diff options
Diffstat (limited to 'third_party/rust/cranelift-codegen/src/verifier/mod.rs')
-rw-r--r-- | third_party/rust/cranelift-codegen/src/verifier/mod.rs | 2186 |
1 files changed, 2186 insertions, 0 deletions
diff --git a/third_party/rust/cranelift-codegen/src/verifier/mod.rs b/third_party/rust/cranelift-codegen/src/verifier/mod.rs new file mode 100644 index 0000000000..dae9ff983d --- /dev/null +++ b/third_party/rust/cranelift-codegen/src/verifier/mod.rs @@ -0,0 +1,2186 @@ +//! A verifier for ensuring that functions are well formed. +//! It verifies: +//! +//! block integrity +//! +//! - All instructions reached from the `block_insts` iterator must belong to +//! the block as reported by `inst_block()`. +//! - Every block must end in a terminator instruction, and no other instruction +//! can be a terminator. +//! - Every value in the `block_params` iterator belongs to the block as reported by `value_block`. +//! +//! Instruction integrity +//! +//! - The instruction format must match the opcode. +//! - All result values must be created for multi-valued instructions. +//! - All referenced entities must exist. (Values, blocks, stack slots, ...) +//! - Instructions must not reference (eg. branch to) the entry block. +//! +//! SSA form +//! +//! - Values must be defined by an instruction that exists and that is inserted in +//! a block, or be an argument of an existing block. +//! - Values used by an instruction must dominate the instruction. +//! +//! Control flow graph and dominator tree integrity: +//! +//! - All predecessors in the CFG must be branches to the block. +//! - All branches to a block must be present in the CFG. +//! - A recomputed dominator tree is identical to the existing one. +//! +//! Type checking +//! +//! - Compare input and output values against the opcode's type constraints. +//! For polymorphic opcodes, determine the controlling type variable first. +//! - Branches and jumps must pass arguments to destination blocks that match the +//! expected types exactly. The number of arguments must match. +//! - All blocks in a jump table must take no arguments. +//! - Function calls are type checked against their signature. +//! - The entry block must take arguments that match the signature of the current +//! function. +//! - All return instructions must have return value operands matching the current +//! function signature. +//! +//! Global values +//! +//! - Detect cycles in global values. +//! - Detect use of 'vmctx' global value when no corresponding parameter is defined. +//! +//! TODO: +//! Ad hoc checking +//! +//! - Stack slot loads and stores must be in-bounds. +//! - Immediate constraints for certain opcodes, like `udiv_imm v3, 0`. +//! - `Insertlane` and `extractlane` instructions have immediate lane numbers that must be in +//! range for their polymorphic type. +//! - Swizzle and shuffle instructions take a variable number of lane arguments. The number +//! of arguments must match the destination type, and the lane indexes must be in range. + +use self::flags::verify_flags; +use crate::dbg::DisplayList; +use crate::dominator_tree::DominatorTree; +use crate::entity::SparseSet; +use crate::flowgraph::{BlockPredecessor, ControlFlowGraph}; +use crate::ir; +use crate::ir::entities::AnyEntity; +use crate::ir::instructions::{BranchInfo, CallInfo, InstructionFormat, ResolvedConstraint}; +use crate::ir::{ + types, ArgumentLoc, ArgumentPurpose, Block, Constant, FuncRef, Function, GlobalValue, Inst, + InstructionData, JumpTable, Opcode, SigRef, StackSlot, StackSlotKind, Type, Value, ValueDef, + ValueList, ValueLoc, +}; +use crate::isa::TargetIsa; +use crate::iterators::IteratorExtras; +use crate::print_errors::pretty_verifier_error; +use crate::settings::FlagsOrIsa; +use crate::timing; +use alloc::collections::BTreeSet; +use alloc::string::{String, ToString}; +use alloc::vec::Vec; +use core::cmp::Ordering; +use core::fmt::{self, Display, Formatter, Write}; +use log::debug; +use thiserror::Error; + +pub use self::cssa::verify_cssa; +pub use self::liveness::verify_liveness; +pub use self::locations::verify_locations; + +mod cssa; +mod flags; +mod liveness; +mod locations; + +/// A verifier error. +#[derive(Error, Debug, PartialEq, Eq, Clone)] +#[error("{}{}: {}", .location, format_context(.context), .message)] +pub struct VerifierError { + /// The entity causing the verifier error. + pub location: AnyEntity, + /// Optionally provide some context for the given location; e.g., for `inst42` provide + /// `Some("v3 = iconst.i32 0")` for more comprehensible errors. + pub context: Option<String>, + /// The error message. + pub message: String, +} + +/// Helper for formatting Verifier::Error context. +fn format_context(context: &Option<String>) -> String { + match context { + None => "".to_string(), + Some(c) => format!(" ({})", c), + } +} + +/// Convenience converter for making error-reporting less verbose. +/// +/// Converts a tuple of `(location, context, message)` to a `VerifierError`. +/// ``` +/// use cranelift_codegen::verifier::VerifierErrors; +/// use cranelift_codegen::ir::Inst; +/// let mut errors = VerifierErrors::new(); +/// errors.report((Inst::from_u32(42), "v3 = iadd v1, v2", "iadd cannot be used with values of this type")); +/// // note the double parenthenses to use this syntax +/// ``` +impl<L, C, M> From<(L, C, M)> for VerifierError +where + L: Into<AnyEntity>, + C: Into<String>, + M: Into<String>, +{ + fn from(items: (L, C, M)) -> Self { + let (location, context, message) = items; + Self { + location: location.into(), + context: Some(context.into()), + message: message.into(), + } + } +} + +/// Convenience converter for making error-reporting less verbose. +/// +/// Same as above but without `context`. +impl<L, M> From<(L, M)> for VerifierError +where + L: Into<AnyEntity>, + M: Into<String>, +{ + fn from(items: (L, M)) -> Self { + let (location, message) = items; + Self { + location: location.into(), + context: None, + message: message.into(), + } + } +} + +/// Result of a step in the verification process. +/// +/// Functions that return `VerifierStepResult<()>` should also take a +/// mutable reference to `VerifierErrors` as argument in order to report +/// errors. +/// +/// Here, `Ok` represents a step that **did not lead to a fatal error**, +/// meaning that the verification process may continue. However, other (non-fatal) +/// errors might have been reported through the previously mentioned `VerifierErrors` +/// argument. +pub type VerifierStepResult<T> = Result<T, ()>; + +/// Result of a verification operation. +/// +/// Unlike `VerifierStepResult<()>` which may be `Ok` while still having reported +/// errors, this type always returns `Err` if an error (fatal or not) was reported. +pub type VerifierResult<T> = Result<T, VerifierErrors>; + +/// List of verifier errors. +#[derive(Error, Debug, Default, PartialEq, Eq, Clone)] +pub struct VerifierErrors(pub Vec<VerifierError>); + +impl VerifierErrors { + /// Return a new `VerifierErrors` struct. + #[inline] + pub fn new() -> Self { + Self(Vec::new()) + } + + /// Return whether no errors were reported. + #[inline] + pub fn is_empty(&self) -> bool { + self.0.is_empty() + } + + /// Return whether one or more errors were reported. + #[inline] + pub fn has_error(&self) -> bool { + !self.0.is_empty() + } + + /// Return a `VerifierStepResult` that is fatal if at least one error was reported, + /// and non-fatal otherwise. + #[inline] + pub fn as_result(&self) -> VerifierStepResult<()> { + if self.is_empty() { + Ok(()) + } else { + Err(()) + } + } + + /// Report an error, adding it to the list of errors. + pub fn report(&mut self, error: impl Into<VerifierError>) { + self.0.push(error.into()); + } + + /// Report a fatal error and return `Err`. + pub fn fatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult<()> { + self.report(error); + Err(()) + } + + /// Report a non-fatal error and return `Ok`. + pub fn nonfatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult<()> { + self.report(error); + Ok(()) + } +} + +impl From<Vec<VerifierError>> for VerifierErrors { + fn from(v: Vec<VerifierError>) -> Self { + Self(v) + } +} + +impl Into<Vec<VerifierError>> for VerifierErrors { + fn into(self) -> Vec<VerifierError> { + self.0 + } +} + +impl Into<VerifierResult<()>> for VerifierErrors { + fn into(self) -> VerifierResult<()> { + if self.is_empty() { + Ok(()) + } else { + Err(self) + } + } +} + +impl Display for VerifierErrors { + fn fmt(&self, f: &mut Formatter) -> fmt::Result { + for err in &self.0 { + writeln!(f, "- {}", err)?; + } + Ok(()) + } +} + +/// Verify `func`. +pub fn verify_function<'a, FOI: Into<FlagsOrIsa<'a>>>( + func: &Function, + fisa: FOI, +) -> VerifierResult<()> { + let _tt = timing::verifier(); + let mut errors = VerifierErrors::default(); + let verifier = Verifier::new(func, fisa.into()); + let result = verifier.run(&mut errors); + if errors.is_empty() { + result.unwrap(); + Ok(()) + } else { + Err(errors) + } +} + +/// Verify `func` after checking the integrity of associated context data structures `cfg` and +/// `domtree`. +pub fn verify_context<'a, FOI: Into<FlagsOrIsa<'a>>>( + func: &Function, + cfg: &ControlFlowGraph, + domtree: &DominatorTree, + fisa: FOI, + errors: &mut VerifierErrors, +) -> VerifierStepResult<()> { + let _tt = timing::verifier(); + let verifier = Verifier::new(func, fisa.into()); + if cfg.is_valid() { + verifier.cfg_integrity(cfg, errors)?; + } + if domtree.is_valid() { + verifier.domtree_integrity(domtree, errors)?; + } + verifier.run(errors) +} + +struct Verifier<'a> { + func: &'a Function, + expected_cfg: ControlFlowGraph, + expected_domtree: DominatorTree, + isa: Option<&'a dyn TargetIsa>, +} + +impl<'a> Verifier<'a> { + pub fn new(func: &'a Function, fisa: FlagsOrIsa<'a>) -> Self { + let expected_cfg = ControlFlowGraph::with_function(func); + let expected_domtree = DominatorTree::with_function(func, &expected_cfg); + Self { + func, + expected_cfg, + expected_domtree, + isa: fisa.isa, + } + } + + /// Determine a contextual error string for an instruction. + #[inline] + fn context(&self, inst: Inst) -> String { + self.func.dfg.display_inst(inst, self.isa).to_string() + } + + // Check for: + // - cycles in the global value declarations. + // - use of 'vmctx' when no special parameter declares it. + fn verify_global_values(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> { + let mut cycle_seen = false; + let mut seen = SparseSet::new(); + + 'gvs: for gv in self.func.global_values.keys() { + seen.clear(); + seen.insert(gv); + + let mut cur = gv; + loop { + match self.func.global_values[cur] { + ir::GlobalValueData::Load { base, .. } + | ir::GlobalValueData::IAddImm { base, .. } => { + if seen.insert(base).is_some() { + if !cycle_seen { + errors.report(( + gv, + format!("global value cycle: {}", DisplayList(seen.as_slice())), + )); + // ensures we don't report the cycle multiple times + cycle_seen = true; + } + continue 'gvs; + } + + cur = base; + } + _ => break, + } + } + + match self.func.global_values[gv] { + ir::GlobalValueData::VMContext { .. } => { + if self + .func + .special_param(ir::ArgumentPurpose::VMContext) + .is_none() + { + errors.report((gv, format!("undeclared vmctx reference {}", gv))); + } + } + ir::GlobalValueData::IAddImm { + base, global_type, .. + } => { + if !global_type.is_int() { + errors.report(( + gv, + format!("iadd_imm global value with non-int type {}", global_type), + )); + } else if let Some(isa) = self.isa { + let base_type = self.func.global_values[base].global_type(isa); + if global_type != base_type { + errors.report(( + gv, + format!( + "iadd_imm type {} differs from operand type {}", + global_type, base_type + ), + )); + } + } + } + ir::GlobalValueData::Load { base, .. } => { + if let Some(isa) = self.isa { + let base_type = self.func.global_values[base].global_type(isa); + let pointer_type = isa.pointer_type(); + if base_type != pointer_type { + errors.report(( + gv, + format!( + "base {} has type {}, which is not the pointer type {}", + base, base_type, pointer_type + ), + )); + } + } + } + _ => {} + } + } + + // Invalid global values shouldn't stop us from verifying the rest of the function + Ok(()) + } + + fn verify_heaps(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> { + if let Some(isa) = self.isa { + for (heap, heap_data) in &self.func.heaps { + let base = heap_data.base; + if !self.func.global_values.is_valid(base) { + return errors.nonfatal((heap, format!("invalid base global value {}", base))); + } + + let pointer_type = isa.pointer_type(); + let base_type = self.func.global_values[base].global_type(isa); + if base_type != pointer_type { + errors.report(( + heap, + format!( + "heap base has type {}, which is not the pointer type {}", + base_type, pointer_type + ), + )); + } + + if let ir::HeapStyle::Dynamic { bound_gv, .. } = heap_data.style { + if !self.func.global_values.is_valid(bound_gv) { + return errors + .nonfatal((heap, format!("invalid bound global value {}", bound_gv))); + } + + let index_type = heap_data.index_type; + let bound_type = self.func.global_values[bound_gv].global_type(isa); + if index_type != bound_type { + errors.report(( + heap, + format!( + "heap index type {} differs from the type of its bound, {}", + index_type, bound_type + ), + )); + } + } + } + } + + Ok(()) + } + + fn verify_tables(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> { + if let Some(isa) = self.isa { + for (table, table_data) in &self.func.tables { + let base = table_data.base_gv; + if !self.func.global_values.is_valid(base) { + return errors.nonfatal((table, format!("invalid base global value {}", base))); + } + + let pointer_type = isa.pointer_type(); + let base_type = self.func.global_values[base].global_type(isa); + if base_type != pointer_type { + errors.report(( + table, + format!( + "table base has type {}, which is not the pointer type {}", + base_type, pointer_type + ), + )); + } + + let bound_gv = table_data.bound_gv; + if !self.func.global_values.is_valid(bound_gv) { + return errors + .nonfatal((table, format!("invalid bound global value {}", bound_gv))); + } + + let index_type = table_data.index_type; + let bound_type = self.func.global_values[bound_gv].global_type(isa); + if index_type != bound_type { + errors.report(( + table, + format!( + "table index type {} differs from the type of its bound, {}", + index_type, bound_type + ), + )); + } + } + } + + Ok(()) + } + + fn verify_jump_tables(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> { + for (jt, jt_data) in &self.func.jump_tables { + for &block in jt_data.iter() { + self.verify_block(jt, block, errors)?; + } + } + Ok(()) + } + + /// Check that the given block can be encoded as a BB, by checking that only + /// branching instructions are ending the block. + fn encodable_as_bb(&self, block: Block, errors: &mut VerifierErrors) -> VerifierStepResult<()> { + match self.func.is_block_basic(block) { + Ok(()) => Ok(()), + Err((inst, message)) => errors.fatal((inst, self.context(inst), message)), + } + } + + fn block_integrity( + &self, + block: Block, + inst: Inst, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + let is_terminator = self.func.dfg[inst].opcode().is_terminator(); + let is_last_inst = self.func.layout.last_inst(block) == Some(inst); + + if is_terminator && !is_last_inst { + // Terminating instructions only occur at the end of blocks. + return errors.fatal(( + inst, + self.context(inst), + format!( + "a terminator instruction was encountered before the end of {}", + block + ), + )); + } + if is_last_inst && !is_terminator { + return errors.fatal((block, "block does not end in a terminator instruction")); + } + + // Instructions belong to the correct block. + let inst_block = self.func.layout.inst_block(inst); + if inst_block != Some(block) { + return errors.fatal(( + inst, + self.context(inst), + format!("should belong to {} not {:?}", block, inst_block), + )); + } + + // Parameters belong to the correct block. + for &arg in self.func.dfg.block_params(block) { + match self.func.dfg.value_def(arg) { + ValueDef::Param(arg_block, _) => { + if block != arg_block { + return errors.fatal((arg, format!("does not belong to {}", block))); + } + } + _ => { + return errors.fatal((arg, "expected an argument, found a result")); + } + } + } + + Ok(()) + } + + fn instruction_integrity( + &self, + inst: Inst, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + let inst_data = &self.func.dfg[inst]; + let dfg = &self.func.dfg; + + // The instruction format matches the opcode + if inst_data.opcode().format() != InstructionFormat::from(inst_data) { + return errors.fatal(( + inst, + self.context(inst), + "instruction opcode doesn't match instruction format", + )); + } + + let num_fixed_results = inst_data.opcode().constraints().num_fixed_results(); + // var_results is 0 if we aren't a call instruction + let var_results = dfg + .call_signature(inst) + .map_or(0, |sig| dfg.signatures[sig].returns.len()); + let total_results = num_fixed_results + var_results; + + // All result values for multi-valued instructions are created + let got_results = dfg.inst_results(inst).len(); + if got_results != total_results { + return errors.fatal(( + inst, + self.context(inst), + format!( + "expected {} result values, found {}", + total_results, got_results, + ), + )); + } + + self.verify_entity_references(inst, errors) + } + + fn verify_entity_references( + &self, + inst: Inst, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + use crate::ir::instructions::InstructionData::*; + + for &arg in self.func.dfg.inst_args(inst) { + self.verify_inst_arg(inst, arg, errors)?; + + // All used values must be attached to something. + let original = self.func.dfg.resolve_aliases(arg); + if !self.func.dfg.value_is_attached(original) { + errors.report(( + inst, + self.context(inst), + format!("argument {} -> {} is not attached", arg, original), + )); + } + } + + for &res in self.func.dfg.inst_results(inst) { + self.verify_inst_result(inst, res, errors)?; + } + + match self.func.dfg[inst] { + MultiAry { ref args, .. } => { + self.verify_value_list(inst, args, errors)?; + } + Jump { + destination, + ref args, + .. + } + | Branch { + destination, + ref args, + .. + } + | BranchInt { + destination, + ref args, + .. + } + | BranchFloat { + destination, + ref args, + .. + } + | BranchIcmp { + destination, + ref args, + .. + } => { + self.verify_block(inst, destination, errors)?; + self.verify_value_list(inst, args, errors)?; + } + BranchTable { + table, destination, .. + } => { + self.verify_block(inst, destination, errors)?; + self.verify_jump_table(inst, table, errors)?; + } + BranchTableBase { table, .. } + | BranchTableEntry { table, .. } + | IndirectJump { table, .. } => { + self.verify_jump_table(inst, table, errors)?; + } + Call { + func_ref, ref args, .. + } => { + self.verify_func_ref(inst, func_ref, errors)?; + self.verify_value_list(inst, args, errors)?; + } + CallIndirect { + sig_ref, ref args, .. + } => { + self.verify_sig_ref(inst, sig_ref, errors)?; + self.verify_value_list(inst, args, errors)?; + } + FuncAddr { func_ref, .. } => { + self.verify_func_ref(inst, func_ref, errors)?; + } + StackLoad { stack_slot, .. } | StackStore { stack_slot, .. } => { + self.verify_stack_slot(inst, stack_slot, errors)?; + } + UnaryGlobalValue { global_value, .. } => { + self.verify_global_value(inst, global_value, errors)?; + } + HeapAddr { heap, .. } => { + self.verify_heap(inst, heap, errors)?; + } + TableAddr { table, .. } => { + self.verify_table(inst, table, errors)?; + } + RegSpill { dst, .. } => { + self.verify_stack_slot(inst, dst, errors)?; + } + RegFill { src, .. } => { + self.verify_stack_slot(inst, src, errors)?; + } + LoadComplex { ref args, .. } => { + self.verify_value_list(inst, args, errors)?; + } + StoreComplex { ref args, .. } => { + self.verify_value_list(inst, args, errors)?; + } + + NullAry { + opcode: Opcode::GetPinnedReg, + } + | Unary { + opcode: Opcode::SetPinnedReg, + .. + } => { + if let Some(isa) = &self.isa { + if !isa.flags().enable_pinned_reg() { + return errors.fatal(( + inst, + self.context(inst), + "GetPinnedReg/SetPinnedReg cannot be used without enable_pinned_reg", + )); + } + } else { + return errors.fatal(( + inst, + self.context(inst), + "GetPinnedReg/SetPinnedReg need an ISA!", + )); + } + } + Unary { + opcode: Opcode::Bitcast, + arg, + } => { + self.verify_bitcast(inst, arg, errors)?; + } + UnaryConst { + opcode: Opcode::Vconst, + constant_handle, + .. + } => { + self.verify_constant_size(inst, constant_handle, errors)?; + } + + // Exhaustive list so we can't forget to add new formats + AtomicCas { .. } + | AtomicRmw { .. } + | LoadNoOffset { .. } + | StoreNoOffset { .. } + | Unary { .. } + | UnaryConst { .. } + | UnaryImm { .. } + | UnaryIeee32 { .. } + | UnaryIeee64 { .. } + | UnaryBool { .. } + | Binary { .. } + | BinaryImm8 { .. } + | BinaryImm64 { .. } + | Ternary { .. } + | TernaryImm8 { .. } + | Shuffle { .. } + | IntCompare { .. } + | IntCompareImm { .. } + | IntCond { .. } + | FloatCompare { .. } + | FloatCond { .. } + | IntSelect { .. } + | Load { .. } + | Store { .. } + | RegMove { .. } + | CopySpecial { .. } + | CopyToSsa { .. } + | Trap { .. } + | CondTrap { .. } + | IntCondTrap { .. } + | FloatCondTrap { .. } + | NullAry { .. } => {} + } + + Ok(()) + } + + fn verify_block( + &self, + loc: impl Into<AnyEntity>, + e: Block, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + if !self.func.dfg.block_is_valid(e) || !self.func.layout.is_block_inserted(e) { + return errors.fatal((loc, format!("invalid block reference {}", e))); + } + if let Some(entry_block) = self.func.layout.entry_block() { + if e == entry_block { + return errors.fatal((loc, format!("invalid reference to entry block {}", e))); + } + } + Ok(()) + } + + fn verify_sig_ref( + &self, + inst: Inst, + s: SigRef, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + if !self.func.dfg.signatures.is_valid(s) { + errors.fatal(( + inst, + self.context(inst), + format!("invalid signature reference {}", s), + )) + } else { + Ok(()) + } + } + + fn verify_func_ref( + &self, + inst: Inst, + f: FuncRef, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + if !self.func.dfg.ext_funcs.is_valid(f) { + errors.nonfatal(( + inst, + self.context(inst), + format!("invalid function reference {}", f), + )) + } else { + Ok(()) + } + } + + fn verify_stack_slot( + &self, + inst: Inst, + ss: StackSlot, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + if !self.func.stack_slots.is_valid(ss) { + errors.nonfatal(( + inst, + self.context(inst), + format!("invalid stack slot {}", ss), + )) + } else { + Ok(()) + } + } + + fn verify_global_value( + &self, + inst: Inst, + gv: GlobalValue, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + if !self.func.global_values.is_valid(gv) { + errors.nonfatal(( + inst, + self.context(inst), + format!("invalid global value {}", gv), + )) + } else { + Ok(()) + } + } + + fn verify_heap( + &self, + inst: Inst, + heap: ir::Heap, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + if !self.func.heaps.is_valid(heap) { + errors.nonfatal((inst, self.context(inst), format!("invalid heap {}", heap))) + } else { + Ok(()) + } + } + + fn verify_table( + &self, + inst: Inst, + table: ir::Table, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + if !self.func.tables.is_valid(table) { + errors.nonfatal((inst, self.context(inst), format!("invalid table {}", table))) + } else { + Ok(()) + } + } + + fn verify_value_list( + &self, + inst: Inst, + l: &ValueList, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + if !l.is_valid(&self.func.dfg.value_lists) { + errors.nonfatal(( + inst, + self.context(inst), + format!("invalid value list reference {:?}", l), + )) + } else { + Ok(()) + } + } + + fn verify_jump_table( + &self, + inst: Inst, + j: JumpTable, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + if !self.func.jump_tables.is_valid(j) { + errors.nonfatal(( + inst, + self.context(inst), + format!("invalid jump table reference {}", j), + )) + } else { + Ok(()) + } + } + + fn verify_value( + &self, + loc_inst: Inst, + v: Value, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + let dfg = &self.func.dfg; + if !dfg.value_is_valid(v) { + errors.nonfatal(( + loc_inst, + self.context(loc_inst), + format!("invalid value reference {}", v), + )) + } else { + Ok(()) + } + } + + fn verify_inst_arg( + &self, + loc_inst: Inst, + v: Value, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + self.verify_value(loc_inst, v, errors)?; + + let dfg = &self.func.dfg; + let loc_block = self.func.layout.pp_block(loc_inst); + let is_reachable = self.expected_domtree.is_reachable(loc_block); + + // SSA form + match dfg.value_def(v) { + ValueDef::Result(def_inst, _) => { + // Value is defined by an instruction that exists. + if !dfg.inst_is_valid(def_inst) { + return errors.fatal(( + loc_inst, + self.context(loc_inst), + format!("{} is defined by invalid instruction {}", v, def_inst), + )); + } + // Defining instruction is inserted in a block. + if self.func.layout.inst_block(def_inst) == None { + return errors.fatal(( + loc_inst, + self.context(loc_inst), + format!("{} is defined by {} which has no block", v, def_inst), + )); + } + // Defining instruction dominates the instruction that uses the value. + if is_reachable { + if !self + .expected_domtree + .dominates(def_inst, loc_inst, &self.func.layout) + { + return errors.fatal(( + loc_inst, + self.context(loc_inst), + format!("uses value {} from non-dominating {}", v, def_inst), + )); + } + if def_inst == loc_inst { + return errors.fatal(( + loc_inst, + self.context(loc_inst), + format!("uses value {} from itself", v), + )); + } + } + } + ValueDef::Param(block, _) => { + // Value is defined by an existing block. + if !dfg.block_is_valid(block) { + return errors.fatal(( + loc_inst, + self.context(loc_inst), + format!("{} is defined by invalid block {}", v, block), + )); + } + // Defining block is inserted in the layout + if !self.func.layout.is_block_inserted(block) { + return errors.fatal(( + loc_inst, + self.context(loc_inst), + format!("{} is defined by {} which is not in the layout", v, block), + )); + } + // The defining block dominates the instruction using this value. + if is_reachable + && !self + .expected_domtree + .dominates(block, loc_inst, &self.func.layout) + { + return errors.fatal(( + loc_inst, + self.context(loc_inst), + format!("uses value arg from non-dominating {}", block), + )); + } + } + } + Ok(()) + } + + fn verify_inst_result( + &self, + loc_inst: Inst, + v: Value, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + self.verify_value(loc_inst, v, errors)?; + + match self.func.dfg.value_def(v) { + ValueDef::Result(def_inst, _) => { + if def_inst != loc_inst { + errors.fatal(( + loc_inst, + self.context(loc_inst), + format!("instruction result {} is not defined by the instruction", v), + )) + } else { + Ok(()) + } + } + ValueDef::Param(_, _) => errors.fatal(( + loc_inst, + self.context(loc_inst), + format!("instruction result {} is not defined by the instruction", v), + )), + } + } + + fn verify_bitcast( + &self, + inst: Inst, + arg: Value, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + let typ = self.func.dfg.ctrl_typevar(inst); + let value_type = self.func.dfg.value_type(arg); + + if typ.lane_bits() < value_type.lane_bits() { + errors.fatal(( + inst, + format!( + "The bitcast argument {} doesn't fit in a type of {} bits", + arg, + typ.lane_bits() + ), + )) + } else { + Ok(()) + } + } + + fn verify_constant_size( + &self, + inst: Inst, + constant: Constant, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + let type_size = self.func.dfg.ctrl_typevar(inst).bytes() as usize; + let constant_size = self.func.dfg.constants.get(constant).len(); + if type_size != constant_size { + errors.fatal(( + inst, + format!( + "The instruction expects {} to have a size of {} bytes but it has {}", + constant, type_size, constant_size + ), + )) + } else { + Ok(()) + } + } + + fn domtree_integrity( + &self, + domtree: &DominatorTree, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + // We consider two `DominatorTree`s to be equal if they return the same immediate + // dominator for each block. Therefore the current domtree is valid if it matches the freshly + // computed one. + for block in self.func.layout.blocks() { + let expected = self.expected_domtree.idom(block); + let got = domtree.idom(block); + if got != expected { + return errors.fatal(( + block, + format!( + "invalid domtree, expected idom({}) = {:?}, got {:?}", + block, expected, got + ), + )); + } + } + // We also verify if the postorder defined by `DominatorTree` is sane + if domtree.cfg_postorder().len() != self.expected_domtree.cfg_postorder().len() { + return errors.fatal(( + AnyEntity::Function, + "incorrect number of Blocks in postorder traversal", + )); + } + for (index, (&test_block, &true_block)) in domtree + .cfg_postorder() + .iter() + .zip(self.expected_domtree.cfg_postorder().iter()) + .enumerate() + { + if test_block != true_block { + return errors.fatal(( + test_block, + format!( + "invalid domtree, postorder block number {} should be {}, got {}", + index, true_block, test_block + ), + )); + } + } + // We verify rpo_cmp on pairs of adjacent blocks in the postorder + for (&prev_block, &next_block) in domtree.cfg_postorder().iter().adjacent_pairs() { + if self + .expected_domtree + .rpo_cmp(prev_block, next_block, &self.func.layout) + != Ordering::Greater + { + return errors.fatal(( + next_block, + format!( + "invalid domtree, rpo_cmp does not says {} is greater than {}", + prev_block, next_block + ), + )); + } + } + Ok(()) + } + + fn typecheck_entry_block_params(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> { + if let Some(block) = self.func.layout.entry_block() { + let expected_types = &self.func.signature.params; + let block_param_count = self.func.dfg.num_block_params(block); + + if block_param_count != expected_types.len() { + return errors.fatal(( + block, + format!( + "entry block parameters ({}) must match function signature ({})", + block_param_count, + expected_types.len() + ), + )); + } + + for (i, &arg) in self.func.dfg.block_params(block).iter().enumerate() { + let arg_type = self.func.dfg.value_type(arg); + if arg_type != expected_types[i].value_type { + errors.report(( + block, + format!( + "entry block parameter {} expected to have type {}, got {}", + i, expected_types[i], arg_type + ), + )); + } + } + } + + errors.as_result() + } + + fn typecheck(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> { + let inst_data = &self.func.dfg[inst]; + let constraints = inst_data.opcode().constraints(); + + let ctrl_type = if let Some(value_typeset) = constraints.ctrl_typeset() { + // For polymorphic opcodes, determine the controlling type variable first. + let ctrl_type = self.func.dfg.ctrl_typevar(inst); + + if !value_typeset.contains(ctrl_type) { + errors.report(( + inst, + self.context(inst), + format!("has an invalid controlling type {}", ctrl_type), + )); + } + + ctrl_type + } else { + // Non-polymorphic instructions don't check the controlling type variable, so `Option` + // is unnecessary and we can just make it `INVALID`. + types::INVALID + }; + + // Typechecking instructions is never fatal + let _ = self.typecheck_results(inst, ctrl_type, errors); + let _ = self.typecheck_fixed_args(inst, ctrl_type, errors); + let _ = self.typecheck_variable_args(inst, errors); + let _ = self.typecheck_return(inst, errors); + let _ = self.typecheck_special(inst, ctrl_type, errors); + + // Misuses of copy_nop instructions are fatal + self.typecheck_copy_nop(inst, errors)?; + + Ok(()) + } + + fn typecheck_results( + &self, + inst: Inst, + ctrl_type: Type, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + let mut i = 0; + for &result in self.func.dfg.inst_results(inst) { + let result_type = self.func.dfg.value_type(result); + let expected_type = self.func.dfg.compute_result_type(inst, i, ctrl_type); + if let Some(expected_type) = expected_type { + if result_type != expected_type { + errors.report(( + inst, + self.context(inst), + format!( + "expected result {} ({}) to have type {}, found {}", + i, result, expected_type, result_type + ), + )); + } + } else { + return errors.nonfatal(( + inst, + self.context(inst), + "has more result values than expected", + )); + } + i += 1; + } + + // There aren't any more result types left. + if self.func.dfg.compute_result_type(inst, i, ctrl_type) != None { + return errors.nonfatal(( + inst, + self.context(inst), + "has fewer result values than expected", + )); + } + Ok(()) + } + + fn typecheck_fixed_args( + &self, + inst: Inst, + ctrl_type: Type, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + let constraints = self.func.dfg[inst].opcode().constraints(); + + for (i, &arg) in self.func.dfg.inst_fixed_args(inst).iter().enumerate() { + let arg_type = self.func.dfg.value_type(arg); + match constraints.value_argument_constraint(i, ctrl_type) { + ResolvedConstraint::Bound(expected_type) => { + if arg_type != expected_type { + errors.report(( + inst, + self.context(inst), + format!( + "arg {} ({}) has type {}, expected {}", + i, arg, arg_type, expected_type + ), + )); + } + } + ResolvedConstraint::Free(type_set) => { + if !type_set.contains(arg_type) { + errors.report(( + inst, + self.context(inst), + format!( + "arg {} ({}) with type {} failed to satisfy type set {:?}", + i, arg, arg_type, type_set + ), + )); + } + } + } + } + Ok(()) + } + + fn typecheck_variable_args( + &self, + inst: Inst, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + match self.func.dfg.analyze_branch(inst) { + BranchInfo::SingleDest(block, _) => { + let iter = self + .func + .dfg + .block_params(block) + .iter() + .map(|&v| self.func.dfg.value_type(v)); + self.typecheck_variable_args_iterator(inst, iter, errors)?; + } + BranchInfo::Table(table, block) => { + if let Some(block) = block { + let arg_count = self.func.dfg.num_block_params(block); + if arg_count != 0 { + return errors.nonfatal(( + inst, + self.context(inst), + format!( + "takes no arguments, but had target {} with {} arguments", + block, arg_count, + ), + )); + } + } + for block in self.func.jump_tables[table].iter() { + let arg_count = self.func.dfg.num_block_params(*block); + if arg_count != 0 { + return errors.nonfatal(( + inst, + self.context(inst), + format!( + "takes no arguments, but had target {} with {} arguments", + block, arg_count, + ), + )); + } + } + } + BranchInfo::NotABranch => {} + } + + match self.func.dfg[inst].analyze_call(&self.func.dfg.value_lists) { + CallInfo::Direct(func_ref, _) => { + let sig_ref = self.func.dfg.ext_funcs[func_ref].signature; + let arg_types = self.func.dfg.signatures[sig_ref] + .params + .iter() + .map(|a| a.value_type); + self.typecheck_variable_args_iterator(inst, arg_types, errors)?; + self.check_outgoing_args(inst, sig_ref, errors)?; + } + CallInfo::Indirect(sig_ref, _) => { + let arg_types = self.func.dfg.signatures[sig_ref] + .params + .iter() + .map(|a| a.value_type); + self.typecheck_variable_args_iterator(inst, arg_types, errors)?; + self.check_outgoing_args(inst, sig_ref, errors)?; + } + CallInfo::NotACall => {} + } + Ok(()) + } + + fn typecheck_variable_args_iterator<I: Iterator<Item = Type>>( + &self, + inst: Inst, + iter: I, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + let variable_args = self.func.dfg.inst_variable_args(inst); + let mut i = 0; + + for expected_type in iter { + if i >= variable_args.len() { + // Result count mismatch handled below, we want the full argument count first though + i += 1; + continue; + } + let arg = variable_args[i]; + let arg_type = self.func.dfg.value_type(arg); + if expected_type != arg_type { + errors.report(( + inst, + self.context(inst), + format!( + "arg {} ({}) has type {}, expected {}", + i, variable_args[i], arg_type, expected_type + ), + )); + } + i += 1; + } + if i != variable_args.len() { + return errors.nonfatal(( + inst, + self.context(inst), + format!( + "mismatched argument count for `{}`: got {}, expected {}", + self.func.dfg.display_inst(inst, None), + variable_args.len(), + i, + ), + )); + } + Ok(()) + } + + /// Check the locations assigned to outgoing call arguments. + /// + /// When a signature has been legalized, all values passed as outgoing arguments on the stack + /// must be assigned to a matching `OutgoingArg` stack slot. + fn check_outgoing_args( + &self, + inst: Inst, + sig_ref: SigRef, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + let sig = &self.func.dfg.signatures[sig_ref]; + + let args = self.func.dfg.inst_variable_args(inst); + let expected_args = &sig.params[..]; + + for (&arg, &abi) in args.iter().zip(expected_args) { + // Value types have already been checked by `typecheck_variable_args_iterator()`. + if let ArgumentLoc::Stack(offset) = abi.location { + let arg_loc = self.func.locations[arg]; + if let ValueLoc::Stack(ss) = arg_loc { + // Argument value is assigned to a stack slot as expected. + self.verify_stack_slot(inst, ss, errors)?; + let slot = &self.func.stack_slots[ss]; + if slot.kind != StackSlotKind::OutgoingArg { + return errors.fatal(( + inst, + self.context(inst), + format!( + "Outgoing stack argument {} in wrong stack slot: {} = {}", + arg, ss, slot, + ), + )); + } + if slot.offset != Some(offset) { + return errors.fatal(( + inst, + self.context(inst), + format!( + "Outgoing stack argument {} should have offset {}: {} = {}", + arg, offset, ss, slot, + ), + )); + } + if abi.purpose == ArgumentPurpose::StructArgument(slot.size) { + } else if slot.size != abi.value_type.bytes() { + return errors.fatal(( + inst, + self.context(inst), + format!( + "Outgoing stack argument {} wrong size for {}: {} = {}", + arg, abi.value_type, ss, slot, + ), + )); + } + } else { + let reginfo = self.isa.map(|i| i.register_info()); + return errors.fatal(( + inst, + self.context(inst), + format!( + "Outgoing stack argument {} in wrong location: {}", + arg, + arg_loc.display(reginfo.as_ref()) + ), + )); + } + } + } + Ok(()) + } + + fn typecheck_return(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> { + if self.func.dfg[inst].opcode().is_return() { + let args = self.func.dfg.inst_variable_args(inst); + let expected_types = &self.func.signature.returns; + if args.len() != expected_types.len() { + return errors.nonfatal(( + inst, + self.context(inst), + "arguments of return must match function signature", + )); + } + for (i, (&arg, &expected_type)) in args.iter().zip(expected_types).enumerate() { + let arg_type = self.func.dfg.value_type(arg); + if arg_type != expected_type.value_type { + errors.report(( + inst, + self.context(inst), + format!( + "arg {} ({}) has type {}, must match function signature of {}", + i, arg, arg_type, expected_type + ), + )); + } + } + } + Ok(()) + } + + // Check special-purpose type constraints that can't be expressed in the normal opcode + // constraints. + fn typecheck_special( + &self, + inst: Inst, + ctrl_type: Type, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + match self.func.dfg[inst] { + ir::InstructionData::Unary { opcode, arg } => { + let arg_type = self.func.dfg.value_type(arg); + match opcode { + Opcode::Bextend | Opcode::Uextend | Opcode::Sextend | Opcode::Fpromote => { + if arg_type.lane_count() != ctrl_type.lane_count() { + return errors.nonfatal(( + inst, + self.context(inst), + format!( + "input {} and output {} must have same number of lanes", + arg_type, ctrl_type, + ), + )); + } + if arg_type.lane_bits() >= ctrl_type.lane_bits() { + return errors.nonfatal(( + inst, + self.context(inst), + format!( + "input {} must be smaller than output {}", + arg_type, ctrl_type, + ), + )); + } + } + Opcode::Breduce | Opcode::Ireduce | Opcode::Fdemote => { + if arg_type.lane_count() != ctrl_type.lane_count() { + return errors.nonfatal(( + inst, + self.context(inst), + format!( + "input {} and output {} must have same number of lanes", + arg_type, ctrl_type, + ), + )); + } + if arg_type.lane_bits() <= ctrl_type.lane_bits() { + return errors.nonfatal(( + inst, + self.context(inst), + format!( + "input {} must be larger than output {}", + arg_type, ctrl_type, + ), + )); + } + } + _ => {} + } + } + ir::InstructionData::HeapAddr { heap, arg, .. } => { + let index_type = self.func.dfg.value_type(arg); + let heap_index_type = self.func.heaps[heap].index_type; + if index_type != heap_index_type { + return errors.nonfatal(( + inst, + self.context(inst), + format!( + "index type {} differs from heap index type {}", + index_type, heap_index_type, + ), + )); + } + } + ir::InstructionData::TableAddr { table, arg, .. } => { + let index_type = self.func.dfg.value_type(arg); + let table_index_type = self.func.tables[table].index_type; + if index_type != table_index_type { + return errors.nonfatal(( + inst, + self.context(inst), + format!( + "index type {} differs from table index type {}", + index_type, table_index_type, + ), + )); + } + } + ir::InstructionData::UnaryGlobalValue { global_value, .. } => { + if let Some(isa) = self.isa { + let inst_type = self.func.dfg.value_type(self.func.dfg.first_result(inst)); + let global_type = self.func.global_values[global_value].global_type(isa); + if inst_type != global_type { + return errors.nonfatal(( + inst, self.context(inst), + format!( + "global_value instruction with type {} references global value with type {}", + inst_type, global_type + )), + ); + } + } + } + _ => {} + } + Ok(()) + } + + fn typecheck_copy_nop( + &self, + inst: Inst, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + if let InstructionData::Unary { + opcode: Opcode::CopyNop, + arg, + } = self.func.dfg[inst] + { + let dst_vals = self.func.dfg.inst_results(inst); + if dst_vals.len() != 1 { + return errors.fatal(( + inst, + self.context(inst), + "copy_nop must produce exactly one result", + )); + } + let dst_val = dst_vals[0]; + if self.func.dfg.value_type(dst_val) != self.func.dfg.value_type(arg) { + return errors.fatal(( + inst, + self.context(inst), + "copy_nop src and dst types must be the same", + )); + } + let src_loc = self.func.locations[arg]; + let dst_loc = self.func.locations[dst_val]; + let locs_ok = match (src_loc, dst_loc) { + (ValueLoc::Stack(src_slot), ValueLoc::Stack(dst_slot)) => src_slot == dst_slot, + _ => false, + }; + if !locs_ok { + return errors.fatal(( + inst, + self.context(inst), + format!( + "copy_nop must refer to identical stack slots, but found {:?} vs {:?}", + src_loc, dst_loc, + ), + )); + } + } + Ok(()) + } + + fn cfg_integrity( + &self, + cfg: &ControlFlowGraph, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + let mut expected_succs = BTreeSet::<Block>::new(); + let mut got_succs = BTreeSet::<Block>::new(); + let mut expected_preds = BTreeSet::<Inst>::new(); + let mut got_preds = BTreeSet::<Inst>::new(); + + for block in self.func.layout.blocks() { + expected_succs.extend(self.expected_cfg.succ_iter(block)); + got_succs.extend(cfg.succ_iter(block)); + + let missing_succs: Vec<Block> = + expected_succs.difference(&got_succs).cloned().collect(); + if !missing_succs.is_empty() { + errors.report(( + block, + format!("cfg lacked the following successor(s) {:?}", missing_succs), + )); + continue; + } + + let excess_succs: Vec<Block> = got_succs.difference(&expected_succs).cloned().collect(); + if !excess_succs.is_empty() { + errors.report(( + block, + format!("cfg had unexpected successor(s) {:?}", excess_succs), + )); + continue; + } + + expected_preds.extend( + self.expected_cfg + .pred_iter(block) + .map(|BlockPredecessor { inst, .. }| inst), + ); + got_preds.extend( + cfg.pred_iter(block) + .map(|BlockPredecessor { inst, .. }| inst), + ); + + let missing_preds: Vec<Inst> = expected_preds.difference(&got_preds).cloned().collect(); + if !missing_preds.is_empty() { + errors.report(( + block, + format!( + "cfg lacked the following predecessor(s) {:?}", + missing_preds + ), + )); + continue; + } + + let excess_preds: Vec<Inst> = got_preds.difference(&expected_preds).cloned().collect(); + if !excess_preds.is_empty() { + errors.report(( + block, + format!("cfg had unexpected predecessor(s) {:?}", excess_preds), + )); + continue; + } + + expected_succs.clear(); + got_succs.clear(); + expected_preds.clear(); + got_preds.clear(); + } + errors.as_result() + } + + /// If the verifier has been set up with an ISA, make sure that the recorded encoding for the + /// instruction (if any) matches how the ISA would encode it. + fn verify_encoding(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> { + // When the encodings table is empty, we don't require any instructions to be encoded. + // + // Once some instructions are encoded, we require all side-effecting instructions to have a + // legal encoding. + if self.func.encodings.is_empty() { + return Ok(()); + } + + let isa = match self.isa { + Some(isa) => isa, + None => return Ok(()), + }; + + let encoding = self.func.encodings[inst]; + if encoding.is_legal() { + if self.func.dfg[inst].opcode().is_ghost() { + return errors.nonfatal(( + inst, + self.context(inst), + format!( + "Ghost instruction has an encoding: {}", + isa.encoding_info().display(encoding), + ), + )); + } + + let mut encodings = isa + .legal_encodings( + &self.func, + &self.func.dfg[inst], + self.func.dfg.ctrl_typevar(inst), + ) + .peekable(); + + if encodings.peek().is_none() { + return errors.nonfatal(( + inst, + self.context(inst), + format!( + "Instruction failed to re-encode {}", + isa.encoding_info().display(encoding), + ), + )); + } + + let has_valid_encoding = encodings.any(|possible_enc| encoding == possible_enc); + + if !has_valid_encoding { + let mut possible_encodings = String::new(); + let mut multiple_encodings = false; + + for enc in isa.legal_encodings( + &self.func, + &self.func.dfg[inst], + self.func.dfg.ctrl_typevar(inst), + ) { + if !possible_encodings.is_empty() { + possible_encodings.push_str(", "); + multiple_encodings = true; + } + possible_encodings + .write_fmt(format_args!("{}", isa.encoding_info().display(enc))) + .unwrap(); + } + + return errors.nonfatal(( + inst, + self.context(inst), + format!( + "encoding {} should be {}{}", + isa.encoding_info().display(encoding), + if multiple_encodings { "one of: " } else { "" }, + possible_encodings, + ), + )); + } + return Ok(()); + } + + // Instruction is not encoded, so it is a ghost instruction. + // Instructions with side effects are not allowed to be ghost instructions. + let opcode = self.func.dfg[inst].opcode(); + + // The `fallthrough`, `fallthrough_return`, and `safepoint` instructions are not required + // to have an encoding. + if opcode == Opcode::Fallthrough + || opcode == Opcode::FallthroughReturn + || opcode == Opcode::Safepoint + { + return Ok(()); + } + + // Check if this opcode must be encoded. + let mut needs_enc = None; + if opcode.is_branch() { + needs_enc = Some("Branch"); + } else if opcode.is_call() { + needs_enc = Some("Call"); + } else if opcode.is_return() { + needs_enc = Some("Return"); + } else if opcode.can_store() { + needs_enc = Some("Store"); + } else if opcode.can_trap() { + needs_enc = Some("Trapping instruction"); + } else if opcode.other_side_effects() { + needs_enc = Some("Instruction with side effects"); + } + + if let Some(text) = needs_enc { + // This instruction needs an encoding, so generate an error. + // Provide the ISA default encoding as a hint. + match self.func.encode(inst, isa) { + Ok(enc) => { + return errors.nonfatal(( + inst, + self.context(inst), + format!( + "{} must have an encoding (e.g., {})))", + text, + isa.encoding_info().display(enc), + ), + )); + } + Err(_) => { + return errors.nonfatal(( + inst, + self.context(inst), + format!("{} must have an encoding", text), + )) + } + } + } + + Ok(()) + } + + fn immediate_constraints( + &self, + inst: Inst, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + let inst_data = &self.func.dfg[inst]; + + match *inst_data { + ir::InstructionData::Store { flags, .. } + | ir::InstructionData::StoreComplex { flags, .. } => { + if flags.readonly() { + errors.fatal(( + inst, + self.context(inst), + "A store instruction cannot have the `readonly` MemFlag", + )) + } else { + Ok(()) + } + } + ir::InstructionData::BinaryImm8 { + opcode: ir::instructions::Opcode::Extractlane, + imm: lane, + arg, + .. + } + | ir::InstructionData::TernaryImm8 { + opcode: ir::instructions::Opcode::Insertlane, + imm: lane, + args: [arg, _], + .. + } => { + // We must be specific about the opcodes above because other instructions are using + // the same formats. + let ty = self.func.dfg.value_type(arg); + if u16::from(lane) >= ty.lane_count() { + errors.fatal(( + inst, + self.context(inst), + format!("The lane {} does not index into the type {}", lane, ty,), + )) + } else { + Ok(()) + } + } + _ => Ok(()), + } + } + + fn verify_safepoint_unused( + &self, + inst: Inst, + errors: &mut VerifierErrors, + ) -> VerifierStepResult<()> { + if let Some(isa) = self.isa { + if !isa.flags().enable_safepoints() && self.func.dfg[inst].opcode() == Opcode::Safepoint + { + return errors.fatal(( + inst, + self.context(inst), + "safepoint instruction cannot be used when it is not enabled.", + )); + } + } + Ok(()) + } + + fn typecheck_function_signature(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> { + self.func + .signature + .params + .iter() + .enumerate() + .filter(|(_, ¶m)| param.value_type == types::INVALID) + .for_each(|(i, _)| { + errors.report(( + AnyEntity::Function, + format!("Parameter at position {} has an invalid type", i), + )); + }); + + self.func + .signature + .returns + .iter() + .enumerate() + .filter(|(_, &ret)| ret.value_type == types::INVALID) + .for_each(|(i, _)| { + errors.report(( + AnyEntity::Function, + format!("Return value at position {} has an invalid type", i), + )) + }); + + self.func + .signature + .returns + .iter() + .enumerate() + .for_each(|(i, ret)| { + if let ArgumentPurpose::StructArgument(_) = ret.purpose { + errors.report(( + AnyEntity::Function, + format!("Return value at position {} can't be an struct argument", i), + )) + } + }); + + if errors.has_error() { + Err(()) + } else { + Ok(()) + } + } + + pub fn run(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> { + self.verify_global_values(errors)?; + self.verify_heaps(errors)?; + self.verify_tables(errors)?; + self.verify_jump_tables(errors)?; + self.typecheck_entry_block_params(errors)?; + self.typecheck_function_signature(errors)?; + + for block in self.func.layout.blocks() { + if self.func.layout.first_inst(block).is_none() { + return errors.fatal((block, format!("{} cannot be empty", block))); + } + for inst in self.func.layout.block_insts(block) { + self.block_integrity(block, inst, errors)?; + self.instruction_integrity(inst, errors)?; + self.verify_safepoint_unused(inst, errors)?; + self.typecheck(inst, errors)?; + self.verify_encoding(inst, errors)?; + self.immediate_constraints(inst, errors)?; + } + + self.encodable_as_bb(block, errors)?; + } + + verify_flags(self.func, &self.expected_cfg, self.isa, errors)?; + + if !errors.is_empty() { + debug!( + "Found verifier errors in function:\n{}", + pretty_verifier_error(self.func, None, None, errors.clone()) + ); + } + + Ok(()) + } +} + +#[cfg(test)] +mod tests { + use super::{Verifier, VerifierError, VerifierErrors}; + use crate::entity::EntityList; + use crate::ir::instructions::{InstructionData, Opcode}; + use crate::ir::{types, AbiParam, Function}; + use crate::settings; + + macro_rules! assert_err_with_msg { + ($e:expr, $msg:expr) => { + match $e.0.get(0) { + None => panic!("Expected an error"), + Some(&VerifierError { ref message, .. }) => { + if !message.contains($msg) { + #[cfg(feature = "std")] + panic!(format!( + "'{}' did not contain the substring '{}'", + message, $msg + )); + #[cfg(not(feature = "std"))] + panic!("error message did not contain the expected substring"); + } + } + } + }; + } + + #[test] + fn empty() { + let func = Function::new(); + let flags = &settings::Flags::new(settings::builder()); + let verifier = Verifier::new(&func, flags.into()); + let mut errors = VerifierErrors::default(); + + assert_eq!(verifier.run(&mut errors), Ok(())); + assert!(errors.0.is_empty()); + } + + #[test] + fn bad_instruction_format() { + let mut func = Function::new(); + let block0 = func.dfg.make_block(); + func.layout.append_block(block0); + let nullary_with_bad_opcode = func.dfg.make_inst(InstructionData::UnaryImm { + opcode: Opcode::F32const, + imm: 0.into(), + }); + func.layout.append_inst(nullary_with_bad_opcode, block0); + func.layout.append_inst( + func.dfg.make_inst(InstructionData::Jump { + opcode: Opcode::Jump, + destination: block0, + args: EntityList::default(), + }), + block0, + ); + let flags = &settings::Flags::new(settings::builder()); + let verifier = Verifier::new(&func, flags.into()); + let mut errors = VerifierErrors::default(); + + let _ = verifier.run(&mut errors); + + assert_err_with_msg!(errors, "instruction format"); + } + + #[test] + fn test_function_invalid_param() { + let mut func = Function::new(); + func.signature.params.push(AbiParam::new(types::INVALID)); + + let mut errors = VerifierErrors::default(); + let flags = &settings::Flags::new(settings::builder()); + let verifier = Verifier::new(&func, flags.into()); + + let _ = verifier.typecheck_function_signature(&mut errors); + assert_err_with_msg!(errors, "Parameter at position 0 has an invalid type"); + } + + #[test] + fn test_function_invalid_return_value() { + let mut func = Function::new(); + func.signature.returns.push(AbiParam::new(types::INVALID)); + + let mut errors = VerifierErrors::default(); + let flags = &settings::Flags::new(settings::builder()); + let verifier = Verifier::new(&func, flags.into()); + + let _ = verifier.typecheck_function_signature(&mut errors); + assert_err_with_msg!(errors, "Return value at position 0 has an invalid type"); + } + + #[test] + fn test_printing_contextual_errors() { + // Build function. + let mut func = Function::new(); + let block0 = func.dfg.make_block(); + func.layout.append_block(block0); + + // Build instruction: v0, v1 = iconst 42 + let inst = func.dfg.make_inst(InstructionData::UnaryImm { + opcode: Opcode::Iconst, + imm: 42.into(), + }); + func.dfg.append_result(inst, types::I32); + func.dfg.append_result(inst, types::I32); + func.layout.append_inst(inst, block0); + + // Setup verifier. + let mut errors = VerifierErrors::default(); + let flags = &settings::Flags::new(settings::builder()); + let verifier = Verifier::new(&func, flags.into()); + + // Now the error message, when printed, should contain the instruction sequence causing the + // error (i.e. v0, v1 = iconst.i32 42) and not only its entity value (i.e. inst0) + let _ = verifier.typecheck_results(inst, types::I32, &mut errors); + assert_eq!( + format!("{}", errors.0[0]), + "inst0 (v0, v1 = iconst.i32 42): has more result values than expected" + ) + } + + #[test] + fn test_empty_block() { + let mut func = Function::new(); + let block0 = func.dfg.make_block(); + func.layout.append_block(block0); + + let flags = &settings::Flags::new(settings::builder()); + let verifier = Verifier::new(&func, flags.into()); + let mut errors = VerifierErrors::default(); + let _ = verifier.run(&mut errors); + + assert_err_with_msg!(errors, "block0 cannot be empty"); + } +} |