summaryrefslogtreecommitdiffstats
path: root/third_party/rust/image/src/jpeg/encoder.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/image/src/jpeg/encoder.rs')
-rw-r--r--third_party/rust/image/src/jpeg/encoder.rs917
1 files changed, 917 insertions, 0 deletions
diff --git a/third_party/rust/image/src/jpeg/encoder.rs b/third_party/rust/image/src/jpeg/encoder.rs
new file mode 100644
index 0000000000..6b7ce5c270
--- /dev/null
+++ b/third_party/rust/image/src/jpeg/encoder.rs
@@ -0,0 +1,917 @@
+#![allow(clippy::too_many_arguments)]
+
+use byteorder::{BigEndian, WriteBytesExt};
+use crate::error::{ImageError, ImageResult};
+use crate::math::utils::clamp;
+use num_iter::range_step;
+use std::io::{self, Write};
+
+use crate::color;
+use crate::image::ImageEncoder;
+
+use super::entropy::build_huff_lut;
+use super::transform;
+
+// Markers
+// Baseline DCT
+static SOF0: u8 = 0xC0;
+// Huffman Tables
+static DHT: u8 = 0xC4;
+// Start of Image (standalone)
+static SOI: u8 = 0xD8;
+// End of image (standalone)
+static EOI: u8 = 0xD9;
+// Start of Scan
+static SOS: u8 = 0xDA;
+// Quantization Tables
+static DQT: u8 = 0xDB;
+// Application segments start and end
+static APP0: u8 = 0xE0;
+
+// section K.1
+// table K.1
+#[rustfmt::skip]
+static STD_LUMA_QTABLE: [u8; 64] = [
+ 16, 11, 10, 16, 24, 40, 51, 61,
+ 12, 12, 14, 19, 26, 58, 60, 55,
+ 14, 13, 16, 24, 40, 57, 69, 56,
+ 14, 17, 22, 29, 51, 87, 80, 62,
+ 18, 22, 37, 56, 68, 109, 103, 77,
+ 24, 35, 55, 64, 81, 104, 113, 92,
+ 49, 64, 78, 87, 103, 121, 120, 101,
+ 72, 92, 95, 98, 112, 100, 103, 99,
+];
+
+// table K.2
+#[rustfmt::skip]
+static STD_CHROMA_QTABLE: [u8; 64] = [
+ 17, 18, 24, 47, 99, 99, 99, 99,
+ 18, 21, 26, 66, 99, 99, 99, 99,
+ 24, 26, 56, 99, 99, 99, 99, 99,
+ 47, 66, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+];
+
+// section K.3
+// Code lengths and values for table K.3
+static STD_LUMA_DC_CODE_LENGTHS: [u8; 16] = [
+ 0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+];
+
+static STD_LUMA_DC_VALUES: [u8; 12] = [
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
+];
+
+// Code lengths and values for table K.4
+static STD_CHROMA_DC_CODE_LENGTHS: [u8; 16] = [
+ 0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
+];
+
+static STD_CHROMA_DC_VALUES: [u8; 12] = [
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
+];
+
+// Code lengths and values for table k.5
+static STD_LUMA_AC_CODE_LENGTHS: [u8; 16] = [
+ 0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03, 0x05, 0x05, 0x04, 0x04, 0x00, 0x00, 0x01, 0x7D,
+];
+
+static STD_LUMA_AC_VALUES: [u8; 162] = [
+ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
+ 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xA1, 0x08, 0x23, 0x42, 0xB1, 0xC1, 0x15, 0x52, 0xD1, 0xF0,
+ 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0A, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x25, 0x26, 0x27, 0x28,
+ 0x29, 0x2A, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
+ 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
+ 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
+ 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7,
+ 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5,
+ 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE1, 0xE2,
+ 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
+ 0xF9, 0xFA,
+];
+
+// Code lengths and values for table k.6
+static STD_CHROMA_AC_CODE_LENGTHS: [u8; 16] = [
+ 0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04, 0x07, 0x05, 0x04, 0x04, 0x00, 0x01, 0x02, 0x77,
+];
+static STD_CHROMA_AC_VALUES: [u8; 162] = [
+ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
+ 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xA1, 0xB1, 0xC1, 0x09, 0x23, 0x33, 0x52, 0xF0,
+ 0x15, 0x62, 0x72, 0xD1, 0x0A, 0x16, 0x24, 0x34, 0xE1, 0x25, 0xF1, 0x17, 0x18, 0x19, 0x1A, 0x26,
+ 0x27, 0x28, 0x29, 0x2A, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
+ 0x49, 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
+ 0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
+ 0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5,
+ 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3,
+ 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA,
+ 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
+ 0xF9, 0xFA,
+];
+
+static DCCLASS: u8 = 0;
+static ACCLASS: u8 = 1;
+
+static LUMADESTINATION: u8 = 0;
+static CHROMADESTINATION: u8 = 1;
+
+static LUMAID: u8 = 1;
+static CHROMABLUEID: u8 = 2;
+static CHROMAREDID: u8 = 3;
+
+/// The permutation of dct coefficients.
+#[rustfmt::skip]
+static UNZIGZAG: [u8; 64] = [
+ 0, 1, 8, 16, 9, 2, 3, 10,
+ 17, 24, 32, 25, 18, 11, 4, 5,
+ 12, 19, 26, 33, 40, 48, 41, 34,
+ 27, 20, 13, 6, 7, 14, 21, 28,
+ 35, 42, 49, 56, 57, 50, 43, 36,
+ 29, 22, 15, 23, 30, 37, 44, 51,
+ 58, 59, 52, 45, 38, 31, 39, 46,
+ 53, 60, 61, 54, 47, 55, 62, 63,
+];
+
+/// A representation of a JPEG component
+#[derive(Copy, Clone)]
+struct Component {
+ /// The Component's identifier
+ id: u8,
+
+ /// Horizontal sampling factor
+ h: u8,
+
+ /// Vertical sampling factor
+ v: u8,
+
+ /// The quantization table selector
+ tq: u8,
+
+ /// Index to the Huffman DC Table
+ dc_table: u8,
+
+ /// Index to the AC Huffman Table
+ ac_table: u8,
+
+ /// The dc prediction of the component
+ _dc_pred: i32,
+}
+
+pub(crate) struct BitWriter<'a, W: 'a> {
+ w: &'a mut W,
+ accumulator: u32,
+ nbits: u8,
+}
+
+impl<'a, W: Write + 'a> BitWriter<'a, W> {
+ fn new(w: &'a mut W) -> Self {
+ BitWriter {
+ w,
+ accumulator: 0,
+ nbits: 0,
+ }
+ }
+
+ fn write_bits(&mut self, bits: u16, size: u8) -> io::Result<()> {
+ if size == 0 {
+ return Ok(());
+ }
+
+ self.accumulator |= u32::from(bits) << (32 - (self.nbits + size)) as usize;
+ self.nbits += size;
+
+ while self.nbits >= 8 {
+ let byte = (self.accumulator & (0xFFFF_FFFFu32 << 24)) >> 24;
+ self.w.write_all(&[byte as u8])?;
+
+ if byte == 0xFF {
+ self.w.write_all(&[0x00])?;
+ }
+
+ self.nbits -= 8;
+ self.accumulator <<= 8;
+ }
+
+ Ok(())
+ }
+
+ fn pad_byte(&mut self) -> io::Result<()> {
+ self.write_bits(0x7F, 7)
+ }
+
+ fn huffman_encode(&mut self, val: u8, table: &[(u8, u16)]) -> io::Result<()> {
+ let (size, code) = table[val as usize];
+
+ if size > 16 {
+ panic!("bad huffman value");
+ }
+
+ self.write_bits(code, size)
+ }
+
+ fn write_block(
+ &mut self,
+ block: &[i32],
+ prevdc: i32,
+ dctable: &[(u8, u16)],
+ actable: &[(u8, u16)],
+ ) -> io::Result<i32> {
+ // Differential DC encoding
+ let dcval = block[0];
+ let diff = dcval - prevdc;
+ let (size, value) = encode_coefficient(diff);
+
+ self.huffman_encode(size, dctable)?;
+ self.write_bits(value, size)?;
+
+ // Figure F.2
+ let mut zero_run = 0;
+ let mut k = 0usize;
+
+ loop {
+ k += 1;
+
+ if block[UNZIGZAG[k] as usize] == 0 {
+ if k == 63 {
+ self.huffman_encode(0x00, actable)?;
+ break;
+ }
+
+ zero_run += 1;
+ } else {
+ while zero_run > 15 {
+ self.huffman_encode(0xF0, actable)?;
+ zero_run -= 16;
+ }
+
+ let (size, value) = encode_coefficient(block[UNZIGZAG[k] as usize]);
+ let symbol = (zero_run << 4) | size;
+
+ self.huffman_encode(symbol, actable)?;
+ self.write_bits(value, size)?;
+
+ zero_run = 0;
+
+ if k == 63 {
+ break;
+ }
+ }
+ }
+
+ Ok(dcval)
+ }
+
+ fn write_segment(&mut self, marker: u8, data: Option<&[u8]>) -> io::Result<()> {
+ self.w.write_all(&[0xFF])?;
+ self.w.write_all(&[marker])?;
+
+ if let Some(b) = data {
+ self.w.write_u16::<BigEndian>(b.len() as u16 + 2)?;
+ self.w.write_all(b)?;
+ }
+ Ok(())
+ }
+}
+
+/// Represents a unit in which the density of an image is measured
+#[derive(Clone, Copy, Debug, Eq, PartialEq)]
+pub enum PixelDensityUnit {
+ /// Represents the absence of a unit, the values indicate only a
+ /// [pixel aspect ratio](https://en.wikipedia.org/wiki/Pixel_aspect_ratio)
+ PixelAspectRatio,
+
+ /// Pixels per inch (2.54 cm)
+ Inches,
+
+ /// Pixels per centimeter
+ Centimeters,
+}
+
+/// Represents the pixel density of an image
+///
+/// For example, a 300 DPI image is represented by:
+///
+/// ```rust
+/// use image::jpeg::*;
+/// let hdpi = PixelDensity::dpi(300);
+/// assert_eq!(hdpi, PixelDensity {density: (300,300), unit: PixelDensityUnit::Inches})
+/// ```
+#[derive(Clone, Copy, Debug, Eq, PartialEq)]
+pub struct PixelDensity {
+ /// A couple of values for (Xdensity, Ydensity)
+ pub density: (u16, u16),
+ /// The unit in which the density is measured
+ pub unit: PixelDensityUnit,
+}
+
+impl PixelDensity {
+ /// Creates the most common pixel density type:
+ /// the horizontal and the vertical density are equal,
+ /// and measured in pixels per inch.
+ pub fn dpi(density: u16) -> Self {
+ PixelDensity {
+ density: (density, density),
+ unit: PixelDensityUnit::Inches,
+ }
+ }
+}
+
+impl Default for PixelDensity {
+ /// Returns a pixel density with a pixel aspect ratio of 1
+ fn default() -> Self {
+ PixelDensity {
+ density: (1, 1),
+ unit: PixelDensityUnit::PixelAspectRatio,
+ }
+ }
+}
+
+/// The representation of a JPEG encoder
+pub struct JPEGEncoder<'a, W: 'a> {
+ writer: BitWriter<'a, W>,
+
+ components: Vec<Component>,
+ tables: Vec<u8>,
+
+ luma_dctable: Vec<(u8, u16)>,
+ luma_actable: Vec<(u8, u16)>,
+ chroma_dctable: Vec<(u8, u16)>,
+ chroma_actable: Vec<(u8, u16)>,
+
+ pixel_density: PixelDensity,
+}
+
+impl<'a, W: Write> JPEGEncoder<'a, W> {
+ /// Create a new encoder that writes its output to ```w```
+ pub fn new(w: &mut W) -> JPEGEncoder<W> {
+ JPEGEncoder::new_with_quality(w, 75)
+ }
+
+ /// Create a new encoder that writes its output to ```w```, and has
+ /// the quality parameter ```quality``` with a value in the range 1-100
+ /// where 1 is the worst and 100 is the best.
+ pub fn new_with_quality(w: &mut W, quality: u8) -> JPEGEncoder<W> {
+ let ld = build_huff_lut(&STD_LUMA_DC_CODE_LENGTHS, &STD_LUMA_DC_VALUES);
+ let la = build_huff_lut(&STD_LUMA_AC_CODE_LENGTHS, &STD_LUMA_AC_VALUES);
+
+ let cd = build_huff_lut(&STD_CHROMA_DC_CODE_LENGTHS, &STD_CHROMA_DC_VALUES);
+ let ca = build_huff_lut(&STD_CHROMA_AC_CODE_LENGTHS, &STD_CHROMA_AC_VALUES);
+
+ let components = vec![
+ Component {
+ id: LUMAID,
+ h: 1,
+ v: 1,
+ tq: LUMADESTINATION,
+ dc_table: LUMADESTINATION,
+ ac_table: LUMADESTINATION,
+ _dc_pred: 0,
+ },
+ Component {
+ id: CHROMABLUEID,
+ h: 1,
+ v: 1,
+ tq: CHROMADESTINATION,
+ dc_table: CHROMADESTINATION,
+ ac_table: CHROMADESTINATION,
+ _dc_pred: 0,
+ },
+ Component {
+ id: CHROMAREDID,
+ h: 1,
+ v: 1,
+ tq: CHROMADESTINATION,
+ dc_table: CHROMADESTINATION,
+ ac_table: CHROMADESTINATION,
+ _dc_pred: 0,
+ },
+ ];
+
+ // Derive our quantization table scaling value using the libjpeg algorithm
+ let scale = u32::from(clamp(quality, 1, 100));
+ let scale = if scale < 50 {
+ 5000 / scale
+ } else {
+ 200 - scale * 2
+ };
+
+ let mut tables = Vec::new();
+ let scale_value = |&v: &u8| {
+ let value = (u32::from(v) * scale + 50) / 100;
+
+ clamp(value, 1, u32::from(u8::max_value())) as u8
+ };
+ tables.extend(STD_LUMA_QTABLE.iter().map(&scale_value));
+ tables.extend(STD_CHROMA_QTABLE.iter().map(&scale_value));
+
+ JPEGEncoder {
+ writer: BitWriter::new(w),
+
+ components,
+ tables,
+
+ luma_dctable: ld,
+ luma_actable: la,
+ chroma_dctable: cd,
+ chroma_actable: ca,
+
+ pixel_density: PixelDensity::default(),
+ }
+ }
+
+ /// Set the pixel density of the images the encoder will encode.
+ /// If this method is not called, then a default pixel aspect ratio of 1x1 will be applied,
+ /// and no DPI information will be stored in the image.
+ pub fn set_pixel_density(&mut self, pixel_density: PixelDensity) {
+ self.pixel_density = pixel_density;
+ }
+
+ /// Encodes the image ```image```
+ /// that has dimensions ```width``` and ```height```
+ /// and ```ColorType``` ```c```
+ ///
+ /// The Image in encoded with subsampling ratio 4:2:2
+ pub fn encode(
+ &mut self,
+ image: &[u8],
+ width: u32,
+ height: u32,
+ c: color::ColorType,
+ ) -> ImageResult<()> {
+ let n = c.channel_count();
+ let num_components = if n == 1 || n == 2 { 1 } else { 3 };
+
+ self.writer.write_segment(SOI, None)?;
+
+ let mut buf = Vec::new();
+
+ build_jfif_header(&mut buf, self.pixel_density);
+ self.writer.write_segment(APP0, Some(&buf))?;
+
+ build_frame_header(
+ &mut buf,
+ 8,
+ width as u16,
+ height as u16,
+ &self.components[..num_components],
+ );
+ self.writer.write_segment(SOF0, Some(&buf))?;
+
+ assert_eq!(self.tables.len() / 64, 2);
+ let numtables = if num_components == 1 { 1 } else { 2 };
+
+ for (i, table) in self.tables.chunks(64).enumerate().take(numtables) {
+ build_quantization_segment(&mut buf, 8, i as u8, table);
+ self.writer.write_segment(DQT, Some(&buf))?;
+ }
+
+ build_huffman_segment(
+ &mut buf,
+ DCCLASS,
+ LUMADESTINATION,
+ &STD_LUMA_DC_CODE_LENGTHS,
+ &STD_LUMA_DC_VALUES,
+ );
+ self.writer.write_segment(DHT, Some(&buf))?;
+
+ build_huffman_segment(
+ &mut buf,
+ ACCLASS,
+ LUMADESTINATION,
+ &STD_LUMA_AC_CODE_LENGTHS,
+ &STD_LUMA_AC_VALUES,
+ );
+ self.writer.write_segment(DHT, Some(&buf))?;
+
+ if num_components == 3 {
+ build_huffman_segment(
+ &mut buf,
+ DCCLASS,
+ CHROMADESTINATION,
+ &STD_CHROMA_DC_CODE_LENGTHS,
+ &STD_CHROMA_DC_VALUES,
+ );
+ self.writer.write_segment(DHT, Some(&buf))?;
+
+ build_huffman_segment(
+ &mut buf,
+ ACCLASS,
+ CHROMADESTINATION,
+ &STD_CHROMA_AC_CODE_LENGTHS,
+ &STD_CHROMA_AC_VALUES,
+ );
+ self.writer.write_segment(DHT, Some(&buf))?;
+ }
+
+ build_scan_header(&mut buf, &self.components[..num_components]);
+ self.writer.write_segment(SOS, Some(&buf))?;
+
+ match c {
+ color::ColorType::Rgb8 => {
+ self.encode_rgb(image, width as usize, height as usize, 3)?
+ }
+ color::ColorType::Rgba8 => {
+ self.encode_rgb(image, width as usize, height as usize, 4)?
+ }
+ color::ColorType::L8 => {
+ self.encode_gray(image, width as usize, height as usize, 1)?
+ }
+ color::ColorType::La8 => {
+ self.encode_gray(image, width as usize, height as usize, 2)?
+ }
+ _ => {
+ return Err(ImageError::UnsupportedColor(c.into()))
+ }
+ };
+
+ self.writer.pad_byte()?;
+ self.writer.write_segment(EOI, None)?;
+ Ok(())
+ }
+
+ fn encode_gray(
+ &mut self,
+ image: &[u8],
+ width: usize,
+ height: usize,
+ bpp: usize,
+ ) -> io::Result<()> {
+ let mut yblock = [0u8; 64];
+ let mut y_dcprev = 0;
+ let mut dct_yblock = [0i32; 64];
+
+ for y in range_step(0, height, 8) {
+ for x in range_step(0, width, 8) {
+ // RGB -> YCbCr
+ copy_blocks_gray(image, x, y, width, bpp, &mut yblock);
+
+ // Level shift and fdct
+ // Coeffs are scaled by 8
+ transform::fdct(&yblock, &mut dct_yblock);
+
+ // Quantization
+ for (i, dct) in dct_yblock.iter_mut().enumerate().take(64) {
+ *dct = ((*dct / 8) as f32 / f32::from(self.tables[i])).round() as i32;
+ }
+
+ let la = &*self.luma_actable;
+ let ld = &*self.luma_dctable;
+
+ y_dcprev = self.writer.write_block(&dct_yblock, y_dcprev, ld, la)?;
+ }
+ }
+
+ Ok(())
+ }
+
+ fn encode_rgb(
+ &mut self,
+ image: &[u8],
+ width: usize,
+ height: usize,
+ bpp: usize,
+ ) -> io::Result<()> {
+ let mut y_dcprev = 0;
+ let mut cb_dcprev = 0;
+ let mut cr_dcprev = 0;
+
+ let mut dct_yblock = [0i32; 64];
+ let mut dct_cb_block = [0i32; 64];
+ let mut dct_cr_block = [0i32; 64];
+
+ let mut yblock = [0u8; 64];
+ let mut cb_block = [0u8; 64];
+ let mut cr_block = [0u8; 64];
+
+ for y in range_step(0, height, 8) {
+ for x in range_step(0, width, 8) {
+ // RGB -> YCbCr
+ copy_blocks_ycbcr(
+ image,
+ x,
+ y,
+ width,
+ bpp,
+ &mut yblock,
+ &mut cb_block,
+ &mut cr_block,
+ );
+
+ // Level shift and fdct
+ // Coeffs are scaled by 8
+ transform::fdct(&yblock, &mut dct_yblock);
+ transform::fdct(&cb_block, &mut dct_cb_block);
+ transform::fdct(&cr_block, &mut dct_cr_block);
+
+ // Quantization
+ for i in 0usize..64 {
+ dct_yblock[i] =
+ ((dct_yblock[i] / 8) as f32 / f32::from(self.tables[i])).round() as i32;
+ dct_cb_block[i] = ((dct_cb_block[i] / 8) as f32
+ / f32::from(self.tables[64..][i]))
+ .round() as i32;
+ dct_cr_block[i] = ((dct_cr_block[i] / 8) as f32
+ / f32::from(self.tables[64..][i]))
+ .round() as i32;
+ }
+
+ let la = &*self.luma_actable;
+ let ld = &*self.luma_dctable;
+ let cd = &*self.chroma_dctable;
+ let ca = &*self.chroma_actable;
+
+ y_dcprev = self.writer.write_block(&dct_yblock, y_dcprev, ld, la)?;
+ cb_dcprev = self.writer.write_block(&dct_cb_block, cb_dcprev, cd, ca)?;
+ cr_dcprev = self.writer.write_block(&dct_cr_block, cr_dcprev, cd, ca)?;
+ }
+ }
+
+ Ok(())
+ }
+}
+
+impl<'a, W: Write> ImageEncoder for JPEGEncoder<'a, W> {
+ fn write_image(
+ mut self,
+ buf: &[u8],
+ width: u32,
+ height: u32,
+ color_type: color::ColorType,
+ ) -> ImageResult<()> {
+ self.encode(buf, width, height, color_type)
+ }
+}
+
+fn build_jfif_header(m: &mut Vec<u8>, density: PixelDensity) {
+ m.clear();
+
+ let _ = write!(m, "JFIF");
+ let _ = m.write_all(&[0]);
+ let _ = m.write_all(&[0x01]);
+ let _ = m.write_all(&[0x02]);
+ let _ = m.write_all(&[match density.unit {
+ PixelDensityUnit::PixelAspectRatio => 0x00,
+ PixelDensityUnit::Inches => 0x01,
+ PixelDensityUnit::Centimeters => 0x02,
+ }]);
+ let _ = m.write_u16::<BigEndian>(density.density.0);
+ let _ = m.write_u16::<BigEndian>(density.density.1);
+ let _ = m.write_all(&[0]);
+ let _ = m.write_all(&[0]);
+}
+
+fn build_frame_header(
+ m: &mut Vec<u8>,
+ precision: u8,
+ width: u16,
+ height: u16,
+ components: &[Component],
+) {
+ m.clear();
+
+ let _ = m.write_all(&[precision]);
+ let _ = m.write_u16::<BigEndian>(height);
+ let _ = m.write_u16::<BigEndian>(width);
+ let _ = m.write_all(&[components.len() as u8]);
+
+ for &comp in components.iter() {
+ let _ = m.write_all(&[comp.id]);
+ let hv = (comp.h << 4) | comp.v;
+ let _ = m.write_all(&[hv]);
+ let _ = m.write_all(&[comp.tq]);
+ }
+}
+
+fn build_scan_header(m: &mut Vec<u8>, components: &[Component]) {
+ m.clear();
+
+ let _ = m.write_all(&[components.len() as u8]);
+
+ for &comp in components.iter() {
+ let _ = m.write_all(&[comp.id]);
+ let tables = (comp.dc_table << 4) | comp.ac_table;
+ let _ = m.write_all(&[tables]);
+ }
+
+ // spectral start and end, approx. high and low
+ let _ = m.write_all(&[0]);
+ let _ = m.write_all(&[63]);
+ let _ = m.write_all(&[0]);
+}
+
+fn build_huffman_segment(
+ m: &mut Vec<u8>,
+ class: u8,
+ destination: u8,
+ numcodes: &[u8],
+ values: &[u8],
+) {
+ m.clear();
+
+ let tcth = (class << 4) | destination;
+ let _ = m.write_all(&[tcth]);
+
+ assert_eq!(numcodes.len(), 16);
+
+ let mut sum = 0usize;
+
+ for &i in numcodes.iter() {
+ let _ = m.write_all(&[i]);
+ sum += i as usize;
+ }
+
+ assert_eq!(sum, values.len());
+
+ for &i in values.iter() {
+ let _ = m.write_all(&[i]);
+ }
+}
+
+fn build_quantization_segment(m: &mut Vec<u8>, precision: u8, identifier: u8, qtable: &[u8]) {
+ assert_eq!(qtable.len() % 64, 0);
+ m.clear();
+
+ let p = if precision == 8 { 0 } else { 1 };
+
+ let pqtq = (p << 4) | identifier;
+ let _ = m.write_all(&[pqtq]);
+
+ for i in 0usize..64 {
+ let _ = m.write_all(&[qtable[UNZIGZAG[i] as usize]]);
+ }
+}
+
+fn encode_coefficient(coefficient: i32) -> (u8, u16) {
+ let mut magnitude = coefficient.abs() as u16;
+ let mut num_bits = 0u8;
+
+ while magnitude > 0 {
+ magnitude >>= 1;
+ num_bits += 1;
+ }
+
+ let mask = (1 << num_bits as usize) - 1;
+
+ let val = if coefficient < 0 {
+ (coefficient - 1) as u16 & mask
+ } else {
+ coefficient as u16 & mask
+ };
+
+ (num_bits, val)
+}
+
+fn rgb_to_ycbcr(r: u8, g: u8, b: u8) -> (u8, u8, u8) {
+ let r = f32::from(r);
+ let g = f32::from(g);
+ let b = f32::from(b);
+
+ let y = 0.299f32 * r + 0.587f32 * g + 0.114f32 * b;
+ let cb = -0.1687f32 * r - 0.3313f32 * g + 0.5f32 * b + 128f32;
+ let cr = 0.5f32 * r - 0.4187f32 * g - 0.0813f32 * b + 128f32;
+
+ (y as u8, cb as u8, cr as u8)
+}
+
+fn value_at(s: &[u8], index: usize) -> u8 {
+ if index < s.len() {
+ s[index]
+ } else {
+ s[s.len() - 1]
+ }
+}
+
+fn copy_blocks_ycbcr(
+ source: &[u8],
+ x0: usize,
+ y0: usize,
+ width: usize,
+ bpp: usize,
+ yb: &mut [u8; 64],
+ cbb: &mut [u8; 64],
+ crb: &mut [u8; 64],
+) {
+ for y in 0usize..8 {
+ let ystride = (y0 + y) * bpp * width;
+
+ for x in 0usize..8 {
+ let xstride = x0 * bpp + x * bpp;
+
+ let r = value_at(source, ystride + xstride);
+ let g = value_at(source, ystride + xstride + 1);
+ let b = value_at(source, ystride + xstride + 2);
+
+ let (yc, cb, cr) = rgb_to_ycbcr(r, g, b);
+
+ yb[y * 8 + x] = yc;
+ cbb[y * 8 + x] = cb;
+ crb[y * 8 + x] = cr;
+ }
+ }
+}
+
+fn copy_blocks_gray(
+ source: &[u8],
+ x0: usize,
+ y0: usize,
+ width: usize,
+ bpp: usize,
+ gb: &mut [u8; 64],
+) {
+ for y in 0usize..8 {
+ let ystride = (y0 + y) * bpp * width;
+
+ for x in 0usize..8 {
+ let xstride = x0 * bpp + x * bpp;
+ gb[y * 8 + x] = value_at(source, ystride + xstride);
+ }
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::super::JpegDecoder;
+ use super::{JPEGEncoder, PixelDensity, build_jfif_header};
+ use crate::color::ColorType;
+ use crate::image::ImageDecoder;
+ use std::io::Cursor;
+
+ fn decode(encoded: &[u8]) -> Vec<u8> {
+ let decoder = JpegDecoder::new(Cursor::new(encoded))
+ .expect("Could not decode image");
+
+ let mut decoded = vec![0; decoder.total_bytes() as usize];
+ decoder.read_image(&mut decoded).expect("Could not decode image");
+ decoded
+ }
+
+ #[test]
+ fn roundtrip_sanity_check() {
+ // create a 1x1 8-bit image buffer containing a single red pixel
+ let img = [255u8, 0, 0];
+
+ // encode it into a memory buffer
+ let mut encoded_img = Vec::new();
+ {
+ let mut encoder = JPEGEncoder::new_with_quality(&mut encoded_img, 100);
+ encoder
+ .encode(&img, 1, 1, ColorType::Rgb8)
+ .expect("Could not encode image");
+ }
+
+ // decode it from the memory buffer
+ {
+ let decoded = decode(&encoded_img);
+ // note that, even with the encode quality set to 100, we do not get the same image
+ // back. Therefore, we're going to assert that it's at least red-ish:
+ assert_eq!(3, decoded.len());
+ assert!(decoded[0] > 0x80);
+ assert!(decoded[1] < 0x80);
+ assert!(decoded[2] < 0x80);
+ }
+ }
+
+ #[test]
+ fn grayscale_roundtrip_sanity_check() {
+ // create a 2x2 8-bit image buffer containing a white diagonal
+ let img = [255u8, 0, 0, 255];
+
+ // encode it into a memory buffer
+ let mut encoded_img = Vec::new();
+ {
+ let mut encoder = JPEGEncoder::new_with_quality(&mut encoded_img, 100);
+ encoder
+ .encode(&img, 2, 2, ColorType::L8)
+ .expect("Could not encode image");
+ }
+
+ // decode it from the memory buffer
+ {
+ let decoded = decode(&encoded_img);
+ // note that, even with the encode quality set to 100, we do not get the same image
+ // back. Therefore, we're going to assert that the diagonal is at least white-ish:
+ assert_eq!(4, decoded.len());
+ assert!(decoded[0] > 0x80);
+ assert!(decoded[1] < 0x80);
+ assert!(decoded[2] < 0x80);
+ assert!(decoded[3] > 0x80);
+ }
+ }
+
+ #[test]
+ fn jfif_header_density_check() {
+ let mut buffer = Vec::new();
+ build_jfif_header(&mut buffer, PixelDensity::dpi(300));
+ assert_eq!(buffer, vec![
+ b'J', b'F', b'I', b'F',
+ 0, 1, 2, // JFIF version 1.2
+ 1, // density is in dpi
+ 300u16.to_be_bytes()[0], 300u16.to_be_bytes()[1],
+ 300u16.to_be_bytes()[0], 300u16.to_be_bytes()[1],
+ 0, 0, // No thumbnail
+ ]
+ );
+ }
+}