP256r1`, `brainpoolP320r1`, `brainpoolP384r1`,
+`brainpoolP512r1`.
+No other curves are included, but it is not too hard to add support for more
+curves over prime fields.
+
+## Dependencies
+
+This library uses only Python and the 'six' package. It is compatible with
+Python 2.6, 2.7 and 3.3+. It also supports execution on the alternative
+implementations like pypy and pypy3.
+
+If `gmpy2` or `gmpy` is installed, they will be used for faster arithmetic.
+Either of them can be installed after this library is installed,
+`python-ecdsa` will detect their presence on start-up and use them
+automatically.
+
+To run the OpenSSL compatibility tests, the 'openssl' tool must be in your
+`PATH`. This release has been tested successfully against OpenSSL 0.9.8o,
+1.0.0a, 1.0.2f and 1.1.1d (among others).
+
+
+## Installation
+
+This library is available on PyPI, it's recommended to install it using `pip`:
+
+```
+pip install ecdsa
+```
+
+In case higher performance is wanted and using native code is not a problem,
+it's possible to specify installation together with `gmpy2`:
+
+```
+pip install ecdsa[gmpy2]
+```
+
+or (slower, legacy option):
+```
+pip install ecdsa[gmpy]
+```
+
+## Speed
+
+The following table shows how long this library takes to generate keypairs
+(`keygen`), to sign data (`sign`), and to verify those signatures (`verify`).
+All those values are in seconds.
+For convenience, the inverses of those values are also provided:
+how many keys per second can be generated (`keygen/s`), how many signatures
+can be made per second (`sign/s`) and how many signatures can be verified
+per second (`verify/s`). The size of raw signature (generally the smallest
+way a signature can be encoded) is also provided in the `siglen` column.
+Use `tox -e speed` to generate this table on your own computer.
+On an Intel Core i7 4790K @ 4.0GHz I'm getting the following performance:
+
+```
+ siglen keygen keygen/s sign sign/s verify verify/s
+ NIST192p: 48 0.00035s 2893.02 0.00038s 2620.53 0.00069s 1458.92
+ NIST224p: 56 0.00043s 2307.11 0.00048s 2092.00 0.00088s 1131.33
+ NIST256p: 64 0.00056s 1793.70 0.00061s 1639.87 0.00113s 883.79
+ NIST384p: 96 0.00116s 864.33 0.00124s 806.29 0.00233s 429.87
+ NIST521p: 132 0.00221s 452.16 0.00234s 427.31 0.00460s 217.19
+ SECP256k1: 64 0.00056s 1772.65 0.00061s 1628.73 0.00110s 912.13
+ BRAINPOOLP160r1: 40 0.00026s 3801.86 0.00029s 3401.11 0.00052s 1930.47
+ BRAINPOOLP192r1: 48 0.00034s 2925.73 0.00038s 2634.34 0.00070s 1438.06
+ BRAINPOOLP224r1: 56 0.00044s 2287.98 0.00048s 2083.87 0.00088s 1137.52
+ BRAINPOOLP256r1: 64 0.00056s 1774.11 0.00061s 1628.25 0.00112s 890.71
+ BRAINPOOLP320r1: 80 0.00081s 1238.18 0.00087s 1146.71 0.00151s 661.95
+ BRAINPOOLP384r1: 96 0.00117s 855.47 0.00124s 804.56 0.00241s 414.83
+ BRAINPOOLP512r1: 128 0.00223s 447.99 0.00234s 427.49 0.00437s 229.09
+
+ ecdh ecdh/s
+ NIST192p: 0.00110s 910.70
+ NIST224p: 0.00143s 701.17
+ NIST256p: 0.00178s 560.44
+ NIST384p: 0.00383s 261.03
+ NIST521p: 0.00745s 134.23
+ SECP256k1: 0.00168s 596.23
+ BRAINPOOLP160r1: 0.00085s 1174.02
+ BRAINPOOLP192r1: 0.00113s 883.47
+ BRAINPOOLP224r1: 0.00145s 687.82
+ BRAINPOOLP256r1: 0.00195s 514.03
+ BRAINPOOLP320r1: 0.00277s 360.80
+ BRAINPOOLP384r1: 0.00412s 242.58
+ BRAINPOOLP512r1: 0.00787s 127.12
+```
+
+To test performance with `gmpy2` loaded, use `tox -e speedgmpy2`.
+On the same machine I'm getting the following performance with `gmpy2`:
+```
+ siglen keygen keygen/s sign sign/s verify verify/s
+ NIST192p: 48 0.00017s 5945.50 0.00018s 5544.66 0.00033s 3002.54
+ NIST224p: 56 0.00021s 4742.14 0.00022s 4463.52 0.00044s 2248.59
+ NIST256p: 64 0.00024s 4155.73 0.00025s 3994.28 0.00047s 2105.34
+ NIST384p: 96 0.00041s 2415.06 0.00043s 2316.41 0.00085s 1177.18
+ NIST521p: 132 0.00072s 1391.14 0.00074s 1359.63 0.00140s 716.31
+ SECP256k1: 64 0.00024s 4216.50 0.00025s 3994.52 0.00047s 2120.57
+ BRAINPOOLP160r1: 40 0.00014s 7038.99 0.00015s 6501.55 0.00029s 3397.79
+ BRAINPOOLP192r1: 48 0.00017s 5983.18 0.00018s 5626.08 0.00035s 2843.62
+ BRAINPOOLP224r1: 56 0.00021s 4727.54 0.00022s 4464.86 0.00043s 2326.84
+ BRAINPOOLP256r1: 64 0.00024s 4221.00 0.00025s 4010.26 0.00049s 2046.40
+ BRAINPOOLP320r1: 80 0.00032s 3142.14 0.00033s 3009.15 0.00061s 1652.88
+ BRAINPOOLP384r1: 96 0.00041s 2415.98 0.00043s 2340.35 0.00083s 1198.77
+ BRAINPOOLP512r1: 128 0.00064s 1567.27 0.00066s 1526.33 0.00127s 788.51
+
+ ecdh ecdh/s
+ NIST192p: 0.00051s 1960.26
+ NIST224p: 0.00067s 1502.97
+ NIST256p: 0.00073s 1376.12
+ NIST384p: 0.00132s 758.68
+ NIST521p: 0.00231s 433.23
+ SECP256k1: 0.00072s 1387.18
+ BRAINPOOLP160r1: 0.00042s 2366.60
+ BRAINPOOLP192r1: 0.00049s 2026.80
+ BRAINPOOLP224r1: 0.00067s 1486.52
+ BRAINPOOLP256r1: 0.00076s 1310.31
+ BRAINPOOLP320r1: 0.00101s 986.16
+ BRAINPOOLP384r1: 0.00131s 761.35
+ BRAINPOOLP512r1: 0.00211s 473.30
+```
+
+(there's also `gmpy` version, execute it using `tox -e speedgmpy`)
+
+For comparison, a highly optimised implementation (including curve-specific
+assembly for some curves), like the one in OpenSSL 1.1.1d, provides following
+performance numbers on the same machine.
+Run `openssl speed ecdsa` and `openssl speed ecdh` to reproduce it:
+```
+ sign verify sign/s verify/s
+ 192 bits ecdsa (nistp192) 0.0002s 0.0002s 4785.6 5380.7
+ 224 bits ecdsa (nistp224) 0.0000s 0.0001s 22475.6 9822.0
+ 256 bits ecdsa (nistp256) 0.0000s 0.0001s 45069.6 14166.6
+ 384 bits ecdsa (nistp384) 0.0008s 0.0006s 1265.6 1648.1
+ 521 bits ecdsa (nistp521) 0.0003s 0.0005s 3753.1 1819.5
+ 256 bits ecdsa (brainpoolP256r1) 0.0003s 0.0003s 2983.5 3333.2
+ 384 bits ecdsa (brainpoolP384r1) 0.0008s 0.0007s 1258.8 1528.1
+ 512 bits ecdsa (brainpoolP512r1) 0.0015s 0.0012s 675.1 860.1
+
+ op op/s
+ 192 bits ecdh (nistp192) 0.0002s 4853.4
+ 224 bits ecdh (nistp224) 0.0001s 15252.1
+ 256 bits ecdh (nistp256) 0.0001s 18436.3
+ 384 bits ecdh (nistp384) 0.0008s 1292.7
+ 521 bits ecdh (nistp521) 0.0003s 2884.7
+ 256 bits ecdh (brainpoolP256r1) 0.0003s 3066.5
+ 384 bits ecdh (brainpoolP384r1) 0.0008s 1298.0
+ 512 bits ecdh (brainpoolP512r1) 0.0014s 694.8
+```
+
+Keys and signature can be serialized in different ways (see Usage, below).
+For a NIST192p key, the three basic representations require strings of the
+following lengths (in bytes):
+
+ to_string: signkey= 24, verifykey= 48, signature=48
+ compressed: signkey=n/a, verifykey= 25, signature=n/a
+ DER: signkey=106, verifykey= 80, signature=55
+ PEM: signkey=278, verifykey=162, (no support for PEM signatures)
+
+## History
+
+In 2006, Peter Pearson announced his pure-python implementation of ECDSA in a
+[message to sci.crypt][1], available from his [download site][2]. In 2010,
+Brian Warner wrote a wrapper around this code, to make it a bit easier and
+safer to use. Hubert Kario then included an implementation of elliptic curve
+cryptography that uses Jacobian coordinates internally, improving performance
+about 20-fold. You are looking at the README for this wrapper.
+
+[1]: http://www.derkeiler.com/Newsgroups/sci.crypt/2006-01/msg00651.html
+[2]: http://webpages.charter.net/curryfans/peter/downloads.html
+
+## Testing
+
+To run the full test suite, do this:
+
+ tox -e coverage
+
+On an Intel Core i7 4790K @ 4.0GHz, the tests take about 16 seconds to execute.
+The test suite uses
+[`hypothesis`](https://github.com/HypothesisWorks/hypothesis) so there is some
+inherent variability in the test suite execution time.
+
+One part of `test_pyecdsa.py` checks compatibility with OpenSSL, by
+running the "openssl" CLI tool, make sure it's in your `PATH` if you want
+to test compatibility with it.
+
+## Security
+
+This library was not designed with security in mind. If you are processing
+data that needs to be protected we suggest you use a quality wrapper around
+OpenSSL. [pyca/cryptography](https://cryptography.io) is one example of such
+a wrapper. The primary use-case of this library is as a portable library for
+interoperability testing and as a teaching tool.
+
+**This library does not protect against side channel attacks.**
+
+Do not allow attackers to measure how long it takes you to generate a keypair
+or sign a message. Do not allow attackers to run code on the same physical
+machine when keypair generation or signing is taking place (this includes
+virtual machines). Do not allow attackers to measure how much power your
+computer uses while generating the keypair or signing a message. Do not allow
+attackers to measure RF interference coming from your computer while generating
+a keypair or signing a message. Note: just loading the private key will cause
+keypair generation. Other operations or attack vectors may also be
+vulnerable to attacks. **For a sophisticated attacker observing just one
+operation with a private key will be sufficient to completely
+reconstruct the private key**.
+
+Please also note that any Pure-python cryptographic library will be vulnerable
+to the same side channel attacks. This is because Python does not provide
+side-channel secure primitives (with the exception of
+[`hmac.compare_digest()`][3]), making side-channel secure programming
+impossible.
+
+This library depends upon a strong source of random numbers. Do not use it on
+a system where `os.urandom()` does not provide cryptographically secure
+random numbers.
+
+[3]: https://docs.python.org/3/library/hmac.html#hmac.compare_digest
+
+## Usage
+
+You start by creating a `SigningKey`. You can use this to sign data, by passing
+in data as a byte string and getting back the signature (also a byte string).
+You can also ask a `SigningKey` to give you the corresponding `VerifyingKey`.
+The `VerifyingKey` can be used to verify a signature, by passing it both the
+data string and the signature byte string: it either returns True or raises
+`BadSignatureError`.
+
+```python
+from ecdsa import SigningKey
+sk = SigningKey.generate() # uses NIST192p
+vk = sk.verifying_key
+signature = sk.sign(b"message")
+assert vk.verify(signature, b"message")
+```
+
+Each `SigningKey`/`VerifyingKey` is associated with a specific curve, like
+NIST192p (the default one). Longer curves are more secure, but take longer to
+use, and result in longer keys and signatures.
+
+```python
+from ecdsa import SigningKey, NIST384p
+sk = SigningKey.generate(curve=NIST384p)
+vk = sk.verifying_key
+signature = sk.sign(b"message")
+assert vk.verify(signature, b"message")
+```
+
+The `SigningKey` can be serialized into several different formats: the shortest
+is to call `s=sk.to_string()`, and then re-create it with
+`SigningKey.from_string(s, curve)` . This short form does not record the
+curve, so you must be sure to pass to `from_string()` the same curve you used
+for the original key. The short form of a NIST192p-based signing key is just 24
+bytes long. If a point encoding is invalid or it does not lie on the specified
+curve, `from_string()` will raise `MalformedPointError`.
+
+```python
+from ecdsa import SigningKey, NIST384p
+sk = SigningKey.generate(curve=NIST384p)
+sk_string = sk.to_string()
+sk2 = SigningKey.from_string(sk_string, curve=NIST384p)
+print(sk_string.hex())
+print(sk2.to_string().hex())
+```
+
+Note: while the methods are called `to_string()` the type they return is
+actually `bytes`, the "string" part is leftover from Python 2.
+
+`sk.to_pem()` and `sk.to_der()` will serialize the signing key into the same
+formats that OpenSSL uses. The PEM file looks like the familiar ASCII-armored
+`"-----BEGIN EC PRIVATE KEY-----"` base64-encoded format, and the DER format
+is a shorter binary form of the same data.
+`SigningKey.from_pem()/.from_der()` will undo this serialization. These
+formats include the curve name, so you do not need to pass in a curve
+identifier to the deserializer. In case the file is malformed `from_der()`
+and `from_pem()` will raise `UnexpectedDER` or` MalformedPointError`.
+
+```python
+from ecdsa import SigningKey, NIST384p
+sk = SigningKey.generate(curve=NIST384p)
+sk_pem = sk.to_pem()
+sk2 = SigningKey.from_pem(sk_pem)
+# sk and sk2 are the same key
+```
+
+Likewise, the `VerifyingKey` can be serialized in the same way:
+`vk.to_string()/VerifyingKey.from_string()`, `to_pem()/from_pem()`, and
+`to_der()/from_der()`. The same `curve=` argument is needed for
+`VerifyingKey.from_string()`.
+
+```python
+from ecdsa import SigningKey, VerifyingKey, NIST384p
+sk = SigningKey.generate(curve=NIST384p)
+vk = sk.verifying_key
+vk_string = vk.to_string()
+vk2 = VerifyingKey.from_string(vk_string, curve=NIST384p)
+# vk and vk2 are the same key
+
+from ecdsa import SigningKey, VerifyingKey, NIST384p
+sk = SigningKey.generate(curve=NIST384p)
+vk = sk.verifying_key
+vk_pem = vk.to_pem()
+vk2 = VerifyingKey.from_pem(vk_pem)
+# vk and vk2 are the same key
+```
+
+There are a couple of different ways to compute a signature. Fundamentally,
+ECDSA takes a number that represents the data being signed, and returns a
+pair of numbers that represent the signature. The `hashfunc=` argument to
+`sk.sign()` and `vk.verify()` is used to turn an arbitrary string into
+fixed-length digest, which is then turned into a number that ECDSA can sign,
+and both sign and verify must use the same approach. The default value is
+`hashlib.sha1`, but if you use NIST256p or a longer curve, you can use
+`hashlib.sha256` instead.
+
+There are also multiple ways to represent a signature. The default
+`sk.sign()` and `vk.verify()` methods present it as a short string, for
+simplicity and minimal overhead. To use a different scheme, use the
+`sk.sign(sigencode=)` and `vk.verify(sigdecode=)` arguments. There are helper
+functions in the `ecdsa.util` module that can be useful here.
+
+It is also possible to create a `SigningKey` from a "seed", which is
+deterministic. This can be used in protocols where you want to derive
+consistent signing keys from some other secret, for example when you want
+three separate keys and only want to store a single master secret. You should
+start with a uniformly-distributed unguessable seed with about `curve.baselen`
+bytes of entropy, and then use one of the helper functions in `ecdsa.util` to
+convert it into an integer in the correct range, and then finally pass it
+into `SigningKey.from_secret_exponent()`, like this:
+
+```python
+import os
+from ecdsa import NIST384p, SigningKey
+from ecdsa.util import randrange_from_seed__trytryagain
+
+def make_key(seed):
+ secexp = randrange_from_seed__trytryagain(seed, NIST384p.order)
+ return SigningKey.from_secret_exponent(secexp, curve=NIST384p)
+
+seed = os.urandom(NIST384p.baselen) # or other starting point
+sk1a = make_key(seed)
+sk1b = make_key(seed)
+# note: sk1a and sk1b are the same key
+assert sk1a.to_string() == sk1b.to_string()
+sk2 = make_key(b"2-"+seed) # different key
+assert sk1a.to_string() != sk2.to_string()
+```
+
+In case the application will verify a lot of signatures made with a single
+key, it's possible to precompute some of the internal values to make
+signature verification significantly faster. The break-even point occurs at
+about 100 signatures verified.
+
+To perform precomputation, you can call the `precompute()` method
+on `VerifyingKey` instance:
+```python
+from ecdsa import SigningKey, NIST384p
+sk = SigningKey.generate(curve=NIST384p)
+vk = sk.verifying_key
+vk.precompute()
+signature = sk.sign(b"message")
+assert vk.verify(signature, b"message")
+```
+
+Once `precompute()` was called, all signature verifications with this key will
+be faster to execute.
+
+## OpenSSL Compatibility
+
+To produce signatures that can be verified by OpenSSL tools, or to verify
+signatures that were produced by those tools, use:
+
+```python
+# openssl ecparam -name prime256v1 -genkey -out sk.pem
+# openssl ec -in sk.pem -pubout -out vk.pem
+# echo "data for signing" > data
+# openssl dgst -sha256 -sign sk.pem -out data.sig data
+# openssl dgst -sha256 -verify vk.pem -signature data.sig data
+# openssl dgst -sha256 -prverify sk.pem -signature data.sig data
+
+import hashlib
+from ecdsa import SigningKey, VerifyingKey
+from ecdsa.util import sigencode_der, sigdecode_der
+
+with open("vk.pem") as f:
+ vk = VerifyingKey.from_pem(f.read())
+
+with open("data", "rb") as f:
+ data = f.read()
+
+with open("data.sig", "rb") as f:
+ signature = f.read()
+
+assert vk.verify(signature, data, hashlib.sha256, sigdecode=sigdecode_der)
+
+with open("sk.pem") as f:
+ sk = SigningKey.from_pem(f.read(), hashlib.sha256)
+
+new_signature = sk.sign_deterministic(data, sigencode=sigencode_der)
+
+with open("data.sig2", "wb") as f:
+ f.write(new_signature)
+
+# openssl dgst -sha256 -verify vk.pem -signature data.sig2 data
+```
+
+Note: if compatibility with OpenSSL 1.0.0 or earlier is necessary, the
+`sigencode_string` and `sigdecode_string` from `ecdsa.util` can be used for
+respectively writing and reading the signatures.
+
+The keys also can be written in format that openssl can handle:
+
+```python
+from ecdsa import SigningKey, VerifyingKey
+
+with open("sk.pem") as f:
+ sk = SigningKey.from_pem(f.read())
+with open("sk.pem", "wb") as f:
+ f.write(sk.to_pem())
+
+with open("vk.pem") as f:
+ vk = VerifyingKey.from_pem(f.read())
+with open("vk.pem", "wb") as f:
+ f.write(vk.to_pem())
+```
+
+## Entropy
+
+Creating a signing key with `SigningKey.generate()` requires some form of
+entropy (as opposed to
+`from_secret_exponent`/`from_string`/`from_der`/`from_pem`,
+which are deterministic and do not require an entropy source). The default
+source is `os.urandom()`, but you can pass any other function that behaves
+like `os.urandom` as the `entropy=` argument to do something different. This
+may be useful in unit tests, where you want to achieve repeatable results. The
+`ecdsa.util.PRNG` utility is handy here: it takes a seed and produces a strong
+pseudo-random stream from it:
+
+```python
+from ecdsa.util import PRNG
+from ecdsa import SigningKey
+rng1 = PRNG(b"seed")
+sk1 = SigningKey.generate(entropy=rng1)
+rng2 = PRNG(b"seed")
+sk2 = SigningKey.generate(entropy=rng2)
+# sk1 and sk2 are the same key
+```
+
+Likewise, ECDSA signature generation requires a random number, and each
+signature must use a different one (using the same number twice will
+immediately reveal the private signing key). The `sk.sign()` method takes an
+`entropy=` argument which behaves the same as `SigningKey.generate(entropy=)`.
+
+## Deterministic Signatures
+
+If you call `SigningKey.sign_deterministic(data)` instead of `.sign(data)`,
+the code will generate a deterministic signature instead of a random one.
+This uses the algorithm from RFC6979 to safely generate a unique `k` value,
+derived from the private key and the message being signed. Each time you sign
+the same message with the same key, you will get the same signature (using
+the same `k`).
+
+This may become the default in a future version, as it is not vulnerable to
+failures of the entropy source.
+
+## Examples
+
+Create a NIST192p keypair and immediately save both to disk:
+
+```python
+from ecdsa import SigningKey
+sk = SigningKey.generate()
+vk = sk.verifying_key
+with open("private.pem", "wb") as f:
+ f.write(sk.to_pem())
+with open("public.pem", "wb") as f:
+ f.write(vk.to_pem())
+```
+
+Load a signing key from disk, use it to sign a message (using SHA-1), and write
+the signature to disk:
+
+```python
+from ecdsa import SigningKey
+with open("private.pem") as f:
+ sk = SigningKey.from_pem(f.read())
+with open("message", "rb") as f:
+ message = f.read()
+sig = sk.sign(message)
+with open("signature", "wb") as f:
+ f.write(sig)
+```
+
+Load the verifying key, message, and signature from disk, and verify the
+signature (assume SHA-1 hash):
+
+```python
+from ecdsa import VerifyingKey, BadSignatureError
+vk = VerifyingKey.from_pem(open("public.pem").read())
+with open("message", "rb") as f:
+ message = f.read()
+with open("signature", "rb") as f:
+ sig = f.read()
+try:
+ vk.verify(sig, message)
+ print "good signature"
+except BadSignatureError:
+ print "BAD SIGNATURE"
+```
+
+Create a NIST521p keypair:
+
+```python
+from ecdsa import SigningKey, NIST521p
+sk = SigningKey.generate(curve=NIST521p)
+vk = sk.verifying_key
+```
+
+Create three independent signing keys from a master seed:
+
+```python
+from ecdsa import NIST192p, SigningKey
+from ecdsa.util import randrange_from_seed__trytryagain
+
+def make_key_from_seed(seed, curve=NIST192p):
+ secexp = randrange_from_seed__trytryagain(seed, curve.order)
+ return SigningKey.from_secret_exponent(secexp, curve)
+
+sk1 = make_key_from_seed("1:%s" % seed)
+sk2 = make_key_from_seed("2:%s" % seed)
+sk3 = make_key_from_seed("3:%s" % seed)
+```
+
+Load a verifying key from disk and print it using hex encoding in
+uncompressed and compressed format (defined in X9.62 and SEC1 standards):
+
+```python
+from ecdsa import VerifyingKey
+
+with open("public.pem") as f:
+ vk = VerifyingKey.from_pem(f.read())
+
+print("uncompressed: {0}".format(vk.to_string("uncompressed").hex()))
+print("compressed: {0}".format(vk.to_string("compressed").hex()))
+```
+
+Load a verifying key from a hex string from compressed format, output
+uncompressed:
+
+```python
+from ecdsa import VerifyingKey, NIST256p
+
+comp_str = '022799c0d0ee09772fdd337d4f28dc155581951d07082fb19a38aa396b67e77759'
+vk = VerifyingKey.from_string(bytearray.fromhex(comp_str), curve=NIST256p)
+print(vk.to_string("uncompressed").hex())
+```
+
+ECDH key exchange with remote party
+
+```python
+from ecdsa import ECDH, NIST256p
+
+ecdh = ECDH(curve=NIST256p)
+ecdh.generate_private_key()
+local_public_key = ecdh.get_public_key()
+#send `local_public_key` to remote party and receive `remote_public_key` from remote party
+with open("remote_public_key.pem") as e:
+ remote_public_key = e.read()
+ecdh.load_received_public_key_pem(remote_public_key)
+secret = ecdh.generate_sharedsecret_bytes()
+```