diff options
Diffstat (limited to 'third_party/rust/nix/src/sys/ioctl/mod.rs')
-rw-r--r-- | third_party/rust/nix/src/sys/ioctl/mod.rs | 778 |
1 files changed, 778 insertions, 0 deletions
diff --git a/third_party/rust/nix/src/sys/ioctl/mod.rs b/third_party/rust/nix/src/sys/ioctl/mod.rs new file mode 100644 index 0000000000..35d508b131 --- /dev/null +++ b/third_party/rust/nix/src/sys/ioctl/mod.rs @@ -0,0 +1,778 @@ +//! Provide helpers for making ioctl system calls. +//! +//! This library is pretty low-level and messy. `ioctl` is not fun. +//! +//! What is an `ioctl`? +//! =================== +//! +//! The `ioctl` syscall is the grab-bag syscall on POSIX systems. Don't want to add a new +//! syscall? Make it an `ioctl`! `ioctl` refers to both the syscall, and the commands that can be +//! sent with it. `ioctl` stands for "IO control", and the commands are always sent to a file +//! descriptor. +//! +//! It is common to see `ioctl`s used for the following purposes: +//! +//! * Provide read/write access to out-of-band data related to a device such as configuration +//! (for instance, setting serial port options) +//! * Provide a mechanism for performing full-duplex data transfers (for instance, xfer on SPI +//! devices). +//! * Provide access to control functions on a device (for example, on Linux you can send +//! commands like pause, resume, and eject to the CDROM device. +//! * Do whatever else the device driver creator thought made most sense. +//! +//! `ioctl`s are synchronous system calls and are similar to read and write calls in that regard. +//! They operate on file descriptors and have an identifier that specifies what the ioctl is. +//! Additionally they may read or write data and therefore need to pass along a data pointer. +//! Besides the semantics of the ioctls being confusing, the generation of this identifer can also +//! be difficult. +//! +//! Historically `ioctl` numbers were arbitrary hard-coded values. In Linux (before 2.6) and some +//! unices this has changed to a more-ordered system where the ioctl numbers are partitioned into +//! subcomponents (For linux this is documented in +//! [`Documentation/ioctl/ioctl-number.txt`](http://elixir.free-electrons.com/linux/latest/source/Documentation/ioctl/ioctl-number.txt)): +//! +//! * Number: The actual ioctl ID +//! * Type: A grouping of ioctls for a common purpose or driver +//! * Size: The size in bytes of the data that will be transferred +//! * Direction: Whether there is any data and if it's read, write, or both +//! +//! Newer drivers should not generate complete integer identifiers for their `ioctl`s instead +//! preferring to use the 4 components above to generate the final ioctl identifier. Because of +//! how old `ioctl`s are, however, there are many hard-coded `ioctl` identifiers. These are +//! commonly referred to as "bad" in `ioctl` documentation. +//! +//! Defining `ioctl`s +//! ================= +//! +//! This library provides several `ioctl_*!` macros for binding `ioctl`s. These generate public +//! unsafe functions that can then be used for calling the ioctl. This macro has a few different +//! ways it can be used depending on the specific ioctl you're working with. +//! +//! A simple `ioctl` is `SPI_IOC_RD_MODE`. This ioctl works with the SPI interface on Linux. This +//! specific `ioctl` reads the mode of the SPI device as a `u8`. It's declared in +//! `/include/uapi/linux/spi/spidev.h` as `_IOR(SPI_IOC_MAGIC, 1, __u8)`. Since it uses the `_IOR` +//! macro, we know it's a `read` ioctl and can use the `ioctl_read!` macro as follows: +//! +//! ``` +//! # #[macro_use] extern crate nix; +//! const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h +//! const SPI_IOC_TYPE_MODE: u8 = 1; +//! ioctl_read!(spi_read_mode, SPI_IOC_MAGIC, SPI_IOC_TYPE_MODE, u8); +//! # fn main() {} +//! ``` +//! +//! This generates the function: +//! +//! ``` +//! # #[macro_use] extern crate nix; +//! # use std::mem; +//! # use nix::{libc, Result}; +//! # use nix::errno::Errno; +//! # use nix::libc::c_int as c_int; +//! # const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h +//! # const SPI_IOC_TYPE_MODE: u8 = 1; +//! pub unsafe fn spi_read_mode(fd: c_int, data: *mut u8) -> Result<c_int> { +//! let res = libc::ioctl(fd, request_code_read!(SPI_IOC_MAGIC, SPI_IOC_TYPE_MODE, mem::size_of::<u8>()), data); +//! Errno::result(res) +//! } +//! # fn main() {} +//! ``` +//! +//! The return value for the wrapper functions generated by the `ioctl_*!` macros are `nix::Error`s. +//! These are generated by assuming the return value of the ioctl is `-1` on error and everything +//! else is a valid return value. If this is not the case, `Result::map` can be used to map some +//! of the range of "good" values (-Inf..-2, 0..Inf) into a smaller range in a helper function. +//! +//! Writing `ioctl`s generally use pointers as their data source and these should use the +//! `ioctl_write_ptr!`. But in some cases an `int` is passed directly. For these `ioctl`s use the +//! `ioctl_write_int!` macro. This variant does not take a type as the last argument: +//! +//! ``` +//! # #[macro_use] extern crate nix; +//! const HCI_IOC_MAGIC: u8 = b'k'; +//! const HCI_IOC_HCIDEVUP: u8 = 1; +//! ioctl_write_int!(hci_dev_up, HCI_IOC_MAGIC, HCI_IOC_HCIDEVUP); +//! # fn main() {} +//! ``` +//! +//! Some `ioctl`s don't transfer any data, and those should use `ioctl_none!`. This macro +//! doesn't take a type and so it is declared similar to the `write_int` variant shown above. +//! +//! The mode for a given `ioctl` should be clear from the documentation if it has good +//! documentation. Otherwise it will be clear based on the macro used to generate the `ioctl` +//! number where `_IO`, `_IOR`, `_IOW`, and `_IOWR` map to "none", "read", "write_*", and "readwrite" +//! respectively. To determine the specific `write_` variant to use you'll need to find +//! what the argument type is supposed to be. If it's an `int`, then `write_int` should be used, +//! otherwise it should be a pointer and `write_ptr` should be used. On Linux the +//! [`ioctl_list` man page](http://man7.org/linux/man-pages/man2/ioctl_list.2.html) describes a +//! large number of `ioctl`s and describes their argument data type. +//! +//! Using "bad" `ioctl`s +//! -------------------- +//! +//! As mentioned earlier, there are many old `ioctl`s that do not use the newer method of +//! generating `ioctl` numbers and instead use hardcoded values. These can be used with the +//! `ioctl_*_bad!` macros. This naming comes from the Linux kernel which refers to these +//! `ioctl`s as "bad". These are a different variant as they bypass calling the macro that generates +//! the ioctl number and instead use the defined value directly. +//! +//! For example the `TCGETS` `ioctl` reads a `termios` data structure for a given file descriptor. +//! It's defined as `0x5401` in `ioctls.h` on Linux and can be implemented as: +//! +//! ``` +//! # #[macro_use] extern crate nix; +//! # #[cfg(any(target_os = "android", target_os = "linux"))] +//! # use nix::libc::TCGETS as TCGETS; +//! # #[cfg(any(target_os = "android", target_os = "linux"))] +//! # use nix::libc::termios as termios; +//! # #[cfg(any(target_os = "android", target_os = "linux"))] +//! ioctl_read_bad!(tcgets, TCGETS, termios); +//! # fn main() {} +//! ``` +//! +//! The generated function has the same form as that generated by `ioctl_read!`: +//! +//! ```text +//! pub unsafe fn tcgets(fd: c_int, data: *mut termios) -> Result<c_int>; +//! ``` +//! +//! Working with Arrays +//! ------------------- +//! +//! Some `ioctl`s work with entire arrays of elements. These are supported by the `ioctl_*_buf` +//! family of macros: `ioctl_read_buf`, `ioctl_write_buf`, and `ioctl_readwrite_buf`. Note that +//! there are no "bad" versions for working with buffers. The generated functions include a `len` +//! argument to specify the number of elements (where the type of each element is specified in the +//! macro). +//! +//! Again looking to the SPI `ioctl`s on Linux for an example, there is a `SPI_IOC_MESSAGE` `ioctl` +//! that queues up multiple SPI messages by writing an entire array of `spi_ioc_transfer` structs. +//! `linux/spi/spidev.h` defines a macro to calculate the `ioctl` number like: +//! +//! ```C +//! #define SPI_IOC_MAGIC 'k' +//! #define SPI_MSGSIZE(N) ... +//! #define SPI_IOC_MESSAGE(N) _IOW(SPI_IOC_MAGIC, 0, char[SPI_MSGSIZE(N)]) +//! ``` +//! +//! The `SPI_MSGSIZE(N)` calculation is already handled by the `ioctl_*!` macros, so all that's +//! needed to define this `ioctl` is: +//! +//! ``` +//! # #[macro_use] extern crate nix; +//! const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h +//! const SPI_IOC_TYPE_MESSAGE: u8 = 0; +//! # pub struct spi_ioc_transfer(u64); +//! ioctl_write_buf!(spi_transfer, SPI_IOC_MAGIC, SPI_IOC_TYPE_MESSAGE, spi_ioc_transfer); +//! # fn main() {} +//! ``` +//! +//! This generates a function like: +//! +//! ``` +//! # #[macro_use] extern crate nix; +//! # use std::mem; +//! # use nix::{libc, Result}; +//! # use nix::errno::Errno; +//! # use nix::libc::c_int as c_int; +//! # const SPI_IOC_MAGIC: u8 = b'k'; +//! # const SPI_IOC_TYPE_MESSAGE: u8 = 0; +//! # pub struct spi_ioc_transfer(u64); +//! pub unsafe fn spi_message(fd: c_int, data: &mut [spi_ioc_transfer]) -> Result<c_int> { +//! let res = libc::ioctl(fd, +//! request_code_write!(SPI_IOC_MAGIC, SPI_IOC_TYPE_MESSAGE, data.len() * mem::size_of::<spi_ioc_transfer>()), +//! data); +//! Errno::result(res) +//! } +//! # fn main() {} +//! ``` +//! +//! Finding `ioctl` Documentation +//! ----------------------------- +//! +//! For Linux, look at your system's headers. For example, `/usr/include/linux/input.h` has a lot +//! of lines defining macros which use `_IO`, `_IOR`, `_IOW`, `_IOC`, and `_IOWR`. Some `ioctl`s are +//! documented directly in the headers defining their constants, but others have more extensive +//! documentation in man pages (like termios' `ioctl`s which are in `tty_ioctl(4)`). +//! +//! Documenting the Generated Functions +//! =================================== +//! +//! In many cases, users will wish for the functions generated by the `ioctl` +//! macro to be public and documented. For this reason, the generated functions +//! are public by default. If you wish to hide the ioctl, you will need to put +//! them in a private module. +//! +//! For documentation, it is possible to use doc comments inside the `ioctl_*!` macros. Here is an +//! example : +//! +//! ``` +//! # #[macro_use] extern crate nix; +//! # use nix::libc::c_int; +//! ioctl_read! { +//! /// Make the given terminal the controlling terminal of the calling process. The calling +//! /// process must be a session leader and not have a controlling terminal already. If the +//! /// terminal is already the controlling terminal of a different session group then the +//! /// ioctl will fail with **EPERM**, unless the caller is root (more precisely: has the +//! /// **CAP_SYS_ADMIN** capability) and arg equals 1, in which case the terminal is stolen +//! /// and all processes that had it as controlling terminal lose it. +//! tiocsctty, b't', 19, c_int +//! } +//! +//! # fn main() {} +//! ``` +#[cfg(any(target_os = "android", target_os = "linux"))] +#[macro_use] +mod linux; + +#[cfg(any(target_os = "android", target_os = "linux"))] +pub use self::linux::*; + +#[cfg(any(target_os = "dragonfly", + target_os = "freebsd", + target_os = "ios", + target_os = "macos", + target_os = "netbsd", + target_os = "openbsd"))] +#[macro_use] +mod bsd; + +#[cfg(any(target_os = "dragonfly", + target_os = "freebsd", + target_os = "ios", + target_os = "macos", + target_os = "netbsd", + target_os = "openbsd"))] +pub use self::bsd::*; + +/// Convert raw ioctl return value to a Nix result +#[macro_export] +#[doc(hidden)] +macro_rules! convert_ioctl_res { + ($w:expr) => ( + { + $crate::errno::Errno::result($w) + } + ); +} + +/// Generates a wrapper function for an ioctl that passes no data to the kernel. +/// +/// The arguments to this macro are: +/// +/// * The function name +/// * The ioctl identifier +/// * The ioctl sequence number +/// +/// The generated function has the following signature: +/// +/// ```rust,ignore +/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int) -> Result<libc::c_int> +/// ``` +/// +/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). +/// +/// # Example +/// +/// The `videodev2` driver on Linux defines the `log_status` `ioctl` as: +/// +/// ```C +/// #define VIDIOC_LOG_STATUS _IO('V', 70) +/// ``` +/// +/// This can be implemented in Rust like: +/// +/// ```no_run +/// # #[macro_use] extern crate nix; +/// ioctl_none!(log_status, b'V', 70); +/// fn main() {} +/// ``` +#[macro_export] +macro_rules! ioctl_none { + ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr) => ( + $(#[$attr])* + pub unsafe fn $name(fd: $crate::libc::c_int) + -> $crate::Result<$crate::libc::c_int> { + convert_ioctl_res!($crate::libc::ioctl(fd, request_code_none!($ioty, $nr) as $crate::sys::ioctl::ioctl_num_type)) + } + ) +} + +/// Generates a wrapper function for a "bad" ioctl that passes no data to the kernel. +/// +/// The arguments to this macro are: +/// +/// * The function name +/// * The ioctl request code +/// +/// The generated function has the following signature: +/// +/// ```rust,ignore +/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int) -> Result<libc::c_int> +/// ``` +/// +/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). +/// +/// # Example +/// +/// ```no_run +/// # #[macro_use] extern crate nix; +/// # extern crate libc; +/// # use libc::TIOCNXCL; +/// # use std::fs::File; +/// # use std::os::unix::io::AsRawFd; +/// ioctl_none_bad!(tiocnxcl, TIOCNXCL); +/// fn main() { +/// let file = File::open("/dev/ttyUSB0").unwrap(); +/// unsafe { tiocnxcl(file.as_raw_fd()) }.unwrap(); +/// } +/// ``` +// TODO: add an example using request_code_*!() +#[macro_export] +macro_rules! ioctl_none_bad { + ($(#[$attr:meta])* $name:ident, $nr:expr) => ( + $(#[$attr])* + pub unsafe fn $name(fd: $crate::libc::c_int) + -> $crate::Result<$crate::libc::c_int> { + convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type)) + } + ) +} + +/// Generates a wrapper function for an ioctl that reads data from the kernel. +/// +/// The arguments to this macro are: +/// +/// * The function name +/// * The ioctl identifier +/// * The ioctl sequence number +/// * The data type passed by this ioctl +/// +/// The generated function has the following signature: +/// +/// ```rust,ignore +/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *mut DATA_TYPE) -> Result<libc::c_int> +/// ``` +/// +/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). +/// +/// # Example +/// +/// ``` +/// # #[macro_use] extern crate nix; +/// const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h +/// const SPI_IOC_TYPE_MODE: u8 = 1; +/// ioctl_read!(spi_read_mode, SPI_IOC_MAGIC, SPI_IOC_TYPE_MODE, u8); +/// # fn main() {} +/// ``` +#[macro_export] +macro_rules! ioctl_read { + ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => ( + $(#[$attr])* + pub unsafe fn $name(fd: $crate::libc::c_int, + data: *mut $ty) + -> $crate::Result<$crate::libc::c_int> { + convert_ioctl_res!($crate::libc::ioctl(fd, request_code_read!($ioty, $nr, ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data)) + } + ) +} + +/// Generates a wrapper function for a "bad" ioctl that reads data from the kernel. +/// +/// The arguments to this macro are: +/// +/// * The function name +/// * The ioctl request code +/// * The data type passed by this ioctl +/// +/// The generated function has the following signature: +/// +/// ```rust,ignore +/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *mut DATA_TYPE) -> Result<libc::c_int> +/// ``` +/// +/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). +/// +/// # Example +/// +/// ``` +/// # extern crate libc; +/// # #[macro_use] extern crate nix; +/// # #[cfg(any(target_os = "android", target_os = "linux"))] +/// ioctl_read_bad!(tcgets, libc::TCGETS, libc::termios); +/// # fn main() {} +/// ``` +#[macro_export] +macro_rules! ioctl_read_bad { + ($(#[$attr:meta])* $name:ident, $nr:expr, $ty:ty) => ( + $(#[$attr])* + pub unsafe fn $name(fd: $crate::libc::c_int, + data: *mut $ty) + -> $crate::Result<$crate::libc::c_int> { + convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type, data)) + } + ) +} + +/// Generates a wrapper function for an ioctl that writes data through a pointer to the kernel. +/// +/// The arguments to this macro are: +/// +/// * The function name +/// * The ioctl identifier +/// * The ioctl sequence number +/// * The data type passed by this ioctl +/// +/// The generated function has the following signature: +/// +/// ```rust,ignore +/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *const DATA_TYPE) -> Result<libc::c_int> +/// ``` +/// +/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). +/// +/// # Example +/// +/// ``` +/// # #[macro_use] extern crate nix; +/// # pub struct v4l2_audio {} +/// ioctl_write_ptr!(s_audio, b'V', 34, v4l2_audio); +/// # fn main() {} +/// ``` +#[macro_export] +macro_rules! ioctl_write_ptr { + ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => ( + $(#[$attr])* + pub unsafe fn $name(fd: $crate::libc::c_int, + data: *const $ty) + -> $crate::Result<$crate::libc::c_int> { + convert_ioctl_res!($crate::libc::ioctl(fd, request_code_write!($ioty, $nr, ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data)) + } + ) +} + +/// Generates a wrapper function for a "bad" ioctl that writes data through a pointer to the kernel. +/// +/// The arguments to this macro are: +/// +/// * The function name +/// * The ioctl request code +/// * The data type passed by this ioctl +/// +/// The generated function has the following signature: +/// +/// ```rust,ignore +/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *const DATA_TYPE) -> Result<libc::c_int> +/// ``` +/// +/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). +/// +/// # Example +/// +/// ``` +/// # extern crate libc; +/// # #[macro_use] extern crate nix; +/// # #[cfg(any(target_os = "android", target_os = "linux"))] +/// ioctl_write_ptr_bad!(tcsets, libc::TCSETS, libc::termios); +/// # fn main() {} +/// ``` +#[macro_export] +macro_rules! ioctl_write_ptr_bad { + ($(#[$attr:meta])* $name:ident, $nr:expr, $ty:ty) => ( + $(#[$attr])* + pub unsafe fn $name(fd: $crate::libc::c_int, + data: *const $ty) + -> $crate::Result<$crate::libc::c_int> { + convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type, data)) + } + ) +} + +cfg_if!{ + if #[cfg(any(target_os = "dragonfly", target_os = "freebsd"))] { + /// Generates a wrapper function for a ioctl that writes an integer to the kernel. + /// + /// The arguments to this macro are: + /// + /// * The function name + /// * The ioctl identifier + /// * The ioctl sequence number + /// + /// The generated function has the following signature: + /// + /// ```rust,ignore + /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: nix::sys::ioctl::ioctl_param_type) -> Result<libc::c_int> + /// ``` + /// + /// `nix::sys::ioctl::ioctl_param_type` depends on the OS: + /// * BSD - `libc::c_int` + /// * Linux - `libc::c_ulong` + /// + /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). + /// + /// # Example + /// + /// ``` + /// # #[macro_use] extern crate nix; + /// ioctl_write_int!(vt_activate, b'v', 4); + /// # fn main() {} + /// ``` + #[macro_export] + macro_rules! ioctl_write_int { + ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr) => ( + $(#[$attr])* + pub unsafe fn $name(fd: $crate::libc::c_int, + data: $crate::sys::ioctl::ioctl_param_type) + -> $crate::Result<$crate::libc::c_int> { + convert_ioctl_res!($crate::libc::ioctl(fd, request_code_write_int!($ioty, $nr) as $crate::sys::ioctl::ioctl_num_type, data)) + } + ) + } + } else { + /// Generates a wrapper function for a ioctl that writes an integer to the kernel. + /// + /// The arguments to this macro are: + /// + /// * The function name + /// * The ioctl identifier + /// * The ioctl sequence number + /// + /// The generated function has the following signature: + /// + /// ```rust,ignore + /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: nix::sys::ioctl::ioctl_param_type) -> Result<libc::c_int> + /// ``` + /// + /// `nix::sys::ioctl::ioctl_param_type` depends on the OS: + /// * BSD - `libc::c_int` + /// * Linux - `libc::c_ulong` + /// + /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). + /// + /// # Example + /// + /// ``` + /// # #[macro_use] extern crate nix; + /// const HCI_IOC_MAGIC: u8 = b'k'; + /// const HCI_IOC_HCIDEVUP: u8 = 1; + /// ioctl_write_int!(hci_dev_up, HCI_IOC_MAGIC, HCI_IOC_HCIDEVUP); + /// # fn main() {} + /// ``` + #[macro_export] + macro_rules! ioctl_write_int { + ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr) => ( + $(#[$attr])* + pub unsafe fn $name(fd: $crate::libc::c_int, + data: $crate::sys::ioctl::ioctl_param_type) + -> $crate::Result<$crate::libc::c_int> { + convert_ioctl_res!($crate::libc::ioctl(fd, request_code_write!($ioty, $nr, ::std::mem::size_of::<$crate::libc::c_int>()) as $crate::sys::ioctl::ioctl_num_type, data)) + } + ) + } + } +} + +/// Generates a wrapper function for a "bad" ioctl that writes an integer to the kernel. +/// +/// The arguments to this macro are: +/// +/// * The function name +/// * The ioctl request code +/// +/// The generated function has the following signature: +/// +/// ```rust,ignore +/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: libc::c_int) -> Result<libc::c_int> +/// ``` +/// +/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). +/// +/// # Examples +/// +/// ``` +/// # extern crate libc; +/// # #[macro_use] extern crate nix; +/// # #[cfg(any(target_os = "android", target_os = "linux"))] +/// ioctl_write_int_bad!(tcsbrk, libc::TCSBRK); +/// # fn main() {} +/// ``` +/// +/// ```rust +/// # #[macro_use] extern crate nix; +/// const KVMIO: u8 = 0xAE; +/// ioctl_write_int_bad!(kvm_create_vm, request_code_none!(KVMIO, 0x03)); +/// # fn main() {} +/// ``` +#[macro_export] +macro_rules! ioctl_write_int_bad { + ($(#[$attr:meta])* $name:ident, $nr:expr) => ( + $(#[$attr])* + pub unsafe fn $name(fd: $crate::libc::c_int, + data: $crate::libc::c_int) + -> $crate::Result<$crate::libc::c_int> { + convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type, data)) + } + ) +} + +/// Generates a wrapper function for an ioctl that reads and writes data to the kernel. +/// +/// The arguments to this macro are: +/// +/// * The function name +/// * The ioctl identifier +/// * The ioctl sequence number +/// * The data type passed by this ioctl +/// +/// The generated function has the following signature: +/// +/// ```rust,ignore +/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *mut DATA_TYPE) -> Result<libc::c_int> +/// ``` +/// +/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). +/// +/// # Example +/// +/// ``` +/// # #[macro_use] extern crate nix; +/// # pub struct v4l2_audio {} +/// ioctl_readwrite!(enum_audio, b'V', 65, v4l2_audio); +/// # fn main() {} +/// ``` +#[macro_export] +macro_rules! ioctl_readwrite { + ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => ( + $(#[$attr])* + pub unsafe fn $name(fd: $crate::libc::c_int, + data: *mut $ty) + -> $crate::Result<$crate::libc::c_int> { + convert_ioctl_res!($crate::libc::ioctl(fd, request_code_readwrite!($ioty, $nr, ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data)) + } + ) +} + +/// Generates a wrapper function for a "bad" ioctl that reads and writes data to the kernel. +/// +/// The arguments to this macro are: +/// +/// * The function name +/// * The ioctl request code +/// * The data type passed by this ioctl +/// +/// The generated function has the following signature: +/// +/// ```rust,ignore +/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *mut DATA_TYPE) -> Result<libc::c_int> +/// ``` +/// +/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). +// TODO: Find an example for ioctl_readwrite_bad +#[macro_export] +macro_rules! ioctl_readwrite_bad { + ($(#[$attr:meta])* $name:ident, $nr:expr, $ty:ty) => ( + $(#[$attr])* + pub unsafe fn $name(fd: $crate::libc::c_int, + data: *mut $ty) + -> $crate::Result<$crate::libc::c_int> { + convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type, data)) + } + ) +} + +/// Generates a wrapper function for an ioctl that reads an array of elements from the kernel. +/// +/// The arguments to this macro are: +/// +/// * The function name +/// * The ioctl identifier +/// * The ioctl sequence number +/// * The data type passed by this ioctl +/// +/// The generated function has the following signature: +/// +/// ```rust,ignore +/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: &mut [DATA_TYPE]) -> Result<libc::c_int> +/// ``` +/// +/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). +// TODO: Find an example for ioctl_read_buf +#[macro_export] +macro_rules! ioctl_read_buf { + ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => ( + $(#[$attr])* + pub unsafe fn $name(fd: $crate::libc::c_int, + data: &mut [$ty]) + -> $crate::Result<$crate::libc::c_int> { + convert_ioctl_res!($crate::libc::ioctl(fd, request_code_read!($ioty, $nr, data.len() * ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data)) + } + ) +} + +/// Generates a wrapper function for an ioctl that writes an array of elements to the kernel. +/// +/// The arguments to this macro are: +/// +/// * The function name +/// * The ioctl identifier +/// * The ioctl sequence number +/// * The data type passed by this ioctl +/// +/// The generated function has the following signature: +/// +/// ```rust,ignore +/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: &[DATA_TYPE]) -> Result<libc::c_int> +/// ``` +/// +/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). +/// +/// # Examples +/// +/// ``` +/// # #[macro_use] extern crate nix; +/// const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h +/// const SPI_IOC_TYPE_MESSAGE: u8 = 0; +/// # pub struct spi_ioc_transfer(u64); +/// ioctl_write_buf!(spi_transfer, SPI_IOC_MAGIC, SPI_IOC_TYPE_MESSAGE, spi_ioc_transfer); +/// # fn main() {} +/// ``` +#[macro_export] +macro_rules! ioctl_write_buf { + ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => ( + $(#[$attr])* + pub unsafe fn $name(fd: $crate::libc::c_int, + data: &[$ty]) + -> $crate::Result<$crate::libc::c_int> { + convert_ioctl_res!($crate::libc::ioctl(fd, request_code_write!($ioty, $nr, data.len() * ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data)) + } + ) +} + +/// Generates a wrapper function for an ioctl that reads and writes an array of elements to the kernel. +/// +/// The arguments to this macro are: +/// +/// * The function name +/// * The ioctl identifier +/// * The ioctl sequence number +/// * The data type passed by this ioctl +/// +/// The generated function has the following signature: +/// +/// ```rust,ignore +/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: &mut [DATA_TYPE]) -> Result<libc::c_int> +/// ``` +/// +/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). +// TODO: Find an example for readwrite_buf +#[macro_export] +macro_rules! ioctl_readwrite_buf { + ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => ( + $(#[$attr])* + pub unsafe fn $name(fd: $crate::libc::c_int, + data: &mut [$ty]) + -> $crate::Result<$crate::libc::c_int> { + convert_ioctl_res!($crate::libc::ioctl(fd, request_code_readwrite!($ioty, $nr, data.len() * ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data)) + } + ) +} |