diff options
Diffstat (limited to 'third_party/rust/jobserver/src/lib.rs')
-rw-r--r-- | third_party/rust/jobserver/src/lib.rs | 500 |
1 files changed, 500 insertions, 0 deletions
diff --git a/third_party/rust/jobserver/src/lib.rs b/third_party/rust/jobserver/src/lib.rs new file mode 100644 index 0000000000..d61c70c594 --- /dev/null +++ b/third_party/rust/jobserver/src/lib.rs @@ -0,0 +1,500 @@ +//! An implementation of the GNU make jobserver. +//! +//! This crate is an implementation, in Rust, of the GNU `make` jobserver for +//! CLI tools that are interoperating with make or otherwise require some form +//! of parallelism limiting across process boundaries. This was originally +//! written for usage in Cargo to both (a) work when `cargo` is invoked from +//! `make` (using `make`'s jobserver) and (b) work when `cargo` invokes build +//! scripts, exporting a jobserver implementation for `make` processes to +//! transitively use. +//! +//! The jobserver implementation can be found in [detail online][docs] but +//! basically boils down to a cross-process semaphore. On Unix this is +//! implemented with the `pipe` syscall and read/write ends of a pipe and on +//! Windows this is implemented literally with IPC semaphores. +//! +//! The jobserver protocol in `make` also dictates when tokens are acquired to +//! run child work, and clients using this crate should take care to implement +//! such details to ensure correct interoperation with `make` itself. +//! +//! ## Examples +//! +//! Connect to a jobserver that was set up by `make` or a different process: +//! +//! ```no_run +//! use jobserver::Client; +//! +//! // See API documentation for why this is `unsafe` +//! let client = match unsafe { Client::from_env() } { +//! Some(client) => client, +//! None => panic!("client not configured"), +//! }; +//! ``` +//! +//! Acquire and release token from a jobserver: +//! +//! ```no_run +//! use jobserver::Client; +//! +//! let client = unsafe { Client::from_env().unwrap() }; +//! let token = client.acquire().unwrap(); // blocks until it is available +//! drop(token); // releases the token when the work is done +//! ``` +//! +//! Create a new jobserver and configure a child process to have access: +//! +//! ``` +//! use std::process::Command; +//! use jobserver::Client; +//! +//! let client = Client::new(4).expect("failed to create jobserver"); +//! let mut cmd = Command::new("make"); +//! client.configure(&mut cmd); +//! ``` +//! +//! ## Caveats +//! +//! This crate makes no attempt to release tokens back to a jobserver on +//! abnormal exit of a process. If a process which acquires a token is killed +//! with ctrl-c or some similar signal then tokens will not be released and the +//! jobserver may be in a corrupt state. +//! +//! Note that this is typically ok as ctrl-c means that an entire build process +//! is being torn down, but it's worth being aware of at least! +//! +//! ## Windows caveats +//! +//! There appear to be two implementations of `make` on Windows. On MSYS2 one +//! typically comes as `mingw32-make` and the other as `make` itself. I'm not +//! personally too familiar with what's going on here, but for jobserver-related +//! information the `mingw32-make` implementation uses Windows semaphores +//! whereas the `make` program does not. The `make` program appears to use file +//! descriptors and I'm not really sure how it works, so this crate is not +//! compatible with `make` on Windows. It is, however, compatible with +//! `mingw32-make`. +//! +//! [docs]: http://make.mad-scientist.net/papers/jobserver-implementation/ + +#![deny(missing_docs, missing_debug_implementations)] +#![doc(html_root_url = "https://docs.rs/jobserver/0.1")] + +use std::env; +use std::io; +use std::process::Command; +use std::sync::{Arc, Condvar, Mutex, MutexGuard}; + +#[cfg(unix)] +#[path = "unix.rs"] +mod imp; +#[cfg(windows)] +#[path = "windows.rs"] +mod imp; +#[cfg(not(any(unix, windows)))] +#[path = "wasm.rs"] +mod imp; + +/// A client of a jobserver +/// +/// This structure is the main type exposed by this library, and is where +/// interaction to a jobserver is configured through. Clients are either created +/// from scratch in which case the internal semphore is initialied on the spot, +/// or a client is created from the environment to connect to a jobserver +/// already created. +/// +/// Some usage examples can be found in the crate documentation for using a +/// client. +/// +/// Note that a `Client` implements the `Clone` trait, and all instances of a +/// `Client` refer to the same jobserver instance. +#[derive(Clone, Debug)] +pub struct Client { + inner: Arc<imp::Client>, +} + +/// An acquired token from a jobserver. +/// +/// This token will be released back to the jobserver when it is dropped and +/// otherwise represents the ability to spawn off another thread of work. +#[derive(Debug)] +pub struct Acquired { + client: Arc<imp::Client>, + data: imp::Acquired, + disabled: bool, +} + +impl Acquired { + /// This drops the `Acquired` token without releasing the associated token. + /// + /// This is not generally useful, but can be helpful if you do not have the + /// ability to store an Acquired token but need to not yet release it. + /// + /// You'll typically want to follow this up with a call to `release_raw` or + /// similar to actually release the token later on. + pub fn drop_without_releasing(mut self) { + self.disabled = true; + } +} + +#[derive(Default, Debug)] +struct HelperState { + lock: Mutex<HelperInner>, + cvar: Condvar, +} + +#[derive(Default, Debug)] +struct HelperInner { + requests: usize, + producer_done: bool, + consumer_done: bool, +} + +impl Client { + /// Creates a new jobserver initialized with the given parallelism limit. + /// + /// A client to the jobserver created will be returned. This client will + /// allow at most `limit` tokens to be acquired from it in parallel. More + /// calls to `acquire` will cause the calling thread to block. + /// + /// Note that the created `Client` is not automatically inherited into + /// spawned child processes from this program. Manual usage of the + /// `configure` function is required for a child process to have access to a + /// job server. + /// + /// # Examples + /// + /// ``` + /// use jobserver::Client; + /// + /// let client = Client::new(4).expect("failed to create jobserver"); + /// ``` + /// + /// # Errors + /// + /// Returns an error if any I/O error happens when attempting to create the + /// jobserver client. + pub fn new(limit: usize) -> io::Result<Client> { + Ok(Client { + inner: Arc::new(imp::Client::new(limit)?), + }) + } + + /// Attempts to connect to the jobserver specified in this process's + /// environment. + /// + /// When the a `make` executable calls a child process it will configure the + /// environment of the child to ensure that it has handles to the jobserver + /// it's passing down. This function will attempt to look for these details + /// and connect to the jobserver. + /// + /// Note that the created `Client` is not automatically inherited into + /// spawned child processes from this program. Manual usage of the + /// `configure` function is required for a child process to have access to a + /// job server. + /// + /// # Return value + /// + /// If a jobserver was found in the environment and it looks correct then + /// `Some` of the connected client will be returned. If no jobserver was + /// found then `None` will be returned. + /// + /// Note that on Unix the `Client` returned **takes ownership of the file + /// descriptors specified in the environment**. Jobservers on Unix are + /// implemented with `pipe` file descriptors, and they're inherited from + /// parent processes. This `Client` returned takes ownership of the file + /// descriptors for this process and will close the file descriptors after + /// this value is dropped. + /// + /// Additionally on Unix this function will configure the file descriptors + /// with `CLOEXEC` so they're not automatically inherited by spawned + /// children. + /// + /// # Unsafety + /// + /// This function is `unsafe` to call on Unix specifically as it + /// transitively requires usage of the `from_raw_fd` function, which is + /// itself unsafe in some circumstances. + /// + /// It's recommended to call this function very early in the lifetime of a + /// program before any other file descriptors are opened. That way you can + /// make sure to take ownership properly of the file descriptors passed + /// down, if any. + /// + /// It's generally unsafe to call this function twice in a program if the + /// previous invocation returned `Some`. + /// + /// Note, though, that on Windows it should be safe to call this function + /// any number of times. + pub unsafe fn from_env() -> Option<Client> { + let var = match env::var("CARGO_MAKEFLAGS") + .or(env::var("MAKEFLAGS")) + .or(env::var("MFLAGS")) + { + Ok(s) => s, + Err(_) => return None, + }; + let mut arg = "--jobserver-fds="; + let pos = match var.find(arg) { + Some(i) => i, + None => { + arg = "--jobserver-auth="; + match var.find(arg) { + Some(i) => i, + None => return None, + } + } + }; + + let s = var[pos + arg.len()..].split(' ').next().unwrap(); + imp::Client::open(s).map(|c| Client { inner: Arc::new(c) }) + } + + /// Acquires a token from this jobserver client. + /// + /// This function will block the calling thread until a new token can be + /// acquired from the jobserver. + /// + /// # Return value + /// + /// On successful acquisition of a token an instance of `Acquired` is + /// returned. This structure, when dropped, will release the token back to + /// the jobserver. It's recommended to avoid leaking this value. + /// + /// # Errors + /// + /// If an I/O error happens while acquiring a token then this function will + /// return immediately with the error. If an error is returned then a token + /// was not acquired. + pub fn acquire(&self) -> io::Result<Acquired> { + let data = self.inner.acquire()?; + Ok(Acquired { + client: self.inner.clone(), + data: data, + disabled: false, + }) + } + + /// Configures a child process to have access to this client's jobserver as + /// well. + /// + /// This function is required to be called to ensure that a jobserver is + /// properly inherited to a child process. If this function is *not* called + /// then this `Client` will not be accessible in the child process. In other + /// words, if not called, then `Client::from_env` will return `None` in the + /// child process (or the equivalent of `Child::from_env` that `make` uses). + /// + /// ## Platform-specific behavior + /// + /// On Unix and Windows this will clobber the `CARGO_MAKEFLAGS` environment + /// variables for the child process, and on Unix this will also allow the + /// two file descriptors for this client to be inherited to the child. + /// + /// On platforms other than Unix and Windows this panics. + pub fn configure(&self, cmd: &mut Command) { + let arg = self.inner.string_arg(); + // Older implementations of make use `--jobserver-fds` and newer + // implementations use `--jobserver-auth`, pass both to try to catch + // both implementations. + let value = format!("--jobserver-fds={0} --jobserver-auth={0}", arg); + cmd.env("CARGO_MAKEFLAGS", &value); + self.inner.configure(cmd); + } + + /// Converts this `Client` into a helper thread to deal with a blocking + /// `acquire` function a little more easily. + /// + /// The fact that the `acquire` function on `Client` blocks isn't always + /// the easiest to work with. Typically you're using a jobserver to + /// manage running other events in parallel! This means that you need to + /// either (a) wait for an existing job to finish or (b) wait for a + /// new token to become available. + /// + /// Unfortunately the blocking in `acquire` happens at the implementation + /// layer of jobservers. On Unix this requires a blocking call to `read` + /// and on Windows this requires one of the `WaitFor*` functions. Both + /// of these situations aren't the easiest to deal with: + /// + /// * On Unix there's basically only one way to wake up a `read` early, and + /// that's through a signal. This is what the `make` implementation + /// itself uses, relying on `SIGCHLD` to wake up a blocking acquisition + /// of a new job token. Unfortunately nonblocking I/O is not an option + /// here, so it means that "waiting for one of two events" means that + /// the latter event must generate a signal! This is not always the case + /// on unix for all jobservers. + /// + /// * On Windows you'd have to basically use the `WaitForMultipleObjects` + /// which means that you've got to canonicalize all your event sources + /// into a `HANDLE` which also isn't the easiest thing to do + /// unfortunately. + /// + /// This function essentially attempts to ease these limitations by + /// converting this `Client` into a helper thread spawned into this + /// process. The application can then request that the helper thread + /// acquires tokens and the provided closure will be invoked for each token + /// acquired. + /// + /// The intention is that this function can be used to translate the event + /// of a token acquisition into an arbitrary user-defined event. + /// + /// # Arguments + /// + /// This function will consume the `Client` provided to be transferred to + /// the helper thread that is spawned. Additionally a closure `f` is + /// provided to be invoked whenever a token is acquired. + /// + /// This closure is only invoked after calls to + /// `HelperThread::request_token` have been made and a token itself has + /// been acquired. If an error happens while acquiring the token then + /// an error will be yielded to the closure as well. + /// + /// # Return Value + /// + /// This function will return an instance of the `HelperThread` structure + /// which is used to manage the helper thread associated with this client. + /// Through the `HelperThread` you'll request that tokens are acquired. + /// When acquired, the closure provided here is invoked. + /// + /// When the `HelperThread` structure is returned it will be gracefully + /// torn down, and the calling thread will be blocked until the thread is + /// torn down (which should be prompt). + /// + /// # Errors + /// + /// This function may fail due to creation of the helper thread or + /// auxiliary I/O objects to manage the helper thread. In any of these + /// situations the error is propagated upwards. + /// + /// # Platform-specific behavior + /// + /// On Windows this function behaves pretty normally as expected, but on + /// Unix the implementation is... a little heinous. As mentioned above + /// we're forced into blocking I/O for token acquisition, namely a blocking + /// call to `read`. We must be able to unblock this, however, to tear down + /// the helper thread gracefully! + /// + /// Essentially what happens is that we'll send a signal to the helper + /// thread spawned and rely on `EINTR` being returned to wake up the helper + /// thread. This involves installing a global `SIGUSR1` handler that does + /// nothing along with sending signals to that thread. This may cause + /// odd behavior in some applications, so it's recommended to review and + /// test thoroughly before using this. + pub fn into_helper_thread<F>(self, f: F) -> io::Result<HelperThread> + where + F: FnMut(io::Result<Acquired>) + Send + 'static, + { + let state = Arc::new(HelperState::default()); + Ok(HelperThread { + inner: Some(imp::spawn_helper(self, state.clone(), Box::new(f))?), + state, + }) + } + + /// Blocks the current thread until a token is acquired. + /// + /// This is the same as `acquire`, except that it doesn't return an RAII + /// helper. If successful the process will need to guarantee that + /// `release_raw` is called in the future. + pub fn acquire_raw(&self) -> io::Result<()> { + self.inner.acquire()?; + Ok(()) + } + + /// Releases a jobserver token back to the original jobserver. + /// + /// This is intended to be paired with `acquire_raw` if it was called, but + /// in some situations it could also be called to relinquish a process's + /// implicit token temporarily which is then re-acquired later. + pub fn release_raw(&self) -> io::Result<()> { + self.inner.release(None)?; + Ok(()) + } +} + +impl Drop for Acquired { + fn drop(&mut self) { + if !self.disabled { + drop(self.client.release(Some(&self.data))); + } + } +} + +/// Structure returned from `Client::into_helper_thread` to manage the lifetime +/// of the helper thread returned, see those associated docs for more info. +#[derive(Debug)] +pub struct HelperThread { + inner: Option<imp::Helper>, + state: Arc<HelperState>, +} + +impl HelperThread { + /// Request that the helper thread acquires a token, eventually calling the + /// original closure with a token when it's available. + /// + /// For more information, see the docs on that function. + pub fn request_token(&self) { + // Indicate that there's one more request for a token and then wake up + // the helper thread if it's sleeping. + self.state.lock().requests += 1; + self.state.cvar.notify_one(); + } +} + +impl Drop for HelperThread { + fn drop(&mut self) { + // Flag that the producer half is done so the helper thread should exit + // quickly if it's waiting. Wake it up if it's actually waiting + self.state.lock().producer_done = true; + self.state.cvar.notify_one(); + + // ... and afterwards perform any thread cleanup logic + self.inner.take().unwrap().join(); + } +} + +impl HelperState { + fn lock(&self) -> MutexGuard<'_, HelperInner> { + self.lock.lock().unwrap_or_else(|e| e.into_inner()) + } + + /// Executes `f` for each request for a token, where `f` is expected to + /// block and then provide the original closure with a token once it's + /// acquired. + /// + /// This is an infinite loop until the helper thread is dropped, at which + /// point everything should get interrupted. + fn for_each_request(&self, mut f: impl FnMut(&HelperState)) { + let mut lock = self.lock(); + + // We only execute while we could receive requests, but as soon as + // that's `false` we're out of here. + while !lock.producer_done { + // If no one's requested a token then we wait for someone to + // request a token. + if lock.requests == 0 { + lock = self.cvar.wait(lock).unwrap_or_else(|e| e.into_inner()); + continue; + } + + // Consume the request for a token, and then actually acquire a + // token after unlocking our lock (not that acquisition happens in + // `f`). This ensures that we don't actually hold the lock if we + // wait for a long time for a token. + lock.requests -= 1; + drop(lock); + f(self); + lock = self.lock(); + } + lock.consumer_done = true; + self.cvar.notify_one(); + } + + fn producer_done(&self) -> bool { + self.lock().producer_done + } +} + +#[test] +fn no_helper_deadlock() { + let x = crate::Client::new(32).unwrap(); + let _y = x.clone(); + std::mem::drop(x.into_helper_thread(|_| {}).unwrap()); +} |