diff options
Diffstat (limited to 'third_party/rust/fallible_collections/src/btree/map.rs')
-rw-r--r-- | third_party/rust/fallible_collections/src/btree/map.rs | 2642 |
1 files changed, 2642 insertions, 0 deletions
diff --git a/third_party/rust/fallible_collections/src/btree/map.rs b/third_party/rust/fallible_collections/src/btree/map.rs new file mode 100644 index 0000000000..ecfe3d2209 --- /dev/null +++ b/third_party/rust/fallible_collections/src/btree/map.rs @@ -0,0 +1,2642 @@ +use crate::TryReserveError; +use core::borrow::Borrow; +use core::cmp::Ordering; +use core::fmt::Debug; +use core::hash::{Hash, Hasher}; +use core::iter::{FromIterator, FusedIterator, Peekable}; +use core::marker::PhantomData; +use core::ops::Bound::{Excluded, Included, Unbounded}; +use core::ops::{Index, RangeBounds}; +use core::{fmt, intrinsics, mem, ptr}; + +use super::node::{self, marker, ForceResult::*, Handle, InsertResult::*, NodeRef}; +use super::search::{self, SearchResult::*}; + +use Entry::*; +use UnderflowResult::*; + +/// A map based on a B-Tree. +/// +/// B-Trees represent a fundamental compromise between cache-efficiency and actually minimizing +/// the amount of work performed in a search. In theory, a binary search tree (BST) is the optimal +/// choice for a sorted map, as a perfectly balanced BST performs the theoretical minimum amount of +/// comparisons necessary to find an element (log<sub>2</sub>n). However, in practice the way this +/// is done is *very* inefficient for modern computer architectures. In particular, every element +/// is stored in its own individually heap-allocated node. This means that every single insertion +/// triggers a heap-allocation, and every single comparison should be a cache-miss. Since these +/// are both notably expensive things to do in practice, we are forced to at very least reconsider +/// the BST strategy. +/// +/// A B-Tree instead makes each node contain B-1 to 2B-1 elements in a contiguous array. By doing +/// this, we reduce the number of allocations by a factor of B, and improve cache efficiency in +/// searches. However, this does mean that searches will have to do *more* comparisons on average. +/// The precise number of comparisons depends on the node search strategy used. For optimal cache +/// efficiency, one could search the nodes linearly. For optimal comparisons, one could search +/// the node using binary search. As a compromise, one could also perform a linear search +/// that initially only checks every i<sup>th</sup> element for some choice of i. +/// +/// Currently, our implementation simply performs naive linear search. This provides excellent +/// performance on *small* nodes of elements which are cheap to compare. However in the future we +/// would like to further explore choosing the optimal search strategy based on the choice of B, +/// and possibly other factors. Using linear search, searching for a random element is expected +/// to take O(B log<sub>B</sub>n) comparisons, which is generally worse than a BST. In practice, +/// however, performance is excellent. +/// +/// It is a logic error for a key to be modified in such a way that the key's ordering relative to +/// any other key, as determined by the [`Ord`] trait, changes while it is in the map. This is +/// normally only possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code. +/// +/// [`Ord`]: ../../std/cmp/trait.Ord.html +/// [`Cell`]: ../../std/cell/struct.Cell.html +/// [`RefCell`]: ../../std/cell/struct.RefCell.html +/// +/// # Examples +/// +/// ``` +/// use std::collections::BTreeMap; +/// +/// // type inference lets us omit an explicit type signature (which +/// // would be `BTreeMap<&str, &str>` in this example). +/// let mut movie_reviews = BTreeMap::new(); +/// +/// // review some movies. +/// movie_reviews.insert("Office Space", "Deals with real issues in the workplace."); +/// movie_reviews.insert("Pulp Fiction", "Masterpiece."); +/// movie_reviews.insert("The Godfather", "Very enjoyable."); +/// movie_reviews.insert("The Blues Brothers", "Eye lyked it a lot."); +/// +/// // check for a specific one. +/// if !movie_reviews.contains_key("Les Misérables") { +/// println!("We've got {} reviews, but Les Misérables ain't one.", +/// movie_reviews.len()); +/// } +/// +/// // oops, this review has a lot of spelling mistakes, let's delete it. +/// movie_reviews.remove("The Blues Brothers"); +/// +/// // look up the values associated with some keys. +/// let to_find = ["Up!", "Office Space"]; +/// for book in &to_find { +/// match movie_reviews.get(book) { +/// Some(review) => println!("{}: {}", book, review), +/// None => println!("{} is unreviewed.", book) +/// } +/// } +/// +/// // Look up the value for a key (will panic if the key is not found). +/// println!("Movie review: {}", movie_reviews["Office Space"]); +/// +/// // iterate over everything. +/// for (movie, review) in &movie_reviews { +/// println!("{}: \"{}\"", movie, review); +/// } +/// ``` +/// +/// `BTreeMap` also implements an [`Entry API`](#method.entry), which allows +/// for more complex methods of getting, setting, updating and removing keys and +/// their values: +/// +/// ``` +/// use std::collections::BTreeMap; +/// +/// // type inference lets us omit an explicit type signature (which +/// // would be `BTreeMap<&str, u8>` in this example). +/// let mut player_stats = BTreeMap::new(); +/// +/// fn random_stat_buff() -> u8 { +/// // could actually return some random value here - let's just return +/// // some fixed value for now +/// 42 +/// } +/// +/// // insert a key only if it doesn't already exist +/// player_stats.entry("health").or_insert(100); +/// +/// // insert a key using a function that provides a new value only if it +/// // doesn't already exist +/// player_stats.entry("defence").or_insert_with(random_stat_buff); +/// +/// // update a key, guarding against the key possibly not being set +/// let stat = player_stats.entry("attack").or_insert(100); +/// *stat += random_stat_buff(); +/// ``` + +pub struct BTreeMap<K, V> { + root: node::Root<K, V>, + length: usize, +} + +unsafe impl<#[may_dangle] K, #[may_dangle] V> Drop for BTreeMap<K, V> { + fn drop(&mut self) { + unsafe { + drop(ptr::read(self).into_iter()); + } + } +} + +use crate::TryClone; + +impl<K: TryClone, V: TryClone> TryClone for BTreeMap<K, V> { + fn try_clone(&self) -> Result<BTreeMap<K, V>, TryReserveError> { + fn clone_subtree<'a, K: TryClone, V: TryClone>( + node: node::NodeRef<marker::Immut<'a>, K, V, marker::LeafOrInternal>, + ) -> Result<BTreeMap<K, V>, TryReserveError> + where + K: 'a, + V: 'a, + { + match node.force() { + Leaf(leaf) => { + let mut out_tree = BTreeMap { + root: node::Root::new_leaf()?, + length: 0, + }; + + { + let mut out_node = match out_tree.root.as_mut().force() { + Leaf(leaf) => leaf, + Internal(_) => unreachable!(), + }; + + let mut in_edge = leaf.first_edge(); + while let Ok(kv) = in_edge.right_kv() { + let (k, v) = kv.into_kv(); + in_edge = kv.right_edge(); + + out_node.push(k.try_clone()?, v.try_clone()?); + out_tree.length += 1; + } + } + + Ok(out_tree) + } + Internal(internal) => { + let mut out_tree = clone_subtree(internal.first_edge().descend())?; + + { + let mut out_node = out_tree.root.push_level()?; + let mut in_edge = internal.first_edge(); + while let Ok(kv) = in_edge.right_kv() { + let (k, v) = kv.into_kv(); + in_edge = kv.right_edge(); + + let k = (*k).try_clone()?; + let v = (*v).try_clone()?; + let subtree = clone_subtree(in_edge.descend())?; + + // We can't destructure subtree directly + // because BTreeMap implements Drop + let (subroot, sublength) = unsafe { + let root = ptr::read(&subtree.root); + let length = subtree.length; + mem::forget(subtree); + (root, length) + }; + + out_node.push(k, v, subroot); + out_tree.length += 1 + sublength; + } + } + + Ok(out_tree) + } + } + } + + if self.len() == 0 { + // Ideally we'd call `BTreeMap::new` here, but that has the `K: + // Ord` constraint, which this method lacks. + Ok(BTreeMap { + root: node::Root::shared_empty_root(), + length: 0, + }) + } else { + clone_subtree(self.root.as_ref()) + } + } +} + +impl<K: Clone, V: Clone> Clone for BTreeMap<K, V> { + fn clone(&self) -> BTreeMap<K, V> { + fn clone_subtree<'a, K: Clone, V: Clone>( + node: node::NodeRef<marker::Immut<'a>, K, V, marker::LeafOrInternal>, + ) -> BTreeMap<K, V> + where + K: 'a, + V: 'a, + { + match node.force() { + Leaf(leaf) => { + let mut out_tree = BTreeMap { + root: node::Root::new_leaf().expect("Out of Mem"), + length: 0, + }; + + { + let mut out_node = match out_tree.root.as_mut().force() { + Leaf(leaf) => leaf, + Internal(_) => unreachable!(), + }; + + let mut in_edge = leaf.first_edge(); + while let Ok(kv) = in_edge.right_kv() { + let (k, v) = kv.into_kv(); + in_edge = kv.right_edge(); + + out_node.push(k.clone(), v.clone()); + out_tree.length += 1; + } + } + + out_tree + } + Internal(internal) => { + let mut out_tree = clone_subtree(internal.first_edge().descend()); + + { + let mut out_node = out_tree.root.push_level().expect("Out of Mem"); + let mut in_edge = internal.first_edge(); + while let Ok(kv) = in_edge.right_kv() { + let (k, v) = kv.into_kv(); + in_edge = kv.right_edge(); + + let k = (*k).clone(); + let v = (*v).clone(); + let subtree = clone_subtree(in_edge.descend()); + + // We can't destructure subtree directly + // because BTreeMap implements Drop + let (subroot, sublength) = unsafe { + let root = ptr::read(&subtree.root); + let length = subtree.length; + mem::forget(subtree); + (root, length) + }; + + out_node.push(k, v, subroot); + out_tree.length += 1 + sublength; + } + } + + out_tree + } + } + } + + if self.len() == 0 { + // Ideally we'd call `BTreeMap::new` here, but that has the `K: + // Ord` constraint, which this method lacks. + BTreeMap { + root: node::Root::shared_empty_root(), + length: 0, + } + } else { + clone_subtree(self.root.as_ref()) + } + } +} + +impl<K, Q: ?Sized> super::Recover<Q> for BTreeMap<K, ()> +where + K: Borrow<Q> + Ord, + Q: Ord, +{ + type Key = K; + + fn get(&self, key: &Q) -> Option<&K> { + match search::search_tree(self.root.as_ref(), key) { + Found(handle) => Some(handle.into_kv().0), + GoDown(_) => None, + } + } + + fn take(&mut self, key: &Q) -> Option<K> { + match search::search_tree(self.root.as_mut(), key) { + Found(handle) => Some( + OccupiedEntry { + handle, + length: &mut self.length, + _marker: PhantomData, + } + .remove_kv() + .0, + ), + GoDown(_) => None, + } + } + + fn replace(&mut self, key: K) -> Result<Option<K>, TryReserveError> { + self.ensure_root_is_owned()?; + match search::search_tree::<marker::Mut<'_>, K, (), K>(self.root.as_mut(), &key) { + Found(handle) => Ok(Some(mem::replace(handle.into_kv_mut().0, key))), + GoDown(handle) => { + VacantEntry { + key, + handle, + length: &mut self.length, + _marker: PhantomData, + } + .try_insert(())?; + Ok(None) + } + } + } +} + +/// An iterator over the entries of a `BTreeMap`. +/// +/// This `struct` is created by the [`iter`] method on [`BTreeMap`]. See its +/// documentation for more. +/// +/// [`iter`]: struct.BTreeMap.html#method.iter +/// [`BTreeMap`]: struct.BTreeMap.html + +pub struct Iter<'a, K: 'a, V: 'a> { + range: Range<'a, K, V>, + length: usize, +} + +impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Iter<'_, K, V> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.debug_list().entries(self.clone()).finish() + } +} + +/// A mutable iterator over the entries of a `BTreeMap`. +/// +/// This `struct` is created by the [`iter_mut`] method on [`BTreeMap`]. See its +/// documentation for more. +/// +/// [`iter_mut`]: struct.BTreeMap.html#method.iter_mut +/// [`BTreeMap`]: struct.BTreeMap.html + +#[derive(Debug)] +pub struct IterMut<'a, K: 'a, V: 'a> { + range: RangeMut<'a, K, V>, + length: usize, +} + +/// An owning iterator over the entries of a `BTreeMap`. +/// +/// This `struct` is created by the [`into_iter`] method on [`BTreeMap`][`BTreeMap`] +/// (provided by the `IntoIterator` trait). See its documentation for more. +/// +/// [`into_iter`]: struct.BTreeMap.html#method.into_iter +/// [`BTreeMap`]: struct.BTreeMap.html + +pub struct IntoIter<K, V> { + front: Handle<NodeRef<marker::Owned, K, V, marker::Leaf>, marker::Edge>, + back: Handle<NodeRef<marker::Owned, K, V, marker::Leaf>, marker::Edge>, + length: usize, +} + +impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for IntoIter<K, V> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + let range = Range { + front: self.front.reborrow(), + back: self.back.reborrow(), + }; + f.debug_list().entries(range).finish() + } +} + +/// An iterator over the keys of a `BTreeMap`. +/// +/// This `struct` is created by the [`keys`] method on [`BTreeMap`]. See its +/// documentation for more. +/// +/// [`keys`]: struct.BTreeMap.html#method.keys +/// [`BTreeMap`]: struct.BTreeMap.html + +pub struct Keys<'a, K: 'a, V: 'a> { + inner: Iter<'a, K, V>, +} + +impl<K: fmt::Debug, V> fmt::Debug for Keys<'_, K, V> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.debug_list().entries(self.clone()).finish() + } +} + +/// An iterator over the values of a `BTreeMap`. +/// +/// This `struct` is created by the [`values`] method on [`BTreeMap`]. See its +/// documentation for more. +/// +/// [`values`]: struct.BTreeMap.html#method.values +/// [`BTreeMap`]: struct.BTreeMap.html + +pub struct Values<'a, K: 'a, V: 'a> { + inner: Iter<'a, K, V>, +} + +impl<K, V: fmt::Debug> fmt::Debug for Values<'_, K, V> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.debug_list().entries(self.clone()).finish() + } +} + +/// A mutable iterator over the values of a `BTreeMap`. +/// +/// This `struct` is created by the [`values_mut`] method on [`BTreeMap`]. See its +/// documentation for more. +/// +/// [`values_mut`]: struct.BTreeMap.html#method.values_mut +/// [`BTreeMap`]: struct.BTreeMap.html + +#[derive(Debug)] +pub struct ValuesMut<'a, K: 'a, V: 'a> { + inner: IterMut<'a, K, V>, +} + +/// An iterator over a sub-range of entries in a `BTreeMap`. +/// +/// This `struct` is created by the [`range`] method on [`BTreeMap`]. See its +/// documentation for more. +/// +/// [`range`]: struct.BTreeMap.html#method.range +/// [`BTreeMap`]: struct.BTreeMap.html + +pub struct Range<'a, K: 'a, V: 'a> { + front: Handle<NodeRef<marker::Immut<'a>, K, V, marker::Leaf>, marker::Edge>, + back: Handle<NodeRef<marker::Immut<'a>, K, V, marker::Leaf>, marker::Edge>, +} + +impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Range<'_, K, V> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.debug_list().entries(self.clone()).finish() + } +} + +/// A mutable iterator over a sub-range of entries in a `BTreeMap`. +/// +/// This `struct` is created by the [`range_mut`] method on [`BTreeMap`]. See its +/// documentation for more. +/// +/// [`range_mut`]: struct.BTreeMap.html#method.range_mut +/// [`BTreeMap`]: struct.BTreeMap.html + +pub struct RangeMut<'a, K: 'a, V: 'a> { + front: Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>, + back: Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>, + + // Be invariant in `K` and `V` + _marker: PhantomData<&'a mut (K, V)>, +} + +impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for RangeMut<'_, K, V> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + let range = Range { + front: self.front.reborrow(), + back: self.back.reborrow(), + }; + f.debug_list().entries(range).finish() + } +} + +/// A view into a single entry in a map, which may either be vacant or occupied. +/// +/// This `enum` is constructed from the [`entry`] method on [`BTreeMap`]. +/// +/// [`BTreeMap`]: struct.BTreeMap.html +/// [`entry`]: struct.BTreeMap.html#method.entry + +pub enum Entry<'a, K: 'a, V: 'a> { + /// A vacant entry. + Vacant(VacantEntry<'a, K, V>), + + /// An occupied entry. + Occupied(OccupiedEntry<'a, K, V>), +} + +impl<K: Debug + Ord, V: Debug> Debug for Entry<'_, K, V> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + match *self { + Vacant(ref v) => f.debug_tuple("Entry").field(v).finish(), + Occupied(ref o) => f.debug_tuple("Entry").field(o).finish(), + } + } +} + +/// A view into a vacant entry in a `BTreeMap`. +/// It is part of the [`Entry`] enum. +/// +/// [`Entry`]: enum.Entry.html + +pub struct VacantEntry<'a, K: 'a, V: 'a> { + key: K, + handle: Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>, + length: &'a mut usize, + + // Be invariant in `K` and `V` + _marker: PhantomData<&'a mut (K, V)>, +} + +impl<K: Debug + Ord, V> Debug for VacantEntry<'_, K, V> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.debug_tuple("VacantEntry").field(self.key()).finish() + } +} + +/// A view into an occupied entry in a `BTreeMap`. +/// It is part of the [`Entry`] enum. +/// +/// [`Entry`]: enum.Entry.html + +pub struct OccupiedEntry<'a, K: 'a, V: 'a> { + handle: Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::KV>, + + length: &'a mut usize, + + // Be invariant in `K` and `V` + _marker: PhantomData<&'a mut (K, V)>, +} + +impl<K: Debug + Ord, V: Debug> Debug for OccupiedEntry<'_, K, V> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.debug_struct("OccupiedEntry") + .field("key", self.key()) + .field("value", self.get()) + .finish() + } +} + +// An iterator for merging two sorted sequences into one +struct MergeIter<K, V, I: Iterator<Item = (K, V)>> { + left: Peekable<I>, + right: Peekable<I>, +} + +impl<K: Ord, V> BTreeMap<K, V> { + /// Makes a new empty BTreeMap with a reasonable choice for B. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map = BTreeMap::new(); + /// + /// // entries can now be inserted into the empty map + /// map.insert(1, "a"); + /// ``` + + pub fn new() -> BTreeMap<K, V> { + BTreeMap { + root: node::Root::shared_empty_root(), + length: 0, + } + } + + /// Clears the map, removing all values. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut a = BTreeMap::new(); + /// a.insert(1, "a"); + /// a.clear(); + /// assert!(a.is_empty()); + /// ``` + + pub fn clear(&mut self) { + *self = BTreeMap::new(); + } + + /// Returns a reference to the value corresponding to the key. + /// + /// The key may be any borrowed form of the map's key type, but the ordering + /// on the borrowed form *must* match the ordering on the key type. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map = BTreeMap::new(); + /// map.insert(1, "a"); + /// assert_eq!(map.get(&1), Some(&"a")); + /// assert_eq!(map.get(&2), None); + /// ``` + + pub fn get<Q: ?Sized>(&self, key: &Q) -> Option<&V> + where + K: Borrow<Q>, + Q: Ord, + { + match search::search_tree(self.root.as_ref(), key) { + Found(handle) => Some(handle.into_kv().1), + GoDown(_) => None, + } + } + + /// Returns the key-value pair corresponding to the supplied key. + /// + /// The supplied key may be any borrowed form of the map's key type, but the ordering + /// on the borrowed form *must* match the ordering on the key type. + /// + /// # Examples + /// + /// ``` + /// #![feature(map_get_key_value)] + /// use std::collections::BTreeMap; + /// + /// let mut map = BTreeMap::new(); + /// map.insert(1, "a"); + /// assert_eq!(map.get_key_value(&1), Some((&1, &"a"))); + /// assert_eq!(map.get_key_value(&2), None); + /// ``` + pub fn get_key_value<Q: ?Sized>(&self, k: &Q) -> Option<(&K, &V)> + where + K: Borrow<Q>, + Q: Ord, + { + match search::search_tree(self.root.as_ref(), k) { + Found(handle) => Some(handle.into_kv()), + GoDown(_) => None, + } + } + + /// Returns `true` if the map contains a value for the specified key. + /// + /// The key may be any borrowed form of the map's key type, but the ordering + /// on the borrowed form *must* match the ordering on the key type. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map = BTreeMap::new(); + /// map.insert(1, "a"); + /// assert_eq!(map.contains_key(&1), true); + /// assert_eq!(map.contains_key(&2), false); + /// ``` + + pub fn contains_key<Q: ?Sized>(&self, key: &Q) -> bool + where + K: Borrow<Q>, + Q: Ord, + { + self.get(key).is_some() + } + + /// Returns a mutable reference to the value corresponding to the key. + /// + /// The key may be any borrowed form of the map's key type, but the ordering + /// on the borrowed form *must* match the ordering on the key type. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map = BTreeMap::new(); + /// map.insert(1, "a"); + /// if let Some(x) = map.get_mut(&1) { + /// *x = "b"; + /// } + /// assert_eq!(map[&1], "b"); + /// ``` + // See `get` for implementation notes, this is basically a copy-paste with mut's added + + pub fn get_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<&mut V> + where + K: Borrow<Q>, + Q: Ord, + { + match search::search_tree(self.root.as_mut(), key) { + Found(handle) => Some(handle.into_kv_mut().1), + GoDown(_) => None, + } + } + + /// Inserts a key-value pair into the map. + /// + /// If the map did not have this key present, `None` is returned. + /// + /// If the map did have this key present, the value is updated, and the old + /// value is returned. The key is not updated, though; this matters for + /// types that can be `==` without being identical. See the [module-level + /// documentation] for more. + /// + /// [module-level documentation]: index.html#insert-and-complex-keys + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map = BTreeMap::new(); + /// assert_eq!(map.insert(37, "a"), None); + /// assert_eq!(map.is_empty(), false); + /// + /// map.insert(37, "b"); + /// assert_eq!(map.insert(37, "c"), Some("b")); + /// assert_eq!(map[&37], "c"); + /// ``` + + pub fn try_insert(&mut self, key: K, value: V) -> Result<Option<V>, TryReserveError> { + match self.try_entry(key)? { + Occupied(mut entry) => Ok(Some(entry.insert(value))), + Vacant(entry) => { + entry.try_insert(value)?; + Ok(None) + } + } + } + + /// Removes a key from the map, returning the value at the key if the key + /// was previously in the map. + /// + /// The key may be any borrowed form of the map's key type, but the ordering + /// on the borrowed form *must* match the ordering on the key type. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map = BTreeMap::new(); + /// map.insert(1, "a"); + /// assert_eq!(map.remove(&1), Some("a")); + /// assert_eq!(map.remove(&1), None); + /// ``` + + pub fn remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V> + where + K: Borrow<Q>, + Q: Ord, + { + match search::search_tree(self.root.as_mut(), key) { + Found(handle) => Some( + OccupiedEntry { + handle, + length: &mut self.length, + _marker: PhantomData, + } + .remove(), + ), + GoDown(_) => None, + } + } + + /// Moves all elements from `other` into `Self`, leaving `other` empty. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut a = BTreeMap::new(); + /// a.insert(1, "a"); + /// a.insert(2, "b"); + /// a.insert(3, "c"); + /// + /// let mut b = BTreeMap::new(); + /// b.insert(3, "d"); + /// b.insert(4, "e"); + /// b.insert(5, "f"); + /// + /// a.append(&mut b); + /// + /// assert_eq!(a.len(), 5); + /// assert_eq!(b.len(), 0); + /// + /// assert_eq!(a[&1], "a"); + /// assert_eq!(a[&2], "b"); + /// assert_eq!(a[&3], "d"); + /// assert_eq!(a[&4], "e"); + /// assert_eq!(a[&5], "f"); + /// ``` + + pub fn append(&mut self, other: &mut Self) { + // Do we have to append anything at all? + if other.len() == 0 { + return; + } + + // We can just swap `self` and `other` if `self` is empty. + if self.len() == 0 { + mem::swap(self, other); + return; + } + + // First, we merge `self` and `other` into a sorted sequence in linear time. + let self_iter = mem::replace(self, BTreeMap::new()).into_iter(); + let other_iter = mem::replace(other, BTreeMap::new()).into_iter(); + let iter = MergeIter { + left: self_iter.peekable(), + right: other_iter.peekable(), + }; + + // Second, we build a tree from the sorted sequence in linear time. + self.from_sorted_iter(iter); + self.fix_right_edge(); + } + + /// Constructs a double-ended iterator over a sub-range of elements in the map. + /// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will + /// yield elements from min (inclusive) to max (exclusive). + /// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example + /// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive + /// range from 4 to 10. + /// + /// # Panics + /// + /// Panics if range `start > end`. + /// Panics if range `start == end` and both bounds are `Excluded`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// use std::ops::Bound::Included; + /// + /// let mut map = BTreeMap::new(); + /// map.insert(3, "a"); + /// map.insert(5, "b"); + /// map.insert(8, "c"); + /// for (&key, &value) in map.range((Included(&4), Included(&8))) { + /// println!("{}: {}", key, value); + /// } + /// assert_eq!(Some((&5, &"b")), map.range(4..).next()); + /// ``` + + pub fn range<T: ?Sized, R>(&self, range: R) -> Range<'_, K, V> + where + T: Ord, + K: Borrow<T>, + R: RangeBounds<T>, + { + let root1 = self.root.as_ref(); + let root2 = self.root.as_ref(); + let (f, b) = range_search(root1, root2, range); + + Range { front: f, back: b } + } + + /// Constructs a mutable double-ended iterator over a sub-range of elements in the map. + /// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will + /// yield elements from min (inclusive) to max (exclusive). + /// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example + /// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive + /// range from 4 to 10. + /// + /// # Panics + /// + /// Panics if range `start > end`. + /// Panics if range `start == end` and both bounds are `Excluded`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map: BTreeMap<&str, i32> = ["Alice", "Bob", "Carol", "Cheryl"] + /// .iter() + /// .map(|&s| (s, 0)) + /// .collect(); + /// for (_, balance) in map.range_mut("B".."Cheryl") { + /// *balance += 100; + /// } + /// for (name, balance) in &map { + /// println!("{} => {}", name, balance); + /// } + /// ``` + + pub fn range_mut<T: ?Sized, R>(&mut self, range: R) -> RangeMut<'_, K, V> + where + T: Ord, + K: Borrow<T>, + R: RangeBounds<T>, + { + let root1 = self.root.as_mut(); + let root2 = unsafe { ptr::read(&root1) }; + let (f, b) = range_search(root1, root2, range); + + RangeMut { + front: f, + back: b, + _marker: PhantomData, + } + } + + /// Gets the given key's corresponding entry in the map for in-place manipulation. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut count: BTreeMap<&str, usize> = BTreeMap::new(); + /// + /// // count the number of occurrences of letters in the vec + /// for x in vec!["a","b","a","c","a","b"] { + /// *count.entry(x).or_insert(0) += 1; + /// } + /// + /// assert_eq!(count["a"], 3); + /// ``` + + pub fn try_entry(&mut self, key: K) -> Result<Entry<'_, K, V>, TryReserveError> { + // FIXME(@porglezomp) Avoid allocating if we don't insert + self.ensure_root_is_owned()?; + Ok(match search::search_tree(self.root.as_mut(), &key) { + Found(handle) => Occupied(OccupiedEntry { + handle, + length: &mut self.length, + _marker: PhantomData, + }), + GoDown(handle) => Vacant(VacantEntry { + key, + handle, + length: &mut self.length, + _marker: PhantomData, + }), + }) + } + + fn from_sorted_iter<I: Iterator<Item = (K, V)>>(&mut self, iter: I) { + self.ensure_root_is_owned().expect("Out Of Mem"); + let mut cur_node = last_leaf_edge(self.root.as_mut()).into_node(); + // Iterate through all key-value pairs, pushing them into nodes at the right level. + for (key, value) in iter { + // Try to push key-value pair into the current leaf node. + if cur_node.len() < node::CAPACITY { + cur_node.push(key, value); + } else { + // No space left, go up and push there. + let mut open_node; + let mut test_node = cur_node.forget_type(); + loop { + match test_node.ascend() { + Ok(parent) => { + let parent = parent.into_node(); + if parent.len() < node::CAPACITY { + // Found a node with space left, push here. + open_node = parent; + break; + } else { + // Go up again. + test_node = parent.forget_type(); + } + } + Err(node) => { + // We are at the top, create a new root node and push there. + open_node = node.into_root_mut().push_level().expect("Out of Mem"); + break; + } + } + } + + // Push key-value pair and new right subtree. + let tree_height = open_node.height() - 1; + let mut right_tree = node::Root::new_leaf().expect("Out of Mem"); + for _ in 0..tree_height { + right_tree.push_level().expect("Out of Mem"); + } + open_node.push(key, value, right_tree); + + // Go down to the right-most leaf again. + cur_node = last_leaf_edge(open_node.forget_type()).into_node(); + } + + self.length += 1; + } + } + + fn fix_right_edge(&mut self) { + // Handle underfull nodes, start from the top. + let mut cur_node = self.root.as_mut(); + while let Internal(internal) = cur_node.force() { + // Check if right-most child is underfull. + let mut last_edge = internal.last_edge(); + let right_child_len = last_edge.reborrow().descend().len(); + if right_child_len < node::MIN_LEN { + // We need to steal. + let mut last_kv = match last_edge.left_kv() { + Ok(left) => left, + Err(_) => unreachable!(), + }; + last_kv.bulk_steal_left(node::MIN_LEN - right_child_len); + last_edge = last_kv.right_edge(); + } + + // Go further down. + cur_node = last_edge.descend(); + } + } + + /// Splits the collection into two at the given key. Returns everything after the given key, + /// including the key. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut a = BTreeMap::new(); + /// a.insert(1, "a"); + /// a.insert(2, "b"); + /// a.insert(3, "c"); + /// a.insert(17, "d"); + /// a.insert(41, "e"); + /// + /// let b = a.split_off(&3); + /// + /// assert_eq!(a.len(), 2); + /// assert_eq!(b.len(), 3); + /// + /// assert_eq!(a[&1], "a"); + /// assert_eq!(a[&2], "b"); + /// + /// assert_eq!(b[&3], "c"); + /// assert_eq!(b[&17], "d"); + /// assert_eq!(b[&41], "e"); + /// ``` + + pub fn split_off<Q: ?Sized + Ord>(&mut self, key: &Q) -> Result<Self, TryReserveError> + where + K: Borrow<Q>, + { + if self.is_empty() { + return Ok(Self::new()); + } + + let total_num = self.len(); + + let mut right = Self::new(); + right.root = node::Root::new_leaf()?; + for _ in 0..(self.root.as_ref().height()) { + right.root.push_level()?; + } + + { + let mut left_node = self.root.as_mut(); + let mut right_node = right.root.as_mut(); + + loop { + let mut split_edge = match search::search_node(left_node, key) { + // key is going to the right tree + Found(handle) => handle.left_edge(), + GoDown(handle) => handle, + }; + + split_edge.move_suffix(&mut right_node); + + match (split_edge.force(), right_node.force()) { + (Internal(edge), Internal(node)) => { + left_node = edge.descend(); + right_node = node.first_edge().descend(); + } + (Leaf(_), Leaf(_)) => { + break; + } + _ => { + unreachable!(); + } + } + } + } + + self.fix_right_border(); + right.fix_left_border(); + + if self.root.as_ref().height() < right.root.as_ref().height() { + self.recalc_length(); + right.length = total_num - self.len(); + } else { + right.recalc_length(); + self.length = total_num - right.len(); + } + + Ok(right) + } + + /// Calculates the number of elements if it is incorrect. + fn recalc_length(&mut self) { + fn dfs<'a, K, V>(node: NodeRef<marker::Immut<'a>, K, V, marker::LeafOrInternal>) -> usize + where + K: 'a, + V: 'a, + { + let mut res = node.len(); + + if let Internal(node) = node.force() { + let mut edge = node.first_edge(); + loop { + res += dfs(edge.reborrow().descend()); + match edge.right_kv() { + Ok(right_kv) => { + edge = right_kv.right_edge(); + } + Err(_) => { + break; + } + } + } + } + + res + } + + self.length = dfs(self.root.as_ref()); + } + + /// Removes empty levels on the top. + fn fix_top(&mut self) { + loop { + { + let node = self.root.as_ref(); + if node.height() == 0 || node.len() > 0 { + break; + } + } + self.root.pop_level(); + } + } + + fn fix_right_border(&mut self) { + self.fix_top(); + + { + let mut cur_node = self.root.as_mut(); + + while let Internal(node) = cur_node.force() { + let mut last_kv = node.last_kv(); + + if last_kv.can_merge() { + cur_node = last_kv.merge().descend(); + } else { + let right_len = last_kv.reborrow().right_edge().descend().len(); + // `MINLEN + 1` to avoid readjust if merge happens on the next level. + if right_len < node::MIN_LEN + 1 { + last_kv.bulk_steal_left(node::MIN_LEN + 1 - right_len); + } + cur_node = last_kv.right_edge().descend(); + } + } + } + + self.fix_top(); + } + + /// The symmetric clone of `fix_right_border`. + fn fix_left_border(&mut self) { + self.fix_top(); + + { + let mut cur_node = self.root.as_mut(); + + while let Internal(node) = cur_node.force() { + let mut first_kv = node.first_kv(); + + if first_kv.can_merge() { + cur_node = first_kv.merge().descend(); + } else { + let left_len = first_kv.reborrow().left_edge().descend().len(); + if left_len < node::MIN_LEN + 1 { + first_kv.bulk_steal_right(node::MIN_LEN + 1 - left_len); + } + cur_node = first_kv.left_edge().descend(); + } + } + } + + self.fix_top(); + } + + /// If the root node is the shared root node, allocate our own node. + fn ensure_root_is_owned(&mut self) -> Result<(), TryReserveError> { + if self.root.is_shared_root() { + self.root = node::Root::new_leaf()?; + } + Ok(()) + } +} + +impl<'a, K: 'a, V: 'a> IntoIterator for &'a BTreeMap<K, V> { + type Item = (&'a K, &'a V); + type IntoIter = Iter<'a, K, V>; + + fn into_iter(self) -> Iter<'a, K, V> { + self.iter() + } +} + +impl<'a, K: 'a, V: 'a> Iterator for Iter<'a, K, V> { + type Item = (&'a K, &'a V); + + fn next(&mut self) -> Option<(&'a K, &'a V)> { + if self.length == 0 { + None + } else { + self.length -= 1; + unsafe { Some(self.range.next_unchecked()) } + } + } + + fn size_hint(&self) -> (usize, Option<usize>) { + (self.length, Some(self.length)) + } +} + +impl<K, V> FusedIterator for Iter<'_, K, V> {} + +impl<'a, K: 'a, V: 'a> DoubleEndedIterator for Iter<'a, K, V> { + fn next_back(&mut self) -> Option<(&'a K, &'a V)> { + if self.length == 0 { + None + } else { + self.length -= 1; + unsafe { Some(self.range.next_back_unchecked()) } + } + } +} + +impl<K, V> ExactSizeIterator for Iter<'_, K, V> { + fn len(&self) -> usize { + self.length + } +} + +impl<K, V> Clone for Iter<'_, K, V> { + fn clone(&self) -> Self { + Iter { + range: self.range.clone(), + length: self.length, + } + } +} + +impl<'a, K: 'a, V: 'a> IntoIterator for &'a mut BTreeMap<K, V> { + type Item = (&'a K, &'a mut V); + type IntoIter = IterMut<'a, K, V>; + + fn into_iter(self) -> IterMut<'a, K, V> { + self.iter_mut() + } +} + +impl<'a, K: 'a, V: 'a> Iterator for IterMut<'a, K, V> { + type Item = (&'a K, &'a mut V); + + fn next(&mut self) -> Option<(&'a K, &'a mut V)> { + if self.length == 0 { + None + } else { + self.length -= 1; + unsafe { Some(self.range.next_unchecked()) } + } + } + + fn size_hint(&self) -> (usize, Option<usize>) { + (self.length, Some(self.length)) + } +} + +impl<'a, K: 'a, V: 'a> DoubleEndedIterator for IterMut<'a, K, V> { + fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> { + if self.length == 0 { + None + } else { + self.length -= 1; + unsafe { Some(self.range.next_back_unchecked()) } + } + } +} + +impl<K, V> ExactSizeIterator for IterMut<'_, K, V> { + fn len(&self) -> usize { + self.length + } +} + +impl<K, V> FusedIterator for IterMut<'_, K, V> {} + +impl<K, V> IntoIterator for BTreeMap<K, V> { + type Item = (K, V); + type IntoIter = IntoIter<K, V>; + + fn into_iter(self) -> IntoIter<K, V> { + let root1 = unsafe { ptr::read(&self.root).into_ref() }; + let root2 = unsafe { ptr::read(&self.root).into_ref() }; + let len = self.length; + mem::forget(self); + + IntoIter { + front: first_leaf_edge(root1), + back: last_leaf_edge(root2), + length: len, + } + } +} + +impl<K, V> Drop for IntoIter<K, V> { + fn drop(&mut self) { + self.for_each(drop); + unsafe { + let leaf_node = ptr::read(&self.front).into_node(); + if leaf_node.is_shared_root() { + return; + } + + if let Some(first_parent) = leaf_node.deallocate_and_ascend() { + let mut cur_node = first_parent.into_node(); + while let Some(parent) = cur_node.deallocate_and_ascend() { + cur_node = parent.into_node() + } + } + } + } +} + +impl<K, V> Iterator for IntoIter<K, V> { + type Item = (K, V); + + fn next(&mut self) -> Option<(K, V)> { + if self.length == 0 { + return None; + } else { + self.length -= 1; + } + + let handle = unsafe { ptr::read(&self.front) }; + + let mut cur_handle = match handle.right_kv() { + Ok(kv) => { + let k = unsafe { ptr::read(kv.reborrow().into_kv().0) }; + let v = unsafe { ptr::read(kv.reborrow().into_kv().1) }; + self.front = kv.right_edge(); + return Some((k, v)); + } + Err(last_edge) => unsafe { + unwrap_unchecked(last_edge.into_node().deallocate_and_ascend()) + }, + }; + + loop { + match cur_handle.right_kv() { + Ok(kv) => { + let k = unsafe { ptr::read(kv.reborrow().into_kv().0) }; + let v = unsafe { ptr::read(kv.reborrow().into_kv().1) }; + self.front = first_leaf_edge(kv.right_edge().descend()); + return Some((k, v)); + } + Err(last_edge) => unsafe { + cur_handle = unwrap_unchecked(last_edge.into_node().deallocate_and_ascend()); + }, + } + } + } + + fn size_hint(&self) -> (usize, Option<usize>) { + (self.length, Some(self.length)) + } +} + +impl<K, V> DoubleEndedIterator for IntoIter<K, V> { + fn next_back(&mut self) -> Option<(K, V)> { + if self.length == 0 { + return None; + } else { + self.length -= 1; + } + + let handle = unsafe { ptr::read(&self.back) }; + + let mut cur_handle = match handle.left_kv() { + Ok(kv) => { + let k = unsafe { ptr::read(kv.reborrow().into_kv().0) }; + let v = unsafe { ptr::read(kv.reborrow().into_kv().1) }; + self.back = kv.left_edge(); + return Some((k, v)); + } + Err(last_edge) => unsafe { + unwrap_unchecked(last_edge.into_node().deallocate_and_ascend()) + }, + }; + + loop { + match cur_handle.left_kv() { + Ok(kv) => { + let k = unsafe { ptr::read(kv.reborrow().into_kv().0) }; + let v = unsafe { ptr::read(kv.reborrow().into_kv().1) }; + self.back = last_leaf_edge(kv.left_edge().descend()); + return Some((k, v)); + } + Err(last_edge) => unsafe { + cur_handle = unwrap_unchecked(last_edge.into_node().deallocate_and_ascend()); + }, + } + } + } +} + +impl<K, V> ExactSizeIterator for IntoIter<K, V> { + fn len(&self) -> usize { + self.length + } +} + +impl<K, V> FusedIterator for IntoIter<K, V> {} + +impl<'a, K, V> Iterator for Keys<'a, K, V> { + type Item = &'a K; + + fn next(&mut self) -> Option<&'a K> { + self.inner.next().map(|(k, _)| k) + } + + fn size_hint(&self) -> (usize, Option<usize>) { + self.inner.size_hint() + } +} + +impl<'a, K, V> DoubleEndedIterator for Keys<'a, K, V> { + fn next_back(&mut self) -> Option<&'a K> { + self.inner.next_back().map(|(k, _)| k) + } +} + +impl<K, V> ExactSizeIterator for Keys<'_, K, V> { + fn len(&self) -> usize { + self.inner.len() + } +} + +impl<K, V> FusedIterator for Keys<'_, K, V> {} + +impl<K, V> Clone for Keys<'_, K, V> { + fn clone(&self) -> Self { + Keys { + inner: self.inner.clone(), + } + } +} + +impl<'a, K, V> Iterator for Values<'a, K, V> { + type Item = &'a V; + + fn next(&mut self) -> Option<&'a V> { + self.inner.next().map(|(_, v)| v) + } + + fn size_hint(&self) -> (usize, Option<usize>) { + self.inner.size_hint() + } +} + +impl<'a, K, V> DoubleEndedIterator for Values<'a, K, V> { + fn next_back(&mut self) -> Option<&'a V> { + self.inner.next_back().map(|(_, v)| v) + } +} + +impl<K, V> ExactSizeIterator for Values<'_, K, V> { + fn len(&self) -> usize { + self.inner.len() + } +} + +impl<K, V> FusedIterator for Values<'_, K, V> {} + +impl<K, V> Clone for Values<'_, K, V> { + fn clone(&self) -> Self { + Values { + inner: self.inner.clone(), + } + } +} + +impl<'a, K, V> Iterator for Range<'a, K, V> { + type Item = (&'a K, &'a V); + + fn next(&mut self) -> Option<(&'a K, &'a V)> { + if self.front == self.back { + None + } else { + unsafe { Some(self.next_unchecked()) } + } + } +} + +impl<'a, K, V> Iterator for ValuesMut<'a, K, V> { + type Item = &'a mut V; + + fn next(&mut self) -> Option<&'a mut V> { + self.inner.next().map(|(_, v)| v) + } + + fn size_hint(&self) -> (usize, Option<usize>) { + self.inner.size_hint() + } +} + +impl<'a, K, V> DoubleEndedIterator for ValuesMut<'a, K, V> { + fn next_back(&mut self) -> Option<&'a mut V> { + self.inner.next_back().map(|(_, v)| v) + } +} + +impl<K, V> ExactSizeIterator for ValuesMut<'_, K, V> { + fn len(&self) -> usize { + self.inner.len() + } +} + +impl<K, V> FusedIterator for ValuesMut<'_, K, V> {} + +impl<'a, K, V> Range<'a, K, V> { + unsafe fn next_unchecked(&mut self) -> (&'a K, &'a V) { + let handle = self.front; + + let mut cur_handle = match handle.right_kv() { + Ok(kv) => { + let ret = kv.into_kv(); + self.front = kv.right_edge(); + return ret; + } + Err(last_edge) => { + let next_level = last_edge.into_node().ascend().ok(); + unwrap_unchecked(next_level) + } + }; + + loop { + match cur_handle.right_kv() { + Ok(kv) => { + let ret = kv.into_kv(); + self.front = first_leaf_edge(kv.right_edge().descend()); + return ret; + } + Err(last_edge) => { + let next_level = last_edge.into_node().ascend().ok(); + cur_handle = unwrap_unchecked(next_level); + } + } + } + } +} + +impl<'a, K, V> DoubleEndedIterator for Range<'a, K, V> { + fn next_back(&mut self) -> Option<(&'a K, &'a V)> { + if self.front == self.back { + None + } else { + unsafe { Some(self.next_back_unchecked()) } + } + } +} + +impl<'a, K, V> Range<'a, K, V> { + unsafe fn next_back_unchecked(&mut self) -> (&'a K, &'a V) { + let handle = self.back; + + let mut cur_handle = match handle.left_kv() { + Ok(kv) => { + let ret = kv.into_kv(); + self.back = kv.left_edge(); + return ret; + } + Err(last_edge) => { + let next_level = last_edge.into_node().ascend().ok(); + unwrap_unchecked(next_level) + } + }; + + loop { + match cur_handle.left_kv() { + Ok(kv) => { + let ret = kv.into_kv(); + self.back = last_leaf_edge(kv.left_edge().descend()); + return ret; + } + Err(last_edge) => { + let next_level = last_edge.into_node().ascend().ok(); + cur_handle = unwrap_unchecked(next_level); + } + } + } + } +} + +impl<K, V> FusedIterator for Range<'_, K, V> {} + +impl<K, V> Clone for Range<'_, K, V> { + fn clone(&self) -> Self { + Range { + front: self.front, + back: self.back, + } + } +} + +impl<'a, K, V> Iterator for RangeMut<'a, K, V> { + type Item = (&'a K, &'a mut V); + + fn next(&mut self) -> Option<(&'a K, &'a mut V)> { + if self.front == self.back { + None + } else { + unsafe { Some(self.next_unchecked()) } + } + } +} + +impl<'a, K, V> RangeMut<'a, K, V> { + unsafe fn next_unchecked(&mut self) -> (&'a K, &'a mut V) { + let handle = ptr::read(&self.front); + + let mut cur_handle = match handle.right_kv() { + Ok(kv) => { + self.front = ptr::read(&kv).right_edge(); + // Doing the descend invalidates the references returned by `into_kv_mut`, + // so we have to do this last. + let (k, v) = kv.into_kv_mut(); + return (k, v); // coerce k from `&mut K` to `&K` + } + Err(last_edge) => { + let next_level = last_edge.into_node().ascend().ok(); + unwrap_unchecked(next_level) + } + }; + + loop { + match cur_handle.right_kv() { + Ok(kv) => { + self.front = first_leaf_edge(ptr::read(&kv).right_edge().descend()); + // Doing the descend invalidates the references returned by `into_kv_mut`, + // so we have to do this last. + let (k, v) = kv.into_kv_mut(); + return (k, v); // coerce k from `&mut K` to `&K` + } + Err(last_edge) => { + let next_level = last_edge.into_node().ascend().ok(); + cur_handle = unwrap_unchecked(next_level); + } + } + } + } +} + +impl<'a, K, V> DoubleEndedIterator for RangeMut<'a, K, V> { + fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> { + if self.front == self.back { + None + } else { + unsafe { Some(self.next_back_unchecked()) } + } + } +} + +impl<K, V> FusedIterator for RangeMut<'_, K, V> {} + +impl<'a, K, V> RangeMut<'a, K, V> { + unsafe fn next_back_unchecked(&mut self) -> (&'a K, &'a mut V) { + let handle = ptr::read(&self.back); + + let mut cur_handle = match handle.left_kv() { + Ok(kv) => { + self.back = ptr::read(&kv).left_edge(); + // Doing the descend invalidates the references returned by `into_kv_mut`, + // so we have to do this last. + let (k, v) = kv.into_kv_mut(); + return (k, v); // coerce k from `&mut K` to `&K` + } + Err(last_edge) => { + let next_level = last_edge.into_node().ascend().ok(); + unwrap_unchecked(next_level) + } + }; + + loop { + match cur_handle.left_kv() { + Ok(kv) => { + self.back = last_leaf_edge(ptr::read(&kv).left_edge().descend()); + // Doing the descend invalidates the references returned by `into_kv_mut`, + // so we have to do this last. + let (k, v) = kv.into_kv_mut(); + return (k, v); // coerce k from `&mut K` to `&K` + } + Err(last_edge) => { + let next_level = last_edge.into_node().ascend().ok(); + cur_handle = unwrap_unchecked(next_level); + } + } + } + } +} + +impl<K: Ord, V> FromIterator<(K, V)> for BTreeMap<K, V> { + fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> BTreeMap<K, V> { + let mut map = BTreeMap::new(); + map.extend(iter); + map + } +} + +impl<K: Ord, V> Extend<(K, V)> for BTreeMap<K, V> { + #[inline] + fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) { + iter.into_iter().for_each(move |(k, v)| { + self.try_insert(k, v).expect("Out of Mem"); + }); + } +} + +impl<'a, K: Ord + Copy, V: Copy> Extend<(&'a K, &'a V)> for BTreeMap<K, V> { + fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: I) { + self.extend(iter.into_iter().map(|(&key, &value)| (key, value))); + } +} + +impl<K: Hash, V: Hash> Hash for BTreeMap<K, V> { + fn hash<H: Hasher>(&self, state: &mut H) { + for elt in self { + elt.hash(state); + } + } +} + +impl<K: Ord, V> Default for BTreeMap<K, V> { + /// Creates an empty `BTreeMap<K, V>`. + fn default() -> BTreeMap<K, V> { + BTreeMap::new() + } +} + +impl<K: PartialEq, V: PartialEq> PartialEq for BTreeMap<K, V> { + fn eq(&self, other: &BTreeMap<K, V>) -> bool { + self.len() == other.len() && self.iter().zip(other).all(|(a, b)| a == b) + } +} + +impl<K: Eq, V: Eq> Eq for BTreeMap<K, V> {} + +impl<K: PartialOrd, V: PartialOrd> PartialOrd for BTreeMap<K, V> { + #[inline] + fn partial_cmp(&self, other: &BTreeMap<K, V>) -> Option<Ordering> { + self.iter().partial_cmp(other.iter()) + } +} + +impl<K: Ord, V: Ord> Ord for BTreeMap<K, V> { + #[inline] + fn cmp(&self, other: &BTreeMap<K, V>) -> Ordering { + self.iter().cmp(other.iter()) + } +} + +impl<K: Debug, V: Debug> Debug for BTreeMap<K, V> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.debug_map().entries(self.iter()).finish() + } +} + +impl<K: Ord, Q: ?Sized, V> Index<&Q> for BTreeMap<K, V> +where + K: Borrow<Q>, + Q: Ord, +{ + type Output = V; + + /// Returns a reference to the value corresponding to the supplied key. + /// + /// # Panics + /// + /// Panics if the key is not present in the `BTreeMap`. + #[inline] + fn index(&self, key: &Q) -> &V { + self.get(key).expect("no entry found for key") + } +} + +fn first_leaf_edge<BorrowType, K, V>( + mut node: NodeRef<BorrowType, K, V, marker::LeafOrInternal>, +) -> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge> { + loop { + match node.force() { + Leaf(leaf) => return leaf.first_edge(), + Internal(internal) => { + node = internal.first_edge().descend(); + } + } + } +} + +fn last_leaf_edge<BorrowType, K, V>( + mut node: NodeRef<BorrowType, K, V, marker::LeafOrInternal>, +) -> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge> { + loop { + match node.force() { + Leaf(leaf) => return leaf.last_edge(), + Internal(internal) => { + node = internal.last_edge().descend(); + } + } + } +} + +fn range_search<BorrowType, K, V, Q: ?Sized, R: RangeBounds<Q>>( + root1: NodeRef<BorrowType, K, V, marker::LeafOrInternal>, + root2: NodeRef<BorrowType, K, V, marker::LeafOrInternal>, + range: R, +) -> ( + Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge>, + Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge>, +) +where + Q: Ord, + K: Borrow<Q>, +{ + match (range.start_bound(), range.end_bound()) { + (Excluded(s), Excluded(e)) if s == e => { + panic!("range start and end are equal and excluded in BTreeMap") + } + (Included(s), Included(e)) + | (Included(s), Excluded(e)) + | (Excluded(s), Included(e)) + | (Excluded(s), Excluded(e)) + if s > e => + { + panic!("range start is greater than range end in BTreeMap") + } + _ => {} + }; + + let mut min_node = root1; + let mut max_node = root2; + let mut min_found = false; + let mut max_found = false; + let mut diverged = false; + + loop { + let min_edge = match (min_found, range.start_bound()) { + (false, Included(key)) => match search::search_linear(&min_node, key) { + (i, true) => { + min_found = true; + i + } + (i, false) => i, + }, + (false, Excluded(key)) => match search::search_linear(&min_node, key) { + (i, true) => { + min_found = true; + i + 1 + } + (i, false) => i, + }, + (_, Unbounded) => 0, + (true, Included(_)) => min_node.keys().len(), + (true, Excluded(_)) => 0, + }; + + let max_edge = match (max_found, range.end_bound()) { + (false, Included(key)) => match search::search_linear(&max_node, key) { + (i, true) => { + max_found = true; + i + 1 + } + (i, false) => i, + }, + (false, Excluded(key)) => match search::search_linear(&max_node, key) { + (i, true) => { + max_found = true; + i + } + (i, false) => i, + }, + (_, Unbounded) => max_node.keys().len(), + (true, Included(_)) => 0, + (true, Excluded(_)) => max_node.keys().len(), + }; + + if !diverged { + if max_edge < min_edge { + panic!("Ord is ill-defined in BTreeMap range") + } + if min_edge != max_edge { + diverged = true; + } + } + + let front = Handle::new_edge(min_node, min_edge); + let back = Handle::new_edge(max_node, max_edge); + match (front.force(), back.force()) { + (Leaf(f), Leaf(b)) => { + return (f, b); + } + (Internal(min_int), Internal(max_int)) => { + min_node = min_int.descend(); + max_node = max_int.descend(); + } + _ => unreachable!("BTreeMap has different depths"), + }; + } +} + +#[inline(always)] +unsafe fn unwrap_unchecked<T>(val: Option<T>) -> T { + val.unwrap_or_else(|| { + if cfg!(debug_assertions) { + panic!("'unchecked' unwrap on None in BTreeMap"); + } else { + intrinsics::unreachable(); + } + }) +} + +impl<K, V> BTreeMap<K, V> { + /// Gets an iterator over the entries of the map, sorted by key. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map = BTreeMap::new(); + /// map.insert(3, "c"); + /// map.insert(2, "b"); + /// map.insert(1, "a"); + /// + /// for (key, value) in map.iter() { + /// println!("{}: {}", key, value); + /// } + /// + /// let (first_key, first_value) = map.iter().next().unwrap(); + /// assert_eq!((*first_key, *first_value), (1, "a")); + /// ``` + + pub fn iter(&self) -> Iter<'_, K, V> { + Iter { + range: Range { + front: first_leaf_edge(self.root.as_ref()), + back: last_leaf_edge(self.root.as_ref()), + }, + length: self.length, + } + } + + /// Gets a mutable iterator over the entries of the map, sorted by key. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map = BTreeMap::new(); + /// map.insert("a", 1); + /// map.insert("b", 2); + /// map.insert("c", 3); + /// + /// // add 10 to the value if the key isn't "a" + /// for (key, value) in map.iter_mut() { + /// if key != &"a" { + /// *value += 10; + /// } + /// } + /// ``` + + pub fn iter_mut(&mut self) -> IterMut<'_, K, V> { + let root1 = self.root.as_mut(); + let root2 = unsafe { ptr::read(&root1) }; + IterMut { + range: RangeMut { + front: first_leaf_edge(root1), + back: last_leaf_edge(root2), + _marker: PhantomData, + }, + length: self.length, + } + } + + /// Gets an iterator over the keys of the map, in sorted order. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut a = BTreeMap::new(); + /// a.insert(2, "b"); + /// a.insert(1, "a"); + /// + /// let keys: Vec<_> = a.keys().cloned().collect(); + /// assert_eq!(keys, [1, 2]); + /// ``` + + pub fn keys<'a>(&'a self) -> Keys<'a, K, V> { + Keys { inner: self.iter() } + } + + /// Gets an iterator over the values of the map, in order by key. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut a = BTreeMap::new(); + /// a.insert(1, "hello"); + /// a.insert(2, "goodbye"); + /// + /// let values: Vec<&str> = a.values().cloned().collect(); + /// assert_eq!(values, ["hello", "goodbye"]); + /// ``` + + pub fn values<'a>(&'a self) -> Values<'a, K, V> { + Values { inner: self.iter() } + } + + /// Gets a mutable iterator over the values of the map, in order by key. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut a = BTreeMap::new(); + /// a.insert(1, String::from("hello")); + /// a.insert(2, String::from("goodbye")); + /// + /// for value in a.values_mut() { + /// value.push_str("!"); + /// } + /// + /// let values: Vec<String> = a.values().cloned().collect(); + /// assert_eq!(values, [String::from("hello!"), + /// String::from("goodbye!")]); + /// ``` + + pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> { + ValuesMut { + inner: self.iter_mut(), + } + } + + /// Returns the number of elements in the map. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut a = BTreeMap::new(); + /// assert_eq!(a.len(), 0); + /// a.insert(1, "a"); + /// assert_eq!(a.len(), 1); + /// ``` + + pub fn len(&self) -> usize { + self.length + } + + /// Returns `true` if the map contains no elements. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut a = BTreeMap::new(); + /// assert!(a.is_empty()); + /// a.insert(1, "a"); + /// assert!(!a.is_empty()); + /// ``` + + pub fn is_empty(&self) -> bool { + self.len() == 0 + } +} + +impl<'a, K: Ord, V> Entry<'a, K, V> { + /// Ensures a value is in the entry by inserting the default if empty, and returns + /// a mutable reference to the value in the entry. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// map.entry("poneyland").or_insert(12); + /// + /// assert_eq!(map["poneyland"], 12); + /// ``` + + pub fn or_try_insert(self, default: V) -> Result<&'a mut V, TryReserveError> { + match self { + Occupied(entry) => Ok(entry.into_mut()), + Vacant(entry) => entry.try_insert(default), + } + } + + /// Ensures a value is in the entry by inserting the result of the default function if empty, + /// and returns a mutable reference to the value in the entry. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map: BTreeMap<&str, String> = BTreeMap::new(); + /// let s = "hoho".to_string(); + /// + /// map.entry("poneyland").or_insert_with(|| s); + /// + /// assert_eq!(map["poneyland"], "hoho".to_string()); + /// ``` + + pub fn or_try_insert_with<F: FnOnce() -> V>( + self, + default: F, + ) -> Result<&'a mut V, TryReserveError> { + match self { + Occupied(entry) => Ok(entry.into_mut()), + Vacant(entry) => entry.try_insert(default()), + } + } + + /// Returns a reference to this entry's key. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); + /// ``` + + pub fn key(&self) -> &K { + match *self { + Occupied(ref entry) => entry.key(), + Vacant(ref entry) => entry.key(), + } + } + + /// Provides in-place mutable access to an occupied entry before any + /// potential inserts into the map. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// + /// map.entry("poneyland") + /// .and_modify(|e| { *e += 1 }) + /// .or_insert(42); + /// assert_eq!(map["poneyland"], 42); + /// + /// map.entry("poneyland") + /// .and_modify(|e| { *e += 1 }) + /// .or_insert(42); + /// assert_eq!(map["poneyland"], 43); + /// ``` + + pub fn and_modify<F>(self, f: F) -> Self + where + F: FnOnce(&mut V), + { + match self { + Occupied(mut entry) => { + f(entry.get_mut()); + Occupied(entry) + } + Vacant(entry) => Vacant(entry), + } + } +} + +impl<'a, K: Ord, V: Default> Entry<'a, K, V> { + /// Ensures a value is in the entry by inserting the default value if empty, + /// and returns a mutable reference to the value in the entry. + /// + /// # Examples + /// + /// ``` + /// # fn main() { + /// use std::collections::BTreeMap; + /// + /// let mut map: BTreeMap<&str, Option<usize>> = BTreeMap::new(); + /// map.entry("poneyland").or_default(); + /// + /// assert_eq!(map["poneyland"], None); + /// # } + /// ``` + pub fn or_default(self) -> Result<&'a mut V, TryReserveError> { + match self { + Occupied(entry) => Ok(entry.into_mut()), + Vacant(entry) => entry.try_insert(Default::default()), + } + } +} + +impl<'a, K: Ord, V> VacantEntry<'a, K, V> { + /// Gets a reference to the key that would be used when inserting a value + /// through the VacantEntry. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); + /// ``` + + pub fn key(&self) -> &K { + &self.key + } + + /// Take ownership of the key. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// use std::collections::btree_map::Entry; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// + /// if let Entry::Vacant(v) = map.entry("poneyland") { + /// v.into_key(); + /// } + /// ``` + + pub fn into_key(self) -> K { + self.key + } + + /// Sets the value of the entry with the `VacantEntry`'s key, + /// and returns a mutable reference to it. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut count: BTreeMap<&str, usize> = BTreeMap::new(); + /// + /// // count the number of occurrences of letters in the vec + /// for x in vec!["a","b","a","c","a","b"] { + /// *count.entry(x).or_insert(0) += 1; + /// } + /// + /// assert_eq!(count["a"], 3); + /// ``` + + pub fn try_insert(self, value: V) -> Result<&'a mut V, TryReserveError> { + *self.length += 1; + + let out_ptr; + + let mut ins_k; + let mut ins_v; + let mut ins_edge; + + let mut cur_parent = match self.handle.insert(self.key, value)? { + (Fit(handle), _) => return Ok(handle.into_kv_mut().1), + (Split(left, k, v, right), ptr) => { + ins_k = k; + ins_v = v; + ins_edge = right; + out_ptr = ptr; + left.ascend().map_err(|n| n.into_root_mut()) + } + }; + + loop { + match cur_parent { + Ok(parent) => match parent.insert(ins_k, ins_v, ins_edge)? { + Fit(_) => return Ok(unsafe { &mut *out_ptr }), + Split(left, k, v, right) => { + ins_k = k; + ins_v = v; + ins_edge = right; + cur_parent = left.ascend().map_err(|n| n.into_root_mut()); + } + }, + Err(root) => { + root.push_level()?.push(ins_k, ins_v, ins_edge); + return Ok(unsafe { &mut *out_ptr }); + } + } + } + } +} + +impl<'a, K: Ord, V> OccupiedEntry<'a, K, V> { + /// Gets a reference to the key in the entry. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// map.entry("poneyland").or_insert(12); + /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); + /// ``` + + pub fn key(&self) -> &K { + self.handle.reborrow().into_kv().0 + } + + /// Take ownership of the key and value from the map. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// use std::collections::btree_map::Entry; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// map.entry("poneyland").or_insert(12); + /// + /// if let Entry::Occupied(o) = map.entry("poneyland") { + /// // We delete the entry from the map. + /// o.remove_entry(); + /// } + /// + /// // If now try to get the value, it will panic: + /// // println!("{}", map["poneyland"]); + /// ``` + + pub fn remove_entry(self) -> (K, V) { + self.remove_kv() + } + + /// Gets a reference to the value in the entry. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// use std::collections::btree_map::Entry; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// map.entry("poneyland").or_insert(12); + /// + /// if let Entry::Occupied(o) = map.entry("poneyland") { + /// assert_eq!(o.get(), &12); + /// } + /// ``` + + pub fn get(&self) -> &V { + self.handle.reborrow().into_kv().1 + } + + /// Gets a mutable reference to the value in the entry. + /// + /// If you need a reference to the `OccupiedEntry` that may outlive the + /// destruction of the `Entry` value, see [`into_mut`]. + /// + /// [`into_mut`]: #method.into_mut + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// use std::collections::btree_map::Entry; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// map.entry("poneyland").or_insert(12); + /// + /// assert_eq!(map["poneyland"], 12); + /// if let Entry::Occupied(mut o) = map.entry("poneyland") { + /// *o.get_mut() += 10; + /// assert_eq!(*o.get(), 22); + /// + /// // We can use the same Entry multiple times. + /// *o.get_mut() += 2; + /// } + /// assert_eq!(map["poneyland"], 24); + /// ``` + + pub fn get_mut(&mut self) -> &mut V { + self.handle.kv_mut().1 + } + + /// Converts the entry into a mutable reference to its value. + /// + /// If you need multiple references to the `OccupiedEntry`, see [`get_mut`]. + /// + /// [`get_mut`]: #method.get_mut + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// use std::collections::btree_map::Entry; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// map.entry("poneyland").or_insert(12); + /// + /// assert_eq!(map["poneyland"], 12); + /// if let Entry::Occupied(o) = map.entry("poneyland") { + /// *o.into_mut() += 10; + /// } + /// assert_eq!(map["poneyland"], 22); + /// ``` + + pub fn into_mut(self) -> &'a mut V { + self.handle.into_kv_mut().1 + } + + /// Sets the value of the entry with the `OccupiedEntry`'s key, + /// and returns the entry's old value. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// use std::collections::btree_map::Entry; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// map.entry("poneyland").or_insert(12); + /// + /// if let Entry::Occupied(mut o) = map.entry("poneyland") { + /// assert_eq!(o.insert(15), 12); + /// } + /// assert_eq!(map["poneyland"], 15); + /// ``` + + pub fn insert(&mut self, value: V) -> V { + mem::replace(self.get_mut(), value) + } + + /// Takes the value of the entry out of the map, and returns it. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// use std::collections::btree_map::Entry; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// map.entry("poneyland").or_insert(12); + /// + /// if let Entry::Occupied(o) = map.entry("poneyland") { + /// assert_eq!(o.remove(), 12); + /// } + /// // If we try to get "poneyland"'s value, it'll panic: + /// // println!("{}", map["poneyland"]); + /// ``` + + pub fn remove(self) -> V { + self.remove_kv().1 + } + + fn remove_kv(self) -> (K, V) { + *self.length -= 1; + + let (small_leaf, old_key, old_val) = match self.handle.force() { + Leaf(leaf) => { + let (hole, old_key, old_val) = leaf.remove(); + (hole.into_node(), old_key, old_val) + } + Internal(mut internal) => { + let key_loc = internal.kv_mut().0 as *mut K; + let val_loc = internal.kv_mut().1 as *mut V; + + let to_remove = first_leaf_edge(internal.right_edge().descend()) + .right_kv() + .ok(); + let to_remove = unsafe { unwrap_unchecked(to_remove) }; + + let (hole, key, val) = to_remove.remove(); + + let old_key = unsafe { mem::replace(&mut *key_loc, key) }; + let old_val = unsafe { mem::replace(&mut *val_loc, val) }; + + (hole.into_node(), old_key, old_val) + } + }; + + // Handle underflow + let mut cur_node = small_leaf.forget_type(); + while cur_node.len() < node::CAPACITY / 2 { + match handle_underfull_node(cur_node) { + AtRoot => break, + EmptyParent(_) => unreachable!(), + Merged(parent) => { + if parent.len() == 0 { + // We must be at the root + parent.into_root_mut().pop_level(); + break; + } else { + cur_node = parent.forget_type(); + } + } + Stole(_) => break, + } + } + + (old_key, old_val) + } +} + +enum UnderflowResult<'a, K, V> { + AtRoot, + EmptyParent(NodeRef<marker::Mut<'a>, K, V, marker::Internal>), + Merged(NodeRef<marker::Mut<'a>, K, V, marker::Internal>), + Stole(NodeRef<marker::Mut<'a>, K, V, marker::Internal>), +} + +fn handle_underfull_node<'a, K, V>( + node: NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, +) -> UnderflowResult<'a, K, V> { + let parent = if let Ok(parent) = node.ascend() { + parent + } else { + return AtRoot; + }; + + let (is_left, mut handle) = match parent.left_kv() { + Ok(left) => (true, left), + Err(parent) => match parent.right_kv() { + Ok(right) => (false, right), + Err(parent) => { + return EmptyParent(parent.into_node()); + } + }, + }; + + if handle.can_merge() { + Merged(handle.merge().into_node()) + } else { + if is_left { + handle.steal_left(); + } else { + handle.steal_right(); + } + Stole(handle.into_node()) + } +} + +impl<K: Ord, V, I: Iterator<Item = (K, V)>> Iterator for MergeIter<K, V, I> { + type Item = (K, V); + + fn next(&mut self) -> Option<(K, V)> { + let res = match (self.left.peek(), self.right.peek()) { + (Some(&(ref left_key, _)), Some(&(ref right_key, _))) => left_key.cmp(right_key), + (Some(_), None) => Ordering::Less, + (None, Some(_)) => Ordering::Greater, + (None, None) => return None, + }; + + // Check which elements comes first and only advance the corresponding iterator. + // If two keys are equal, take the value from `right`. + match res { + Ordering::Less => self.left.next(), + Ordering::Greater => self.right.next(), + Ordering::Equal => { + self.left.next(); + self.right.next() + } + } + } +} |