summaryrefslogtreecommitdiffstats
path: root/third_party/rust/cranelift-codegen/src/verifier/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/cranelift-codegen/src/verifier/mod.rs')
-rw-r--r--third_party/rust/cranelift-codegen/src/verifier/mod.rs2186
1 files changed, 2186 insertions, 0 deletions
diff --git a/third_party/rust/cranelift-codegen/src/verifier/mod.rs b/third_party/rust/cranelift-codegen/src/verifier/mod.rs
new file mode 100644
index 0000000000..dae9ff983d
--- /dev/null
+++ b/third_party/rust/cranelift-codegen/src/verifier/mod.rs
@@ -0,0 +1,2186 @@
+//! A verifier for ensuring that functions are well formed.
+//! It verifies:
+//!
+//! block integrity
+//!
+//! - All instructions reached from the `block_insts` iterator must belong to
+//! the block as reported by `inst_block()`.
+//! - Every block must end in a terminator instruction, and no other instruction
+//! can be a terminator.
+//! - Every value in the `block_params` iterator belongs to the block as reported by `value_block`.
+//!
+//! Instruction integrity
+//!
+//! - The instruction format must match the opcode.
+//! - All result values must be created for multi-valued instructions.
+//! - All referenced entities must exist. (Values, blocks, stack slots, ...)
+//! - Instructions must not reference (eg. branch to) the entry block.
+//!
+//! SSA form
+//!
+//! - Values must be defined by an instruction that exists and that is inserted in
+//! a block, or be an argument of an existing block.
+//! - Values used by an instruction must dominate the instruction.
+//!
+//! Control flow graph and dominator tree integrity:
+//!
+//! - All predecessors in the CFG must be branches to the block.
+//! - All branches to a block must be present in the CFG.
+//! - A recomputed dominator tree is identical to the existing one.
+//!
+//! Type checking
+//!
+//! - Compare input and output values against the opcode's type constraints.
+//! For polymorphic opcodes, determine the controlling type variable first.
+//! - Branches and jumps must pass arguments to destination blocks that match the
+//! expected types exactly. The number of arguments must match.
+//! - All blocks in a jump table must take no arguments.
+//! - Function calls are type checked against their signature.
+//! - The entry block must take arguments that match the signature of the current
+//! function.
+//! - All return instructions must have return value operands matching the current
+//! function signature.
+//!
+//! Global values
+//!
+//! - Detect cycles in global values.
+//! - Detect use of 'vmctx' global value when no corresponding parameter is defined.
+//!
+//! TODO:
+//! Ad hoc checking
+//!
+//! - Stack slot loads and stores must be in-bounds.
+//! - Immediate constraints for certain opcodes, like `udiv_imm v3, 0`.
+//! - `Insertlane` and `extractlane` instructions have immediate lane numbers that must be in
+//! range for their polymorphic type.
+//! - Swizzle and shuffle instructions take a variable number of lane arguments. The number
+//! of arguments must match the destination type, and the lane indexes must be in range.
+
+use self::flags::verify_flags;
+use crate::dbg::DisplayList;
+use crate::dominator_tree::DominatorTree;
+use crate::entity::SparseSet;
+use crate::flowgraph::{BlockPredecessor, ControlFlowGraph};
+use crate::ir;
+use crate::ir::entities::AnyEntity;
+use crate::ir::instructions::{BranchInfo, CallInfo, InstructionFormat, ResolvedConstraint};
+use crate::ir::{
+ types, ArgumentLoc, ArgumentPurpose, Block, Constant, FuncRef, Function, GlobalValue, Inst,
+ InstructionData, JumpTable, Opcode, SigRef, StackSlot, StackSlotKind, Type, Value, ValueDef,
+ ValueList, ValueLoc,
+};
+use crate::isa::TargetIsa;
+use crate::iterators::IteratorExtras;
+use crate::print_errors::pretty_verifier_error;
+use crate::settings::FlagsOrIsa;
+use crate::timing;
+use alloc::collections::BTreeSet;
+use alloc::string::{String, ToString};
+use alloc::vec::Vec;
+use core::cmp::Ordering;
+use core::fmt::{self, Display, Formatter, Write};
+use log::debug;
+use thiserror::Error;
+
+pub use self::cssa::verify_cssa;
+pub use self::liveness::verify_liveness;
+pub use self::locations::verify_locations;
+
+mod cssa;
+mod flags;
+mod liveness;
+mod locations;
+
+/// A verifier error.
+#[derive(Error, Debug, PartialEq, Eq, Clone)]
+#[error("{}{}: {}", .location, format_context(.context), .message)]
+pub struct VerifierError {
+ /// The entity causing the verifier error.
+ pub location: AnyEntity,
+ /// Optionally provide some context for the given location; e.g., for `inst42` provide
+ /// `Some("v3 = iconst.i32 0")` for more comprehensible errors.
+ pub context: Option<String>,
+ /// The error message.
+ pub message: String,
+}
+
+/// Helper for formatting Verifier::Error context.
+fn format_context(context: &Option<String>) -> String {
+ match context {
+ None => "".to_string(),
+ Some(c) => format!(" ({})", c),
+ }
+}
+
+/// Convenience converter for making error-reporting less verbose.
+///
+/// Converts a tuple of `(location, context, message)` to a `VerifierError`.
+/// ```
+/// use cranelift_codegen::verifier::VerifierErrors;
+/// use cranelift_codegen::ir::Inst;
+/// let mut errors = VerifierErrors::new();
+/// errors.report((Inst::from_u32(42), "v3 = iadd v1, v2", "iadd cannot be used with values of this type"));
+/// // note the double parenthenses to use this syntax
+/// ```
+impl<L, C, M> From<(L, C, M)> for VerifierError
+where
+ L: Into<AnyEntity>,
+ C: Into<String>,
+ M: Into<String>,
+{
+ fn from(items: (L, C, M)) -> Self {
+ let (location, context, message) = items;
+ Self {
+ location: location.into(),
+ context: Some(context.into()),
+ message: message.into(),
+ }
+ }
+}
+
+/// Convenience converter for making error-reporting less verbose.
+///
+/// Same as above but without `context`.
+impl<L, M> From<(L, M)> for VerifierError
+where
+ L: Into<AnyEntity>,
+ M: Into<String>,
+{
+ fn from(items: (L, M)) -> Self {
+ let (location, message) = items;
+ Self {
+ location: location.into(),
+ context: None,
+ message: message.into(),
+ }
+ }
+}
+
+/// Result of a step in the verification process.
+///
+/// Functions that return `VerifierStepResult<()>` should also take a
+/// mutable reference to `VerifierErrors` as argument in order to report
+/// errors.
+///
+/// Here, `Ok` represents a step that **did not lead to a fatal error**,
+/// meaning that the verification process may continue. However, other (non-fatal)
+/// errors might have been reported through the previously mentioned `VerifierErrors`
+/// argument.
+pub type VerifierStepResult<T> = Result<T, ()>;
+
+/// Result of a verification operation.
+///
+/// Unlike `VerifierStepResult<()>` which may be `Ok` while still having reported
+/// errors, this type always returns `Err` if an error (fatal or not) was reported.
+pub type VerifierResult<T> = Result<T, VerifierErrors>;
+
+/// List of verifier errors.
+#[derive(Error, Debug, Default, PartialEq, Eq, Clone)]
+pub struct VerifierErrors(pub Vec<VerifierError>);
+
+impl VerifierErrors {
+ /// Return a new `VerifierErrors` struct.
+ #[inline]
+ pub fn new() -> Self {
+ Self(Vec::new())
+ }
+
+ /// Return whether no errors were reported.
+ #[inline]
+ pub fn is_empty(&self) -> bool {
+ self.0.is_empty()
+ }
+
+ /// Return whether one or more errors were reported.
+ #[inline]
+ pub fn has_error(&self) -> bool {
+ !self.0.is_empty()
+ }
+
+ /// Return a `VerifierStepResult` that is fatal if at least one error was reported,
+ /// and non-fatal otherwise.
+ #[inline]
+ pub fn as_result(&self) -> VerifierStepResult<()> {
+ if self.is_empty() {
+ Ok(())
+ } else {
+ Err(())
+ }
+ }
+
+ /// Report an error, adding it to the list of errors.
+ pub fn report(&mut self, error: impl Into<VerifierError>) {
+ self.0.push(error.into());
+ }
+
+ /// Report a fatal error and return `Err`.
+ pub fn fatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult<()> {
+ self.report(error);
+ Err(())
+ }
+
+ /// Report a non-fatal error and return `Ok`.
+ pub fn nonfatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult<()> {
+ self.report(error);
+ Ok(())
+ }
+}
+
+impl From<Vec<VerifierError>> for VerifierErrors {
+ fn from(v: Vec<VerifierError>) -> Self {
+ Self(v)
+ }
+}
+
+impl Into<Vec<VerifierError>> for VerifierErrors {
+ fn into(self) -> Vec<VerifierError> {
+ self.0
+ }
+}
+
+impl Into<VerifierResult<()>> for VerifierErrors {
+ fn into(self) -> VerifierResult<()> {
+ if self.is_empty() {
+ Ok(())
+ } else {
+ Err(self)
+ }
+ }
+}
+
+impl Display for VerifierErrors {
+ fn fmt(&self, f: &mut Formatter) -> fmt::Result {
+ for err in &self.0 {
+ writeln!(f, "- {}", err)?;
+ }
+ Ok(())
+ }
+}
+
+/// Verify `func`.
+pub fn verify_function<'a, FOI: Into<FlagsOrIsa<'a>>>(
+ func: &Function,
+ fisa: FOI,
+) -> VerifierResult<()> {
+ let _tt = timing::verifier();
+ let mut errors = VerifierErrors::default();
+ let verifier = Verifier::new(func, fisa.into());
+ let result = verifier.run(&mut errors);
+ if errors.is_empty() {
+ result.unwrap();
+ Ok(())
+ } else {
+ Err(errors)
+ }
+}
+
+/// Verify `func` after checking the integrity of associated context data structures `cfg` and
+/// `domtree`.
+pub fn verify_context<'a, FOI: Into<FlagsOrIsa<'a>>>(
+ func: &Function,
+ cfg: &ControlFlowGraph,
+ domtree: &DominatorTree,
+ fisa: FOI,
+ errors: &mut VerifierErrors,
+) -> VerifierStepResult<()> {
+ let _tt = timing::verifier();
+ let verifier = Verifier::new(func, fisa.into());
+ if cfg.is_valid() {
+ verifier.cfg_integrity(cfg, errors)?;
+ }
+ if domtree.is_valid() {
+ verifier.domtree_integrity(domtree, errors)?;
+ }
+ verifier.run(errors)
+}
+
+struct Verifier<'a> {
+ func: &'a Function,
+ expected_cfg: ControlFlowGraph,
+ expected_domtree: DominatorTree,
+ isa: Option<&'a dyn TargetIsa>,
+}
+
+impl<'a> Verifier<'a> {
+ pub fn new(func: &'a Function, fisa: FlagsOrIsa<'a>) -> Self {
+ let expected_cfg = ControlFlowGraph::with_function(func);
+ let expected_domtree = DominatorTree::with_function(func, &expected_cfg);
+ Self {
+ func,
+ expected_cfg,
+ expected_domtree,
+ isa: fisa.isa,
+ }
+ }
+
+ /// Determine a contextual error string for an instruction.
+ #[inline]
+ fn context(&self, inst: Inst) -> String {
+ self.func.dfg.display_inst(inst, self.isa).to_string()
+ }
+
+ // Check for:
+ // - cycles in the global value declarations.
+ // - use of 'vmctx' when no special parameter declares it.
+ fn verify_global_values(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
+ let mut cycle_seen = false;
+ let mut seen = SparseSet::new();
+
+ 'gvs: for gv in self.func.global_values.keys() {
+ seen.clear();
+ seen.insert(gv);
+
+ let mut cur = gv;
+ loop {
+ match self.func.global_values[cur] {
+ ir::GlobalValueData::Load { base, .. }
+ | ir::GlobalValueData::IAddImm { base, .. } => {
+ if seen.insert(base).is_some() {
+ if !cycle_seen {
+ errors.report((
+ gv,
+ format!("global value cycle: {}", DisplayList(seen.as_slice())),
+ ));
+ // ensures we don't report the cycle multiple times
+ cycle_seen = true;
+ }
+ continue 'gvs;
+ }
+
+ cur = base;
+ }
+ _ => break,
+ }
+ }
+
+ match self.func.global_values[gv] {
+ ir::GlobalValueData::VMContext { .. } => {
+ if self
+ .func
+ .special_param(ir::ArgumentPurpose::VMContext)
+ .is_none()
+ {
+ errors.report((gv, format!("undeclared vmctx reference {}", gv)));
+ }
+ }
+ ir::GlobalValueData::IAddImm {
+ base, global_type, ..
+ } => {
+ if !global_type.is_int() {
+ errors.report((
+ gv,
+ format!("iadd_imm global value with non-int type {}", global_type),
+ ));
+ } else if let Some(isa) = self.isa {
+ let base_type = self.func.global_values[base].global_type(isa);
+ if global_type != base_type {
+ errors.report((
+ gv,
+ format!(
+ "iadd_imm type {} differs from operand type {}",
+ global_type, base_type
+ ),
+ ));
+ }
+ }
+ }
+ ir::GlobalValueData::Load { base, .. } => {
+ if let Some(isa) = self.isa {
+ let base_type = self.func.global_values[base].global_type(isa);
+ let pointer_type = isa.pointer_type();
+ if base_type != pointer_type {
+ errors.report((
+ gv,
+ format!(
+ "base {} has type {}, which is not the pointer type {}",
+ base, base_type, pointer_type
+ ),
+ ));
+ }
+ }
+ }
+ _ => {}
+ }
+ }
+
+ // Invalid global values shouldn't stop us from verifying the rest of the function
+ Ok(())
+ }
+
+ fn verify_heaps(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
+ if let Some(isa) = self.isa {
+ for (heap, heap_data) in &self.func.heaps {
+ let base = heap_data.base;
+ if !self.func.global_values.is_valid(base) {
+ return errors.nonfatal((heap, format!("invalid base global value {}", base)));
+ }
+
+ let pointer_type = isa.pointer_type();
+ let base_type = self.func.global_values[base].global_type(isa);
+ if base_type != pointer_type {
+ errors.report((
+ heap,
+ format!(
+ "heap base has type {}, which is not the pointer type {}",
+ base_type, pointer_type
+ ),
+ ));
+ }
+
+ if let ir::HeapStyle::Dynamic { bound_gv, .. } = heap_data.style {
+ if !self.func.global_values.is_valid(bound_gv) {
+ return errors
+ .nonfatal((heap, format!("invalid bound global value {}", bound_gv)));
+ }
+
+ let index_type = heap_data.index_type;
+ let bound_type = self.func.global_values[bound_gv].global_type(isa);
+ if index_type != bound_type {
+ errors.report((
+ heap,
+ format!(
+ "heap index type {} differs from the type of its bound, {}",
+ index_type, bound_type
+ ),
+ ));
+ }
+ }
+ }
+ }
+
+ Ok(())
+ }
+
+ fn verify_tables(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
+ if let Some(isa) = self.isa {
+ for (table, table_data) in &self.func.tables {
+ let base = table_data.base_gv;
+ if !self.func.global_values.is_valid(base) {
+ return errors.nonfatal((table, format!("invalid base global value {}", base)));
+ }
+
+ let pointer_type = isa.pointer_type();
+ let base_type = self.func.global_values[base].global_type(isa);
+ if base_type != pointer_type {
+ errors.report((
+ table,
+ format!(
+ "table base has type {}, which is not the pointer type {}",
+ base_type, pointer_type
+ ),
+ ));
+ }
+
+ let bound_gv = table_data.bound_gv;
+ if !self.func.global_values.is_valid(bound_gv) {
+ return errors
+ .nonfatal((table, format!("invalid bound global value {}", bound_gv)));
+ }
+
+ let index_type = table_data.index_type;
+ let bound_type = self.func.global_values[bound_gv].global_type(isa);
+ if index_type != bound_type {
+ errors.report((
+ table,
+ format!(
+ "table index type {} differs from the type of its bound, {}",
+ index_type, bound_type
+ ),
+ ));
+ }
+ }
+ }
+
+ Ok(())
+ }
+
+ fn verify_jump_tables(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
+ for (jt, jt_data) in &self.func.jump_tables {
+ for &block in jt_data.iter() {
+ self.verify_block(jt, block, errors)?;
+ }
+ }
+ Ok(())
+ }
+
+ /// Check that the given block can be encoded as a BB, by checking that only
+ /// branching instructions are ending the block.
+ fn encodable_as_bb(&self, block: Block, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
+ match self.func.is_block_basic(block) {
+ Ok(()) => Ok(()),
+ Err((inst, message)) => errors.fatal((inst, self.context(inst), message)),
+ }
+ }
+
+ fn block_integrity(
+ &self,
+ block: Block,
+ inst: Inst,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ let is_terminator = self.func.dfg[inst].opcode().is_terminator();
+ let is_last_inst = self.func.layout.last_inst(block) == Some(inst);
+
+ if is_terminator && !is_last_inst {
+ // Terminating instructions only occur at the end of blocks.
+ return errors.fatal((
+ inst,
+ self.context(inst),
+ format!(
+ "a terminator instruction was encountered before the end of {}",
+ block
+ ),
+ ));
+ }
+ if is_last_inst && !is_terminator {
+ return errors.fatal((block, "block does not end in a terminator instruction"));
+ }
+
+ // Instructions belong to the correct block.
+ let inst_block = self.func.layout.inst_block(inst);
+ if inst_block != Some(block) {
+ return errors.fatal((
+ inst,
+ self.context(inst),
+ format!("should belong to {} not {:?}", block, inst_block),
+ ));
+ }
+
+ // Parameters belong to the correct block.
+ for &arg in self.func.dfg.block_params(block) {
+ match self.func.dfg.value_def(arg) {
+ ValueDef::Param(arg_block, _) => {
+ if block != arg_block {
+ return errors.fatal((arg, format!("does not belong to {}", block)));
+ }
+ }
+ _ => {
+ return errors.fatal((arg, "expected an argument, found a result"));
+ }
+ }
+ }
+
+ Ok(())
+ }
+
+ fn instruction_integrity(
+ &self,
+ inst: Inst,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ let inst_data = &self.func.dfg[inst];
+ let dfg = &self.func.dfg;
+
+ // The instruction format matches the opcode
+ if inst_data.opcode().format() != InstructionFormat::from(inst_data) {
+ return errors.fatal((
+ inst,
+ self.context(inst),
+ "instruction opcode doesn't match instruction format",
+ ));
+ }
+
+ let num_fixed_results = inst_data.opcode().constraints().num_fixed_results();
+ // var_results is 0 if we aren't a call instruction
+ let var_results = dfg
+ .call_signature(inst)
+ .map_or(0, |sig| dfg.signatures[sig].returns.len());
+ let total_results = num_fixed_results + var_results;
+
+ // All result values for multi-valued instructions are created
+ let got_results = dfg.inst_results(inst).len();
+ if got_results != total_results {
+ return errors.fatal((
+ inst,
+ self.context(inst),
+ format!(
+ "expected {} result values, found {}",
+ total_results, got_results,
+ ),
+ ));
+ }
+
+ self.verify_entity_references(inst, errors)
+ }
+
+ fn verify_entity_references(
+ &self,
+ inst: Inst,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ use crate::ir::instructions::InstructionData::*;
+
+ for &arg in self.func.dfg.inst_args(inst) {
+ self.verify_inst_arg(inst, arg, errors)?;
+
+ // All used values must be attached to something.
+ let original = self.func.dfg.resolve_aliases(arg);
+ if !self.func.dfg.value_is_attached(original) {
+ errors.report((
+ inst,
+ self.context(inst),
+ format!("argument {} -> {} is not attached", arg, original),
+ ));
+ }
+ }
+
+ for &res in self.func.dfg.inst_results(inst) {
+ self.verify_inst_result(inst, res, errors)?;
+ }
+
+ match self.func.dfg[inst] {
+ MultiAry { ref args, .. } => {
+ self.verify_value_list(inst, args, errors)?;
+ }
+ Jump {
+ destination,
+ ref args,
+ ..
+ }
+ | Branch {
+ destination,
+ ref args,
+ ..
+ }
+ | BranchInt {
+ destination,
+ ref args,
+ ..
+ }
+ | BranchFloat {
+ destination,
+ ref args,
+ ..
+ }
+ | BranchIcmp {
+ destination,
+ ref args,
+ ..
+ } => {
+ self.verify_block(inst, destination, errors)?;
+ self.verify_value_list(inst, args, errors)?;
+ }
+ BranchTable {
+ table, destination, ..
+ } => {
+ self.verify_block(inst, destination, errors)?;
+ self.verify_jump_table(inst, table, errors)?;
+ }
+ BranchTableBase { table, .. }
+ | BranchTableEntry { table, .. }
+ | IndirectJump { table, .. } => {
+ self.verify_jump_table(inst, table, errors)?;
+ }
+ Call {
+ func_ref, ref args, ..
+ } => {
+ self.verify_func_ref(inst, func_ref, errors)?;
+ self.verify_value_list(inst, args, errors)?;
+ }
+ CallIndirect {
+ sig_ref, ref args, ..
+ } => {
+ self.verify_sig_ref(inst, sig_ref, errors)?;
+ self.verify_value_list(inst, args, errors)?;
+ }
+ FuncAddr { func_ref, .. } => {
+ self.verify_func_ref(inst, func_ref, errors)?;
+ }
+ StackLoad { stack_slot, .. } | StackStore { stack_slot, .. } => {
+ self.verify_stack_slot(inst, stack_slot, errors)?;
+ }
+ UnaryGlobalValue { global_value, .. } => {
+ self.verify_global_value(inst, global_value, errors)?;
+ }
+ HeapAddr { heap, .. } => {
+ self.verify_heap(inst, heap, errors)?;
+ }
+ TableAddr { table, .. } => {
+ self.verify_table(inst, table, errors)?;
+ }
+ RegSpill { dst, .. } => {
+ self.verify_stack_slot(inst, dst, errors)?;
+ }
+ RegFill { src, .. } => {
+ self.verify_stack_slot(inst, src, errors)?;
+ }
+ LoadComplex { ref args, .. } => {
+ self.verify_value_list(inst, args, errors)?;
+ }
+ StoreComplex { ref args, .. } => {
+ self.verify_value_list(inst, args, errors)?;
+ }
+
+ NullAry {
+ opcode: Opcode::GetPinnedReg,
+ }
+ | Unary {
+ opcode: Opcode::SetPinnedReg,
+ ..
+ } => {
+ if let Some(isa) = &self.isa {
+ if !isa.flags().enable_pinned_reg() {
+ return errors.fatal((
+ inst,
+ self.context(inst),
+ "GetPinnedReg/SetPinnedReg cannot be used without enable_pinned_reg",
+ ));
+ }
+ } else {
+ return errors.fatal((
+ inst,
+ self.context(inst),
+ "GetPinnedReg/SetPinnedReg need an ISA!",
+ ));
+ }
+ }
+ Unary {
+ opcode: Opcode::Bitcast,
+ arg,
+ } => {
+ self.verify_bitcast(inst, arg, errors)?;
+ }
+ UnaryConst {
+ opcode: Opcode::Vconst,
+ constant_handle,
+ ..
+ } => {
+ self.verify_constant_size(inst, constant_handle, errors)?;
+ }
+
+ // Exhaustive list so we can't forget to add new formats
+ AtomicCas { .. }
+ | AtomicRmw { .. }
+ | LoadNoOffset { .. }
+ | StoreNoOffset { .. }
+ | Unary { .. }
+ | UnaryConst { .. }
+ | UnaryImm { .. }
+ | UnaryIeee32 { .. }
+ | UnaryIeee64 { .. }
+ | UnaryBool { .. }
+ | Binary { .. }
+ | BinaryImm8 { .. }
+ | BinaryImm64 { .. }
+ | Ternary { .. }
+ | TernaryImm8 { .. }
+ | Shuffle { .. }
+ | IntCompare { .. }
+ | IntCompareImm { .. }
+ | IntCond { .. }
+ | FloatCompare { .. }
+ | FloatCond { .. }
+ | IntSelect { .. }
+ | Load { .. }
+ | Store { .. }
+ | RegMove { .. }
+ | CopySpecial { .. }
+ | CopyToSsa { .. }
+ | Trap { .. }
+ | CondTrap { .. }
+ | IntCondTrap { .. }
+ | FloatCondTrap { .. }
+ | NullAry { .. } => {}
+ }
+
+ Ok(())
+ }
+
+ fn verify_block(
+ &self,
+ loc: impl Into<AnyEntity>,
+ e: Block,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ if !self.func.dfg.block_is_valid(e) || !self.func.layout.is_block_inserted(e) {
+ return errors.fatal((loc, format!("invalid block reference {}", e)));
+ }
+ if let Some(entry_block) = self.func.layout.entry_block() {
+ if e == entry_block {
+ return errors.fatal((loc, format!("invalid reference to entry block {}", e)));
+ }
+ }
+ Ok(())
+ }
+
+ fn verify_sig_ref(
+ &self,
+ inst: Inst,
+ s: SigRef,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ if !self.func.dfg.signatures.is_valid(s) {
+ errors.fatal((
+ inst,
+ self.context(inst),
+ format!("invalid signature reference {}", s),
+ ))
+ } else {
+ Ok(())
+ }
+ }
+
+ fn verify_func_ref(
+ &self,
+ inst: Inst,
+ f: FuncRef,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ if !self.func.dfg.ext_funcs.is_valid(f) {
+ errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!("invalid function reference {}", f),
+ ))
+ } else {
+ Ok(())
+ }
+ }
+
+ fn verify_stack_slot(
+ &self,
+ inst: Inst,
+ ss: StackSlot,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ if !self.func.stack_slots.is_valid(ss) {
+ errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!("invalid stack slot {}", ss),
+ ))
+ } else {
+ Ok(())
+ }
+ }
+
+ fn verify_global_value(
+ &self,
+ inst: Inst,
+ gv: GlobalValue,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ if !self.func.global_values.is_valid(gv) {
+ errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!("invalid global value {}", gv),
+ ))
+ } else {
+ Ok(())
+ }
+ }
+
+ fn verify_heap(
+ &self,
+ inst: Inst,
+ heap: ir::Heap,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ if !self.func.heaps.is_valid(heap) {
+ errors.nonfatal((inst, self.context(inst), format!("invalid heap {}", heap)))
+ } else {
+ Ok(())
+ }
+ }
+
+ fn verify_table(
+ &self,
+ inst: Inst,
+ table: ir::Table,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ if !self.func.tables.is_valid(table) {
+ errors.nonfatal((inst, self.context(inst), format!("invalid table {}", table)))
+ } else {
+ Ok(())
+ }
+ }
+
+ fn verify_value_list(
+ &self,
+ inst: Inst,
+ l: &ValueList,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ if !l.is_valid(&self.func.dfg.value_lists) {
+ errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!("invalid value list reference {:?}", l),
+ ))
+ } else {
+ Ok(())
+ }
+ }
+
+ fn verify_jump_table(
+ &self,
+ inst: Inst,
+ j: JumpTable,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ if !self.func.jump_tables.is_valid(j) {
+ errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!("invalid jump table reference {}", j),
+ ))
+ } else {
+ Ok(())
+ }
+ }
+
+ fn verify_value(
+ &self,
+ loc_inst: Inst,
+ v: Value,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ let dfg = &self.func.dfg;
+ if !dfg.value_is_valid(v) {
+ errors.nonfatal((
+ loc_inst,
+ self.context(loc_inst),
+ format!("invalid value reference {}", v),
+ ))
+ } else {
+ Ok(())
+ }
+ }
+
+ fn verify_inst_arg(
+ &self,
+ loc_inst: Inst,
+ v: Value,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ self.verify_value(loc_inst, v, errors)?;
+
+ let dfg = &self.func.dfg;
+ let loc_block = self.func.layout.pp_block(loc_inst);
+ let is_reachable = self.expected_domtree.is_reachable(loc_block);
+
+ // SSA form
+ match dfg.value_def(v) {
+ ValueDef::Result(def_inst, _) => {
+ // Value is defined by an instruction that exists.
+ if !dfg.inst_is_valid(def_inst) {
+ return errors.fatal((
+ loc_inst,
+ self.context(loc_inst),
+ format!("{} is defined by invalid instruction {}", v, def_inst),
+ ));
+ }
+ // Defining instruction is inserted in a block.
+ if self.func.layout.inst_block(def_inst) == None {
+ return errors.fatal((
+ loc_inst,
+ self.context(loc_inst),
+ format!("{} is defined by {} which has no block", v, def_inst),
+ ));
+ }
+ // Defining instruction dominates the instruction that uses the value.
+ if is_reachable {
+ if !self
+ .expected_domtree
+ .dominates(def_inst, loc_inst, &self.func.layout)
+ {
+ return errors.fatal((
+ loc_inst,
+ self.context(loc_inst),
+ format!("uses value {} from non-dominating {}", v, def_inst),
+ ));
+ }
+ if def_inst == loc_inst {
+ return errors.fatal((
+ loc_inst,
+ self.context(loc_inst),
+ format!("uses value {} from itself", v),
+ ));
+ }
+ }
+ }
+ ValueDef::Param(block, _) => {
+ // Value is defined by an existing block.
+ if !dfg.block_is_valid(block) {
+ return errors.fatal((
+ loc_inst,
+ self.context(loc_inst),
+ format!("{} is defined by invalid block {}", v, block),
+ ));
+ }
+ // Defining block is inserted in the layout
+ if !self.func.layout.is_block_inserted(block) {
+ return errors.fatal((
+ loc_inst,
+ self.context(loc_inst),
+ format!("{} is defined by {} which is not in the layout", v, block),
+ ));
+ }
+ // The defining block dominates the instruction using this value.
+ if is_reachable
+ && !self
+ .expected_domtree
+ .dominates(block, loc_inst, &self.func.layout)
+ {
+ return errors.fatal((
+ loc_inst,
+ self.context(loc_inst),
+ format!("uses value arg from non-dominating {}", block),
+ ));
+ }
+ }
+ }
+ Ok(())
+ }
+
+ fn verify_inst_result(
+ &self,
+ loc_inst: Inst,
+ v: Value,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ self.verify_value(loc_inst, v, errors)?;
+
+ match self.func.dfg.value_def(v) {
+ ValueDef::Result(def_inst, _) => {
+ if def_inst != loc_inst {
+ errors.fatal((
+ loc_inst,
+ self.context(loc_inst),
+ format!("instruction result {} is not defined by the instruction", v),
+ ))
+ } else {
+ Ok(())
+ }
+ }
+ ValueDef::Param(_, _) => errors.fatal((
+ loc_inst,
+ self.context(loc_inst),
+ format!("instruction result {} is not defined by the instruction", v),
+ )),
+ }
+ }
+
+ fn verify_bitcast(
+ &self,
+ inst: Inst,
+ arg: Value,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ let typ = self.func.dfg.ctrl_typevar(inst);
+ let value_type = self.func.dfg.value_type(arg);
+
+ if typ.lane_bits() < value_type.lane_bits() {
+ errors.fatal((
+ inst,
+ format!(
+ "The bitcast argument {} doesn't fit in a type of {} bits",
+ arg,
+ typ.lane_bits()
+ ),
+ ))
+ } else {
+ Ok(())
+ }
+ }
+
+ fn verify_constant_size(
+ &self,
+ inst: Inst,
+ constant: Constant,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ let type_size = self.func.dfg.ctrl_typevar(inst).bytes() as usize;
+ let constant_size = self.func.dfg.constants.get(constant).len();
+ if type_size != constant_size {
+ errors.fatal((
+ inst,
+ format!(
+ "The instruction expects {} to have a size of {} bytes but it has {}",
+ constant, type_size, constant_size
+ ),
+ ))
+ } else {
+ Ok(())
+ }
+ }
+
+ fn domtree_integrity(
+ &self,
+ domtree: &DominatorTree,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ // We consider two `DominatorTree`s to be equal if they return the same immediate
+ // dominator for each block. Therefore the current domtree is valid if it matches the freshly
+ // computed one.
+ for block in self.func.layout.blocks() {
+ let expected = self.expected_domtree.idom(block);
+ let got = domtree.idom(block);
+ if got != expected {
+ return errors.fatal((
+ block,
+ format!(
+ "invalid domtree, expected idom({}) = {:?}, got {:?}",
+ block, expected, got
+ ),
+ ));
+ }
+ }
+ // We also verify if the postorder defined by `DominatorTree` is sane
+ if domtree.cfg_postorder().len() != self.expected_domtree.cfg_postorder().len() {
+ return errors.fatal((
+ AnyEntity::Function,
+ "incorrect number of Blocks in postorder traversal",
+ ));
+ }
+ for (index, (&test_block, &true_block)) in domtree
+ .cfg_postorder()
+ .iter()
+ .zip(self.expected_domtree.cfg_postorder().iter())
+ .enumerate()
+ {
+ if test_block != true_block {
+ return errors.fatal((
+ test_block,
+ format!(
+ "invalid domtree, postorder block number {} should be {}, got {}",
+ index, true_block, test_block
+ ),
+ ));
+ }
+ }
+ // We verify rpo_cmp on pairs of adjacent blocks in the postorder
+ for (&prev_block, &next_block) in domtree.cfg_postorder().iter().adjacent_pairs() {
+ if self
+ .expected_domtree
+ .rpo_cmp(prev_block, next_block, &self.func.layout)
+ != Ordering::Greater
+ {
+ return errors.fatal((
+ next_block,
+ format!(
+ "invalid domtree, rpo_cmp does not says {} is greater than {}",
+ prev_block, next_block
+ ),
+ ));
+ }
+ }
+ Ok(())
+ }
+
+ fn typecheck_entry_block_params(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
+ if let Some(block) = self.func.layout.entry_block() {
+ let expected_types = &self.func.signature.params;
+ let block_param_count = self.func.dfg.num_block_params(block);
+
+ if block_param_count != expected_types.len() {
+ return errors.fatal((
+ block,
+ format!(
+ "entry block parameters ({}) must match function signature ({})",
+ block_param_count,
+ expected_types.len()
+ ),
+ ));
+ }
+
+ for (i, &arg) in self.func.dfg.block_params(block).iter().enumerate() {
+ let arg_type = self.func.dfg.value_type(arg);
+ if arg_type != expected_types[i].value_type {
+ errors.report((
+ block,
+ format!(
+ "entry block parameter {} expected to have type {}, got {}",
+ i, expected_types[i], arg_type
+ ),
+ ));
+ }
+ }
+ }
+
+ errors.as_result()
+ }
+
+ fn typecheck(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
+ let inst_data = &self.func.dfg[inst];
+ let constraints = inst_data.opcode().constraints();
+
+ let ctrl_type = if let Some(value_typeset) = constraints.ctrl_typeset() {
+ // For polymorphic opcodes, determine the controlling type variable first.
+ let ctrl_type = self.func.dfg.ctrl_typevar(inst);
+
+ if !value_typeset.contains(ctrl_type) {
+ errors.report((
+ inst,
+ self.context(inst),
+ format!("has an invalid controlling type {}", ctrl_type),
+ ));
+ }
+
+ ctrl_type
+ } else {
+ // Non-polymorphic instructions don't check the controlling type variable, so `Option`
+ // is unnecessary and we can just make it `INVALID`.
+ types::INVALID
+ };
+
+ // Typechecking instructions is never fatal
+ let _ = self.typecheck_results(inst, ctrl_type, errors);
+ let _ = self.typecheck_fixed_args(inst, ctrl_type, errors);
+ let _ = self.typecheck_variable_args(inst, errors);
+ let _ = self.typecheck_return(inst, errors);
+ let _ = self.typecheck_special(inst, ctrl_type, errors);
+
+ // Misuses of copy_nop instructions are fatal
+ self.typecheck_copy_nop(inst, errors)?;
+
+ Ok(())
+ }
+
+ fn typecheck_results(
+ &self,
+ inst: Inst,
+ ctrl_type: Type,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ let mut i = 0;
+ for &result in self.func.dfg.inst_results(inst) {
+ let result_type = self.func.dfg.value_type(result);
+ let expected_type = self.func.dfg.compute_result_type(inst, i, ctrl_type);
+ if let Some(expected_type) = expected_type {
+ if result_type != expected_type {
+ errors.report((
+ inst,
+ self.context(inst),
+ format!(
+ "expected result {} ({}) to have type {}, found {}",
+ i, result, expected_type, result_type
+ ),
+ ));
+ }
+ } else {
+ return errors.nonfatal((
+ inst,
+ self.context(inst),
+ "has more result values than expected",
+ ));
+ }
+ i += 1;
+ }
+
+ // There aren't any more result types left.
+ if self.func.dfg.compute_result_type(inst, i, ctrl_type) != None {
+ return errors.nonfatal((
+ inst,
+ self.context(inst),
+ "has fewer result values than expected",
+ ));
+ }
+ Ok(())
+ }
+
+ fn typecheck_fixed_args(
+ &self,
+ inst: Inst,
+ ctrl_type: Type,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ let constraints = self.func.dfg[inst].opcode().constraints();
+
+ for (i, &arg) in self.func.dfg.inst_fixed_args(inst).iter().enumerate() {
+ let arg_type = self.func.dfg.value_type(arg);
+ match constraints.value_argument_constraint(i, ctrl_type) {
+ ResolvedConstraint::Bound(expected_type) => {
+ if arg_type != expected_type {
+ errors.report((
+ inst,
+ self.context(inst),
+ format!(
+ "arg {} ({}) has type {}, expected {}",
+ i, arg, arg_type, expected_type
+ ),
+ ));
+ }
+ }
+ ResolvedConstraint::Free(type_set) => {
+ if !type_set.contains(arg_type) {
+ errors.report((
+ inst,
+ self.context(inst),
+ format!(
+ "arg {} ({}) with type {} failed to satisfy type set {:?}",
+ i, arg, arg_type, type_set
+ ),
+ ));
+ }
+ }
+ }
+ }
+ Ok(())
+ }
+
+ fn typecheck_variable_args(
+ &self,
+ inst: Inst,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ match self.func.dfg.analyze_branch(inst) {
+ BranchInfo::SingleDest(block, _) => {
+ let iter = self
+ .func
+ .dfg
+ .block_params(block)
+ .iter()
+ .map(|&v| self.func.dfg.value_type(v));
+ self.typecheck_variable_args_iterator(inst, iter, errors)?;
+ }
+ BranchInfo::Table(table, block) => {
+ if let Some(block) = block {
+ let arg_count = self.func.dfg.num_block_params(block);
+ if arg_count != 0 {
+ return errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!(
+ "takes no arguments, but had target {} with {} arguments",
+ block, arg_count,
+ ),
+ ));
+ }
+ }
+ for block in self.func.jump_tables[table].iter() {
+ let arg_count = self.func.dfg.num_block_params(*block);
+ if arg_count != 0 {
+ return errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!(
+ "takes no arguments, but had target {} with {} arguments",
+ block, arg_count,
+ ),
+ ));
+ }
+ }
+ }
+ BranchInfo::NotABranch => {}
+ }
+
+ match self.func.dfg[inst].analyze_call(&self.func.dfg.value_lists) {
+ CallInfo::Direct(func_ref, _) => {
+ let sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
+ let arg_types = self.func.dfg.signatures[sig_ref]
+ .params
+ .iter()
+ .map(|a| a.value_type);
+ self.typecheck_variable_args_iterator(inst, arg_types, errors)?;
+ self.check_outgoing_args(inst, sig_ref, errors)?;
+ }
+ CallInfo::Indirect(sig_ref, _) => {
+ let arg_types = self.func.dfg.signatures[sig_ref]
+ .params
+ .iter()
+ .map(|a| a.value_type);
+ self.typecheck_variable_args_iterator(inst, arg_types, errors)?;
+ self.check_outgoing_args(inst, sig_ref, errors)?;
+ }
+ CallInfo::NotACall => {}
+ }
+ Ok(())
+ }
+
+ fn typecheck_variable_args_iterator<I: Iterator<Item = Type>>(
+ &self,
+ inst: Inst,
+ iter: I,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ let variable_args = self.func.dfg.inst_variable_args(inst);
+ let mut i = 0;
+
+ for expected_type in iter {
+ if i >= variable_args.len() {
+ // Result count mismatch handled below, we want the full argument count first though
+ i += 1;
+ continue;
+ }
+ let arg = variable_args[i];
+ let arg_type = self.func.dfg.value_type(arg);
+ if expected_type != arg_type {
+ errors.report((
+ inst,
+ self.context(inst),
+ format!(
+ "arg {} ({}) has type {}, expected {}",
+ i, variable_args[i], arg_type, expected_type
+ ),
+ ));
+ }
+ i += 1;
+ }
+ if i != variable_args.len() {
+ return errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!(
+ "mismatched argument count for `{}`: got {}, expected {}",
+ self.func.dfg.display_inst(inst, None),
+ variable_args.len(),
+ i,
+ ),
+ ));
+ }
+ Ok(())
+ }
+
+ /// Check the locations assigned to outgoing call arguments.
+ ///
+ /// When a signature has been legalized, all values passed as outgoing arguments on the stack
+ /// must be assigned to a matching `OutgoingArg` stack slot.
+ fn check_outgoing_args(
+ &self,
+ inst: Inst,
+ sig_ref: SigRef,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ let sig = &self.func.dfg.signatures[sig_ref];
+
+ let args = self.func.dfg.inst_variable_args(inst);
+ let expected_args = &sig.params[..];
+
+ for (&arg, &abi) in args.iter().zip(expected_args) {
+ // Value types have already been checked by `typecheck_variable_args_iterator()`.
+ if let ArgumentLoc::Stack(offset) = abi.location {
+ let arg_loc = self.func.locations[arg];
+ if let ValueLoc::Stack(ss) = arg_loc {
+ // Argument value is assigned to a stack slot as expected.
+ self.verify_stack_slot(inst, ss, errors)?;
+ let slot = &self.func.stack_slots[ss];
+ if slot.kind != StackSlotKind::OutgoingArg {
+ return errors.fatal((
+ inst,
+ self.context(inst),
+ format!(
+ "Outgoing stack argument {} in wrong stack slot: {} = {}",
+ arg, ss, slot,
+ ),
+ ));
+ }
+ if slot.offset != Some(offset) {
+ return errors.fatal((
+ inst,
+ self.context(inst),
+ format!(
+ "Outgoing stack argument {} should have offset {}: {} = {}",
+ arg, offset, ss, slot,
+ ),
+ ));
+ }
+ if abi.purpose == ArgumentPurpose::StructArgument(slot.size) {
+ } else if slot.size != abi.value_type.bytes() {
+ return errors.fatal((
+ inst,
+ self.context(inst),
+ format!(
+ "Outgoing stack argument {} wrong size for {}: {} = {}",
+ arg, abi.value_type, ss, slot,
+ ),
+ ));
+ }
+ } else {
+ let reginfo = self.isa.map(|i| i.register_info());
+ return errors.fatal((
+ inst,
+ self.context(inst),
+ format!(
+ "Outgoing stack argument {} in wrong location: {}",
+ arg,
+ arg_loc.display(reginfo.as_ref())
+ ),
+ ));
+ }
+ }
+ }
+ Ok(())
+ }
+
+ fn typecheck_return(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
+ if self.func.dfg[inst].opcode().is_return() {
+ let args = self.func.dfg.inst_variable_args(inst);
+ let expected_types = &self.func.signature.returns;
+ if args.len() != expected_types.len() {
+ return errors.nonfatal((
+ inst,
+ self.context(inst),
+ "arguments of return must match function signature",
+ ));
+ }
+ for (i, (&arg, &expected_type)) in args.iter().zip(expected_types).enumerate() {
+ let arg_type = self.func.dfg.value_type(arg);
+ if arg_type != expected_type.value_type {
+ errors.report((
+ inst,
+ self.context(inst),
+ format!(
+ "arg {} ({}) has type {}, must match function signature of {}",
+ i, arg, arg_type, expected_type
+ ),
+ ));
+ }
+ }
+ }
+ Ok(())
+ }
+
+ // Check special-purpose type constraints that can't be expressed in the normal opcode
+ // constraints.
+ fn typecheck_special(
+ &self,
+ inst: Inst,
+ ctrl_type: Type,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ match self.func.dfg[inst] {
+ ir::InstructionData::Unary { opcode, arg } => {
+ let arg_type = self.func.dfg.value_type(arg);
+ match opcode {
+ Opcode::Bextend | Opcode::Uextend | Opcode::Sextend | Opcode::Fpromote => {
+ if arg_type.lane_count() != ctrl_type.lane_count() {
+ return errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!(
+ "input {} and output {} must have same number of lanes",
+ arg_type, ctrl_type,
+ ),
+ ));
+ }
+ if arg_type.lane_bits() >= ctrl_type.lane_bits() {
+ return errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!(
+ "input {} must be smaller than output {}",
+ arg_type, ctrl_type,
+ ),
+ ));
+ }
+ }
+ Opcode::Breduce | Opcode::Ireduce | Opcode::Fdemote => {
+ if arg_type.lane_count() != ctrl_type.lane_count() {
+ return errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!(
+ "input {} and output {} must have same number of lanes",
+ arg_type, ctrl_type,
+ ),
+ ));
+ }
+ if arg_type.lane_bits() <= ctrl_type.lane_bits() {
+ return errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!(
+ "input {} must be larger than output {}",
+ arg_type, ctrl_type,
+ ),
+ ));
+ }
+ }
+ _ => {}
+ }
+ }
+ ir::InstructionData::HeapAddr { heap, arg, .. } => {
+ let index_type = self.func.dfg.value_type(arg);
+ let heap_index_type = self.func.heaps[heap].index_type;
+ if index_type != heap_index_type {
+ return errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!(
+ "index type {} differs from heap index type {}",
+ index_type, heap_index_type,
+ ),
+ ));
+ }
+ }
+ ir::InstructionData::TableAddr { table, arg, .. } => {
+ let index_type = self.func.dfg.value_type(arg);
+ let table_index_type = self.func.tables[table].index_type;
+ if index_type != table_index_type {
+ return errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!(
+ "index type {} differs from table index type {}",
+ index_type, table_index_type,
+ ),
+ ));
+ }
+ }
+ ir::InstructionData::UnaryGlobalValue { global_value, .. } => {
+ if let Some(isa) = self.isa {
+ let inst_type = self.func.dfg.value_type(self.func.dfg.first_result(inst));
+ let global_type = self.func.global_values[global_value].global_type(isa);
+ if inst_type != global_type {
+ return errors.nonfatal((
+ inst, self.context(inst),
+ format!(
+ "global_value instruction with type {} references global value with type {}",
+ inst_type, global_type
+ )),
+ );
+ }
+ }
+ }
+ _ => {}
+ }
+ Ok(())
+ }
+
+ fn typecheck_copy_nop(
+ &self,
+ inst: Inst,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ if let InstructionData::Unary {
+ opcode: Opcode::CopyNop,
+ arg,
+ } = self.func.dfg[inst]
+ {
+ let dst_vals = self.func.dfg.inst_results(inst);
+ if dst_vals.len() != 1 {
+ return errors.fatal((
+ inst,
+ self.context(inst),
+ "copy_nop must produce exactly one result",
+ ));
+ }
+ let dst_val = dst_vals[0];
+ if self.func.dfg.value_type(dst_val) != self.func.dfg.value_type(arg) {
+ return errors.fatal((
+ inst,
+ self.context(inst),
+ "copy_nop src and dst types must be the same",
+ ));
+ }
+ let src_loc = self.func.locations[arg];
+ let dst_loc = self.func.locations[dst_val];
+ let locs_ok = match (src_loc, dst_loc) {
+ (ValueLoc::Stack(src_slot), ValueLoc::Stack(dst_slot)) => src_slot == dst_slot,
+ _ => false,
+ };
+ if !locs_ok {
+ return errors.fatal((
+ inst,
+ self.context(inst),
+ format!(
+ "copy_nop must refer to identical stack slots, but found {:?} vs {:?}",
+ src_loc, dst_loc,
+ ),
+ ));
+ }
+ }
+ Ok(())
+ }
+
+ fn cfg_integrity(
+ &self,
+ cfg: &ControlFlowGraph,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ let mut expected_succs = BTreeSet::<Block>::new();
+ let mut got_succs = BTreeSet::<Block>::new();
+ let mut expected_preds = BTreeSet::<Inst>::new();
+ let mut got_preds = BTreeSet::<Inst>::new();
+
+ for block in self.func.layout.blocks() {
+ expected_succs.extend(self.expected_cfg.succ_iter(block));
+ got_succs.extend(cfg.succ_iter(block));
+
+ let missing_succs: Vec<Block> =
+ expected_succs.difference(&got_succs).cloned().collect();
+ if !missing_succs.is_empty() {
+ errors.report((
+ block,
+ format!("cfg lacked the following successor(s) {:?}", missing_succs),
+ ));
+ continue;
+ }
+
+ let excess_succs: Vec<Block> = got_succs.difference(&expected_succs).cloned().collect();
+ if !excess_succs.is_empty() {
+ errors.report((
+ block,
+ format!("cfg had unexpected successor(s) {:?}", excess_succs),
+ ));
+ continue;
+ }
+
+ expected_preds.extend(
+ self.expected_cfg
+ .pred_iter(block)
+ .map(|BlockPredecessor { inst, .. }| inst),
+ );
+ got_preds.extend(
+ cfg.pred_iter(block)
+ .map(|BlockPredecessor { inst, .. }| inst),
+ );
+
+ let missing_preds: Vec<Inst> = expected_preds.difference(&got_preds).cloned().collect();
+ if !missing_preds.is_empty() {
+ errors.report((
+ block,
+ format!(
+ "cfg lacked the following predecessor(s) {:?}",
+ missing_preds
+ ),
+ ));
+ continue;
+ }
+
+ let excess_preds: Vec<Inst> = got_preds.difference(&expected_preds).cloned().collect();
+ if !excess_preds.is_empty() {
+ errors.report((
+ block,
+ format!("cfg had unexpected predecessor(s) {:?}", excess_preds),
+ ));
+ continue;
+ }
+
+ expected_succs.clear();
+ got_succs.clear();
+ expected_preds.clear();
+ got_preds.clear();
+ }
+ errors.as_result()
+ }
+
+ /// If the verifier has been set up with an ISA, make sure that the recorded encoding for the
+ /// instruction (if any) matches how the ISA would encode it.
+ fn verify_encoding(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
+ // When the encodings table is empty, we don't require any instructions to be encoded.
+ //
+ // Once some instructions are encoded, we require all side-effecting instructions to have a
+ // legal encoding.
+ if self.func.encodings.is_empty() {
+ return Ok(());
+ }
+
+ let isa = match self.isa {
+ Some(isa) => isa,
+ None => return Ok(()),
+ };
+
+ let encoding = self.func.encodings[inst];
+ if encoding.is_legal() {
+ if self.func.dfg[inst].opcode().is_ghost() {
+ return errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!(
+ "Ghost instruction has an encoding: {}",
+ isa.encoding_info().display(encoding),
+ ),
+ ));
+ }
+
+ let mut encodings = isa
+ .legal_encodings(
+ &self.func,
+ &self.func.dfg[inst],
+ self.func.dfg.ctrl_typevar(inst),
+ )
+ .peekable();
+
+ if encodings.peek().is_none() {
+ return errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!(
+ "Instruction failed to re-encode {}",
+ isa.encoding_info().display(encoding),
+ ),
+ ));
+ }
+
+ let has_valid_encoding = encodings.any(|possible_enc| encoding == possible_enc);
+
+ if !has_valid_encoding {
+ let mut possible_encodings = String::new();
+ let mut multiple_encodings = false;
+
+ for enc in isa.legal_encodings(
+ &self.func,
+ &self.func.dfg[inst],
+ self.func.dfg.ctrl_typevar(inst),
+ ) {
+ if !possible_encodings.is_empty() {
+ possible_encodings.push_str(", ");
+ multiple_encodings = true;
+ }
+ possible_encodings
+ .write_fmt(format_args!("{}", isa.encoding_info().display(enc)))
+ .unwrap();
+ }
+
+ return errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!(
+ "encoding {} should be {}{}",
+ isa.encoding_info().display(encoding),
+ if multiple_encodings { "one of: " } else { "" },
+ possible_encodings,
+ ),
+ ));
+ }
+ return Ok(());
+ }
+
+ // Instruction is not encoded, so it is a ghost instruction.
+ // Instructions with side effects are not allowed to be ghost instructions.
+ let opcode = self.func.dfg[inst].opcode();
+
+ // The `fallthrough`, `fallthrough_return`, and `safepoint` instructions are not required
+ // to have an encoding.
+ if opcode == Opcode::Fallthrough
+ || opcode == Opcode::FallthroughReturn
+ || opcode == Opcode::Safepoint
+ {
+ return Ok(());
+ }
+
+ // Check if this opcode must be encoded.
+ let mut needs_enc = None;
+ if opcode.is_branch() {
+ needs_enc = Some("Branch");
+ } else if opcode.is_call() {
+ needs_enc = Some("Call");
+ } else if opcode.is_return() {
+ needs_enc = Some("Return");
+ } else if opcode.can_store() {
+ needs_enc = Some("Store");
+ } else if opcode.can_trap() {
+ needs_enc = Some("Trapping instruction");
+ } else if opcode.other_side_effects() {
+ needs_enc = Some("Instruction with side effects");
+ }
+
+ if let Some(text) = needs_enc {
+ // This instruction needs an encoding, so generate an error.
+ // Provide the ISA default encoding as a hint.
+ match self.func.encode(inst, isa) {
+ Ok(enc) => {
+ return errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!(
+ "{} must have an encoding (e.g., {})))",
+ text,
+ isa.encoding_info().display(enc),
+ ),
+ ));
+ }
+ Err(_) => {
+ return errors.nonfatal((
+ inst,
+ self.context(inst),
+ format!("{} must have an encoding", text),
+ ))
+ }
+ }
+ }
+
+ Ok(())
+ }
+
+ fn immediate_constraints(
+ &self,
+ inst: Inst,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ let inst_data = &self.func.dfg[inst];
+
+ match *inst_data {
+ ir::InstructionData::Store { flags, .. }
+ | ir::InstructionData::StoreComplex { flags, .. } => {
+ if flags.readonly() {
+ errors.fatal((
+ inst,
+ self.context(inst),
+ "A store instruction cannot have the `readonly` MemFlag",
+ ))
+ } else {
+ Ok(())
+ }
+ }
+ ir::InstructionData::BinaryImm8 {
+ opcode: ir::instructions::Opcode::Extractlane,
+ imm: lane,
+ arg,
+ ..
+ }
+ | ir::InstructionData::TernaryImm8 {
+ opcode: ir::instructions::Opcode::Insertlane,
+ imm: lane,
+ args: [arg, _],
+ ..
+ } => {
+ // We must be specific about the opcodes above because other instructions are using
+ // the same formats.
+ let ty = self.func.dfg.value_type(arg);
+ if u16::from(lane) >= ty.lane_count() {
+ errors.fatal((
+ inst,
+ self.context(inst),
+ format!("The lane {} does not index into the type {}", lane, ty,),
+ ))
+ } else {
+ Ok(())
+ }
+ }
+ _ => Ok(()),
+ }
+ }
+
+ fn verify_safepoint_unused(
+ &self,
+ inst: Inst,
+ errors: &mut VerifierErrors,
+ ) -> VerifierStepResult<()> {
+ if let Some(isa) = self.isa {
+ if !isa.flags().enable_safepoints() && self.func.dfg[inst].opcode() == Opcode::Safepoint
+ {
+ return errors.fatal((
+ inst,
+ self.context(inst),
+ "safepoint instruction cannot be used when it is not enabled.",
+ ));
+ }
+ }
+ Ok(())
+ }
+
+ fn typecheck_function_signature(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
+ self.func
+ .signature
+ .params
+ .iter()
+ .enumerate()
+ .filter(|(_, &param)| param.value_type == types::INVALID)
+ .for_each(|(i, _)| {
+ errors.report((
+ AnyEntity::Function,
+ format!("Parameter at position {} has an invalid type", i),
+ ));
+ });
+
+ self.func
+ .signature
+ .returns
+ .iter()
+ .enumerate()
+ .filter(|(_, &ret)| ret.value_type == types::INVALID)
+ .for_each(|(i, _)| {
+ errors.report((
+ AnyEntity::Function,
+ format!("Return value at position {} has an invalid type", i),
+ ))
+ });
+
+ self.func
+ .signature
+ .returns
+ .iter()
+ .enumerate()
+ .for_each(|(i, ret)| {
+ if let ArgumentPurpose::StructArgument(_) = ret.purpose {
+ errors.report((
+ AnyEntity::Function,
+ format!("Return value at position {} can't be an struct argument", i),
+ ))
+ }
+ });
+
+ if errors.has_error() {
+ Err(())
+ } else {
+ Ok(())
+ }
+ }
+
+ pub fn run(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
+ self.verify_global_values(errors)?;
+ self.verify_heaps(errors)?;
+ self.verify_tables(errors)?;
+ self.verify_jump_tables(errors)?;
+ self.typecheck_entry_block_params(errors)?;
+ self.typecheck_function_signature(errors)?;
+
+ for block in self.func.layout.blocks() {
+ if self.func.layout.first_inst(block).is_none() {
+ return errors.fatal((block, format!("{} cannot be empty", block)));
+ }
+ for inst in self.func.layout.block_insts(block) {
+ self.block_integrity(block, inst, errors)?;
+ self.instruction_integrity(inst, errors)?;
+ self.verify_safepoint_unused(inst, errors)?;
+ self.typecheck(inst, errors)?;
+ self.verify_encoding(inst, errors)?;
+ self.immediate_constraints(inst, errors)?;
+ }
+
+ self.encodable_as_bb(block, errors)?;
+ }
+
+ verify_flags(self.func, &self.expected_cfg, self.isa, errors)?;
+
+ if !errors.is_empty() {
+ debug!(
+ "Found verifier errors in function:\n{}",
+ pretty_verifier_error(self.func, None, None, errors.clone())
+ );
+ }
+
+ Ok(())
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::{Verifier, VerifierError, VerifierErrors};
+ use crate::entity::EntityList;
+ use crate::ir::instructions::{InstructionData, Opcode};
+ use crate::ir::{types, AbiParam, Function};
+ use crate::settings;
+
+ macro_rules! assert_err_with_msg {
+ ($e:expr, $msg:expr) => {
+ match $e.0.get(0) {
+ None => panic!("Expected an error"),
+ Some(&VerifierError { ref message, .. }) => {
+ if !message.contains($msg) {
+ #[cfg(feature = "std")]
+ panic!(format!(
+ "'{}' did not contain the substring '{}'",
+ message, $msg
+ ));
+ #[cfg(not(feature = "std"))]
+ panic!("error message did not contain the expected substring");
+ }
+ }
+ }
+ };
+ }
+
+ #[test]
+ fn empty() {
+ let func = Function::new();
+ let flags = &settings::Flags::new(settings::builder());
+ let verifier = Verifier::new(&func, flags.into());
+ let mut errors = VerifierErrors::default();
+
+ assert_eq!(verifier.run(&mut errors), Ok(()));
+ assert!(errors.0.is_empty());
+ }
+
+ #[test]
+ fn bad_instruction_format() {
+ let mut func = Function::new();
+ let block0 = func.dfg.make_block();
+ func.layout.append_block(block0);
+ let nullary_with_bad_opcode = func.dfg.make_inst(InstructionData::UnaryImm {
+ opcode: Opcode::F32const,
+ imm: 0.into(),
+ });
+ func.layout.append_inst(nullary_with_bad_opcode, block0);
+ func.layout.append_inst(
+ func.dfg.make_inst(InstructionData::Jump {
+ opcode: Opcode::Jump,
+ destination: block0,
+ args: EntityList::default(),
+ }),
+ block0,
+ );
+ let flags = &settings::Flags::new(settings::builder());
+ let verifier = Verifier::new(&func, flags.into());
+ let mut errors = VerifierErrors::default();
+
+ let _ = verifier.run(&mut errors);
+
+ assert_err_with_msg!(errors, "instruction format");
+ }
+
+ #[test]
+ fn test_function_invalid_param() {
+ let mut func = Function::new();
+ func.signature.params.push(AbiParam::new(types::INVALID));
+
+ let mut errors = VerifierErrors::default();
+ let flags = &settings::Flags::new(settings::builder());
+ let verifier = Verifier::new(&func, flags.into());
+
+ let _ = verifier.typecheck_function_signature(&mut errors);
+ assert_err_with_msg!(errors, "Parameter at position 0 has an invalid type");
+ }
+
+ #[test]
+ fn test_function_invalid_return_value() {
+ let mut func = Function::new();
+ func.signature.returns.push(AbiParam::new(types::INVALID));
+
+ let mut errors = VerifierErrors::default();
+ let flags = &settings::Flags::new(settings::builder());
+ let verifier = Verifier::new(&func, flags.into());
+
+ let _ = verifier.typecheck_function_signature(&mut errors);
+ assert_err_with_msg!(errors, "Return value at position 0 has an invalid type");
+ }
+
+ #[test]
+ fn test_printing_contextual_errors() {
+ // Build function.
+ let mut func = Function::new();
+ let block0 = func.dfg.make_block();
+ func.layout.append_block(block0);
+
+ // Build instruction: v0, v1 = iconst 42
+ let inst = func.dfg.make_inst(InstructionData::UnaryImm {
+ opcode: Opcode::Iconst,
+ imm: 42.into(),
+ });
+ func.dfg.append_result(inst, types::I32);
+ func.dfg.append_result(inst, types::I32);
+ func.layout.append_inst(inst, block0);
+
+ // Setup verifier.
+ let mut errors = VerifierErrors::default();
+ let flags = &settings::Flags::new(settings::builder());
+ let verifier = Verifier::new(&func, flags.into());
+
+ // Now the error message, when printed, should contain the instruction sequence causing the
+ // error (i.e. v0, v1 = iconst.i32 42) and not only its entity value (i.e. inst0)
+ let _ = verifier.typecheck_results(inst, types::I32, &mut errors);
+ assert_eq!(
+ format!("{}", errors.0[0]),
+ "inst0 (v0, v1 = iconst.i32 42): has more result values than expected"
+ )
+ }
+
+ #[test]
+ fn test_empty_block() {
+ let mut func = Function::new();
+ let block0 = func.dfg.make_block();
+ func.layout.append_block(block0);
+
+ let flags = &settings::Flags::new(settings::builder());
+ let verifier = Verifier::new(&func, flags.into());
+ let mut errors = VerifierErrors::default();
+ let _ = verifier.run(&mut errors);
+
+ assert_err_with_msg!(errors, "block0 cannot be empty");
+ }
+}