diff options
Diffstat (limited to 'third_party/rust/num-bigint/src/bigint.rs')
-rw-r--r-- | third_party/rust/num-bigint/src/bigint.rs | 3084 |
1 files changed, 3084 insertions, 0 deletions
diff --git a/third_party/rust/num-bigint/src/bigint.rs b/third_party/rust/num-bigint/src/bigint.rs new file mode 100644 index 0000000000..93c72be6af --- /dev/null +++ b/third_party/rust/num-bigint/src/bigint.rs @@ -0,0 +1,3084 @@ +#[allow(deprecated, unused_imports)] +use std::ascii::AsciiExt; +use std::cmp::Ordering::{self, Equal, Greater, Less}; +use std::default::Default; +use std::fmt; +use std::iter::{Product, Sum}; +use std::mem; +use std::ops::{ + Add, AddAssign, BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Div, DivAssign, + Mul, MulAssign, Neg, Not, Rem, RemAssign, Shl, ShlAssign, Shr, ShrAssign, Sub, SubAssign, +}; +use std::str::{self, FromStr}; +#[cfg(has_i128)] +use std::{i128, u128}; +use std::{i64, u64}; + +#[cfg(feature = "serde")] +use serde; + +use integer::{Integer, Roots}; +use traits::{ + CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, FromPrimitive, Num, One, Pow, Signed, + ToPrimitive, Zero, +}; + +use self::Sign::{Minus, NoSign, Plus}; + +use super::ParseBigIntError; +use big_digit::{self, BigDigit, DoubleBigDigit}; +use biguint; +use biguint::to_str_radix_reversed; +use biguint::{BigUint, IntDigits}; + +use IsizePromotion; +use UsizePromotion; + +#[cfg(feature = "quickcheck")] +use quickcheck::{Arbitrary, Gen}; + +/// A Sign is a `BigInt`'s composing element. +#[derive(PartialEq, PartialOrd, Eq, Ord, Copy, Clone, Debug, Hash)] +pub enum Sign { + Minus, + NoSign, + Plus, +} + +impl Neg for Sign { + type Output = Sign; + + /// Negate Sign value. + #[inline] + fn neg(self) -> Sign { + match self { + Minus => Plus, + NoSign => NoSign, + Plus => Minus, + } + } +} + +impl Mul<Sign> for Sign { + type Output = Sign; + + #[inline] + fn mul(self, other: Sign) -> Sign { + match (self, other) { + (NoSign, _) | (_, NoSign) => NoSign, + (Plus, Plus) | (Minus, Minus) => Plus, + (Plus, Minus) | (Minus, Plus) => Minus, + } + } +} + +#[cfg(feature = "serde")] +impl serde::Serialize for Sign { + fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> + where + S: serde::Serializer, + { + // Note: do not change the serialization format, or it may break + // forward and backward compatibility of serialized data! + match *self { + Sign::Minus => (-1i8).serialize(serializer), + Sign::NoSign => 0i8.serialize(serializer), + Sign::Plus => 1i8.serialize(serializer), + } + } +} + +#[cfg(feature = "serde")] +impl<'de> serde::Deserialize<'de> for Sign { + fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> + where + D: serde::Deserializer<'de>, + { + use serde::de::Error; + use serde::de::Unexpected; + + let sign: i8 = serde::Deserialize::deserialize(deserializer)?; + match sign { + -1 => Ok(Sign::Minus), + 0 => Ok(Sign::NoSign), + 1 => Ok(Sign::Plus), + _ => Err(D::Error::invalid_value( + Unexpected::Signed(sign.into()), + &"a sign of -1, 0, or 1", + )), + } + } +} + +/// A big signed integer type. +#[derive(Clone, Debug, Hash)] +pub struct BigInt { + sign: Sign, + data: BigUint, +} + +#[cfg(feature = "quickcheck")] +impl Arbitrary for BigInt { + fn arbitrary<G: Gen>(g: &mut G) -> Self { + let positive = bool::arbitrary(g); + let sign = if positive { Sign::Plus } else { Sign::Minus }; + Self::from_biguint(sign, BigUint::arbitrary(g)) + } + + #[allow(bare_trait_objects)] // `dyn` needs Rust 1.27 to parse, even when cfg-disabled + fn shrink(&self) -> Box<Iterator<Item = Self>> { + let sign = self.sign(); + let unsigned_shrink = self.data.shrink(); + Box::new(unsigned_shrink.map(move |x| BigInt::from_biguint(sign, x))) + } +} + +/// Return the magnitude of a `BigInt`. +/// +/// This is in a private module, pseudo pub(crate) +#[cfg(feature = "rand")] +pub fn magnitude(i: &BigInt) -> &BigUint { + &i.data +} + +/// Return the owned magnitude of a `BigInt`. +/// +/// This is in a private module, pseudo pub(crate) +#[cfg(feature = "rand")] +pub fn into_magnitude(i: BigInt) -> BigUint { + i.data +} + +impl PartialEq for BigInt { + #[inline] + fn eq(&self, other: &BigInt) -> bool { + self.cmp(other) == Equal + } +} + +impl Eq for BigInt {} + +impl PartialOrd for BigInt { + #[inline] + fn partial_cmp(&self, other: &BigInt) -> Option<Ordering> { + Some(self.cmp(other)) + } +} + +impl Ord for BigInt { + #[inline] + fn cmp(&self, other: &BigInt) -> Ordering { + let scmp = self.sign.cmp(&other.sign); + if scmp != Equal { + return scmp; + } + + match self.sign { + NoSign => Equal, + Plus => self.data.cmp(&other.data), + Minus => other.data.cmp(&self.data), + } + } +} + +impl Default for BigInt { + #[inline] + fn default() -> BigInt { + Zero::zero() + } +} + +impl fmt::Display for BigInt { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.pad_integral(!self.is_negative(), "", &self.data.to_str_radix(10)) + } +} + +impl fmt::Binary for BigInt { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.pad_integral(!self.is_negative(), "0b", &self.data.to_str_radix(2)) + } +} + +impl fmt::Octal for BigInt { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.pad_integral(!self.is_negative(), "0o", &self.data.to_str_radix(8)) + } +} + +impl fmt::LowerHex for BigInt { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.pad_integral(!self.is_negative(), "0x", &self.data.to_str_radix(16)) + } +} + +impl fmt::UpperHex for BigInt { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + let mut s = self.data.to_str_radix(16); + s.make_ascii_uppercase(); + f.pad_integral(!self.is_negative(), "0x", &s) + } +} + +// Negation in two's complement. +// acc must be initialized as 1 for least-significant digit. +// +// When negating, a carry (acc == 1) means that all the digits +// considered to this point were zero. This means that if all the +// digits of a negative BigInt have been considered, carry must be +// zero as we cannot have negative zero. +// +// 01 -> ...f ff +// ff -> ...f 01 +// 01 00 -> ...f ff 00 +// 01 01 -> ...f fe ff +// 01 ff -> ...f fe 01 +// ff 00 -> ...f 01 00 +// ff 01 -> ...f 00 ff +// ff ff -> ...f 00 01 +#[inline] +fn negate_carry(a: BigDigit, acc: &mut DoubleBigDigit) -> BigDigit { + *acc += DoubleBigDigit::from(!a); + let lo = *acc as BigDigit; + *acc >>= big_digit::BITS; + lo +} + +// !-2 = !...f fe = ...0 01 = +1 +// !-1 = !...f ff = ...0 00 = 0 +// ! 0 = !...0 00 = ...f ff = -1 +// !+1 = !...0 01 = ...f fe = -2 +impl Not for BigInt { + type Output = BigInt; + + fn not(mut self) -> BigInt { + match self.sign { + NoSign | Plus => { + self.data += 1u32; + self.sign = Minus; + } + Minus => { + self.data -= 1u32; + self.sign = if self.data.is_zero() { NoSign } else { Plus }; + } + } + self + } +} + +impl<'a> Not for &'a BigInt { + type Output = BigInt; + + fn not(self) -> BigInt { + match self.sign { + NoSign | Plus => BigInt::from_biguint(Minus, &self.data + 1u32), + Minus => BigInt::from_biguint(Plus, &self.data - 1u32), + } + } +} + +// + 1 & -ff = ...0 01 & ...f 01 = ...0 01 = + 1 +// +ff & - 1 = ...0 ff & ...f ff = ...0 ff = +ff +// answer is pos, has length of a +fn bitand_pos_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) { + let mut carry_b = 1; + for (ai, &bi) in a.iter_mut().zip(b.iter()) { + let twos_b = negate_carry(bi, &mut carry_b); + *ai &= twos_b; + } + debug_assert!(b.len() > a.len() || carry_b == 0); +} + +// - 1 & +ff = ...f ff & ...0 ff = ...0 ff = +ff +// -ff & + 1 = ...f 01 & ...0 01 = ...0 01 = + 1 +// answer is pos, has length of b +fn bitand_neg_pos(a: &mut Vec<BigDigit>, b: &[BigDigit]) { + let mut carry_a = 1; + for (ai, &bi) in a.iter_mut().zip(b.iter()) { + let twos_a = negate_carry(*ai, &mut carry_a); + *ai = twos_a & bi; + } + debug_assert!(a.len() > b.len() || carry_a == 0); + if a.len() > b.len() { + a.truncate(b.len()); + } else if b.len() > a.len() { + let extra = &b[a.len()..]; + a.extend(extra.iter().cloned()); + } +} + +// - 1 & -ff = ...f ff & ...f 01 = ...f 01 = - ff +// -ff & - 1 = ...f 01 & ...f ff = ...f 01 = - ff +// -ff & -fe = ...f 01 & ...f 02 = ...f 00 = -100 +// answer is neg, has length of longest with a possible carry +fn bitand_neg_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) { + let mut carry_a = 1; + let mut carry_b = 1; + let mut carry_and = 1; + for (ai, &bi) in a.iter_mut().zip(b.iter()) { + let twos_a = negate_carry(*ai, &mut carry_a); + let twos_b = negate_carry(bi, &mut carry_b); + *ai = negate_carry(twos_a & twos_b, &mut carry_and); + } + debug_assert!(a.len() > b.len() || carry_a == 0); + debug_assert!(b.len() > a.len() || carry_b == 0); + if a.len() > b.len() { + for ai in a[b.len()..].iter_mut() { + let twos_a = negate_carry(*ai, &mut carry_a); + *ai = negate_carry(twos_a, &mut carry_and); + } + debug_assert!(carry_a == 0); + } else if b.len() > a.len() { + let extra = &b[a.len()..]; + a.extend(extra.iter().map(|&bi| { + let twos_b = negate_carry(bi, &mut carry_b); + negate_carry(twos_b, &mut carry_and) + })); + debug_assert!(carry_b == 0); + } + if carry_and != 0 { + a.push(1); + } +} + +forward_val_val_binop!(impl BitAnd for BigInt, bitand); +forward_ref_val_binop!(impl BitAnd for BigInt, bitand); + +// do not use forward_ref_ref_binop_commutative! for bitand so that we can +// clone as needed, avoiding over-allocation +impl<'a, 'b> BitAnd<&'b BigInt> for &'a BigInt { + type Output = BigInt; + + #[inline] + fn bitand(self, other: &BigInt) -> BigInt { + match (self.sign, other.sign) { + (NoSign, _) | (_, NoSign) => BigInt::from_slice(NoSign, &[]), + (Plus, Plus) => BigInt::from_biguint(Plus, &self.data & &other.data), + (Plus, Minus) => self.clone() & other, + (Minus, Plus) => other.clone() & self, + (Minus, Minus) => { + // forward to val-ref, choosing the larger to clone + if self.len() >= other.len() { + self.clone() & other + } else { + other.clone() & self + } + } + } + } +} + +impl<'a> BitAnd<&'a BigInt> for BigInt { + type Output = BigInt; + + #[inline] + fn bitand(mut self, other: &BigInt) -> BigInt { + self &= other; + self + } +} + +forward_val_assign!(impl BitAndAssign for BigInt, bitand_assign); + +impl<'a> BitAndAssign<&'a BigInt> for BigInt { + fn bitand_assign(&mut self, other: &BigInt) { + match (self.sign, other.sign) { + (NoSign, _) => {} + (_, NoSign) => self.assign_from_slice(NoSign, &[]), + (Plus, Plus) => { + self.data &= &other.data; + if self.data.is_zero() { + self.sign = NoSign; + } + } + (Plus, Minus) => { + bitand_pos_neg(self.digits_mut(), other.digits()); + self.normalize(); + } + (Minus, Plus) => { + bitand_neg_pos(self.digits_mut(), other.digits()); + self.sign = Plus; + self.normalize(); + } + (Minus, Minus) => { + bitand_neg_neg(self.digits_mut(), other.digits()); + self.normalize(); + } + } + } +} + +// + 1 | -ff = ...0 01 | ...f 01 = ...f 01 = -ff +// +ff | - 1 = ...0 ff | ...f ff = ...f ff = - 1 +// answer is neg, has length of b +fn bitor_pos_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) { + let mut carry_b = 1; + let mut carry_or = 1; + for (ai, &bi) in a.iter_mut().zip(b.iter()) { + let twos_b = negate_carry(bi, &mut carry_b); + *ai = negate_carry(*ai | twos_b, &mut carry_or); + } + debug_assert!(b.len() > a.len() || carry_b == 0); + if a.len() > b.len() { + a.truncate(b.len()); + } else if b.len() > a.len() { + let extra = &b[a.len()..]; + a.extend(extra.iter().map(|&bi| { + let twos_b = negate_carry(bi, &mut carry_b); + negate_carry(twos_b, &mut carry_or) + })); + debug_assert!(carry_b == 0); + } + // for carry_or to be non-zero, we would need twos_b == 0 + debug_assert!(carry_or == 0); +} + +// - 1 | +ff = ...f ff | ...0 ff = ...f ff = - 1 +// -ff | + 1 = ...f 01 | ...0 01 = ...f 01 = -ff +// answer is neg, has length of a +fn bitor_neg_pos(a: &mut Vec<BigDigit>, b: &[BigDigit]) { + let mut carry_a = 1; + let mut carry_or = 1; + for (ai, &bi) in a.iter_mut().zip(b.iter()) { + let twos_a = negate_carry(*ai, &mut carry_a); + *ai = negate_carry(twos_a | bi, &mut carry_or); + } + debug_assert!(a.len() > b.len() || carry_a == 0); + if a.len() > b.len() { + for ai in a[b.len()..].iter_mut() { + let twos_a = negate_carry(*ai, &mut carry_a); + *ai = negate_carry(twos_a, &mut carry_or); + } + debug_assert!(carry_a == 0); + } + // for carry_or to be non-zero, we would need twos_a == 0 + debug_assert!(carry_or == 0); +} + +// - 1 | -ff = ...f ff | ...f 01 = ...f ff = -1 +// -ff | - 1 = ...f 01 | ...f ff = ...f ff = -1 +// answer is neg, has length of shortest +fn bitor_neg_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) { + let mut carry_a = 1; + let mut carry_b = 1; + let mut carry_or = 1; + for (ai, &bi) in a.iter_mut().zip(b.iter()) { + let twos_a = negate_carry(*ai, &mut carry_a); + let twos_b = negate_carry(bi, &mut carry_b); + *ai = negate_carry(twos_a | twos_b, &mut carry_or); + } + debug_assert!(a.len() > b.len() || carry_a == 0); + debug_assert!(b.len() > a.len() || carry_b == 0); + if a.len() > b.len() { + a.truncate(b.len()); + } + // for carry_or to be non-zero, we would need twos_a == 0 or twos_b == 0 + debug_assert!(carry_or == 0); +} + +forward_val_val_binop!(impl BitOr for BigInt, bitor); +forward_ref_val_binop!(impl BitOr for BigInt, bitor); + +// do not use forward_ref_ref_binop_commutative! for bitor so that we can +// clone as needed, avoiding over-allocation +impl<'a, 'b> BitOr<&'b BigInt> for &'a BigInt { + type Output = BigInt; + + #[inline] + fn bitor(self, other: &BigInt) -> BigInt { + match (self.sign, other.sign) { + (NoSign, _) => other.clone(), + (_, NoSign) => self.clone(), + (Plus, Plus) => BigInt::from_biguint(Plus, &self.data | &other.data), + (Plus, Minus) => other.clone() | self, + (Minus, Plus) => self.clone() | other, + (Minus, Minus) => { + // forward to val-ref, choosing the smaller to clone + if self.len() <= other.len() { + self.clone() | other + } else { + other.clone() | self + } + } + } + } +} + +impl<'a> BitOr<&'a BigInt> for BigInt { + type Output = BigInt; + + #[inline] + fn bitor(mut self, other: &BigInt) -> BigInt { + self |= other; + self + } +} + +forward_val_assign!(impl BitOrAssign for BigInt, bitor_assign); + +impl<'a> BitOrAssign<&'a BigInt> for BigInt { + fn bitor_assign(&mut self, other: &BigInt) { + match (self.sign, other.sign) { + (_, NoSign) => {} + (NoSign, _) => self.assign_from_slice(other.sign, other.digits()), + (Plus, Plus) => self.data |= &other.data, + (Plus, Minus) => { + bitor_pos_neg(self.digits_mut(), other.digits()); + self.sign = Minus; + self.normalize(); + } + (Minus, Plus) => { + bitor_neg_pos(self.digits_mut(), other.digits()); + self.normalize(); + } + (Minus, Minus) => { + bitor_neg_neg(self.digits_mut(), other.digits()); + self.normalize(); + } + } + } +} + +// + 1 ^ -ff = ...0 01 ^ ...f 01 = ...f 00 = -100 +// +ff ^ - 1 = ...0 ff ^ ...f ff = ...f 00 = -100 +// answer is neg, has length of longest with a possible carry +fn bitxor_pos_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) { + let mut carry_b = 1; + let mut carry_xor = 1; + for (ai, &bi) in a.iter_mut().zip(b.iter()) { + let twos_b = negate_carry(bi, &mut carry_b); + *ai = negate_carry(*ai ^ twos_b, &mut carry_xor); + } + debug_assert!(b.len() > a.len() || carry_b == 0); + if a.len() > b.len() { + for ai in a[b.len()..].iter_mut() { + let twos_b = !0; + *ai = negate_carry(*ai ^ twos_b, &mut carry_xor); + } + } else if b.len() > a.len() { + let extra = &b[a.len()..]; + a.extend(extra.iter().map(|&bi| { + let twos_b = negate_carry(bi, &mut carry_b); + negate_carry(twos_b, &mut carry_xor) + })); + debug_assert!(carry_b == 0); + } + if carry_xor != 0 { + a.push(1); + } +} + +// - 1 ^ +ff = ...f ff ^ ...0 ff = ...f 00 = -100 +// -ff ^ + 1 = ...f 01 ^ ...0 01 = ...f 00 = -100 +// answer is neg, has length of longest with a possible carry +fn bitxor_neg_pos(a: &mut Vec<BigDigit>, b: &[BigDigit]) { + let mut carry_a = 1; + let mut carry_xor = 1; + for (ai, &bi) in a.iter_mut().zip(b.iter()) { + let twos_a = negate_carry(*ai, &mut carry_a); + *ai = negate_carry(twos_a ^ bi, &mut carry_xor); + } + debug_assert!(a.len() > b.len() || carry_a == 0); + if a.len() > b.len() { + for ai in a[b.len()..].iter_mut() { + let twos_a = negate_carry(*ai, &mut carry_a); + *ai = negate_carry(twos_a, &mut carry_xor); + } + debug_assert!(carry_a == 0); + } else if b.len() > a.len() { + let extra = &b[a.len()..]; + a.extend(extra.iter().map(|&bi| { + let twos_a = !0; + negate_carry(twos_a ^ bi, &mut carry_xor) + })); + } + if carry_xor != 0 { + a.push(1); + } +} + +// - 1 ^ -ff = ...f ff ^ ...f 01 = ...0 fe = +fe +// -ff & - 1 = ...f 01 ^ ...f ff = ...0 fe = +fe +// answer is pos, has length of longest +fn bitxor_neg_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) { + let mut carry_a = 1; + let mut carry_b = 1; + for (ai, &bi) in a.iter_mut().zip(b.iter()) { + let twos_a = negate_carry(*ai, &mut carry_a); + let twos_b = negate_carry(bi, &mut carry_b); + *ai = twos_a ^ twos_b; + } + debug_assert!(a.len() > b.len() || carry_a == 0); + debug_assert!(b.len() > a.len() || carry_b == 0); + if a.len() > b.len() { + for ai in a[b.len()..].iter_mut() { + let twos_a = negate_carry(*ai, &mut carry_a); + let twos_b = !0; + *ai = twos_a ^ twos_b; + } + debug_assert!(carry_a == 0); + } else if b.len() > a.len() { + let extra = &b[a.len()..]; + a.extend(extra.iter().map(|&bi| { + let twos_a = !0; + let twos_b = negate_carry(bi, &mut carry_b); + twos_a ^ twos_b + })); + debug_assert!(carry_b == 0); + } +} + +forward_all_binop_to_val_ref_commutative!(impl BitXor for BigInt, bitxor); + +impl<'a> BitXor<&'a BigInt> for BigInt { + type Output = BigInt; + + #[inline] + fn bitxor(mut self, other: &BigInt) -> BigInt { + self ^= other; + self + } +} + +forward_val_assign!(impl BitXorAssign for BigInt, bitxor_assign); + +impl<'a> BitXorAssign<&'a BigInt> for BigInt { + fn bitxor_assign(&mut self, other: &BigInt) { + match (self.sign, other.sign) { + (_, NoSign) => {} + (NoSign, _) => self.assign_from_slice(other.sign, other.digits()), + (Plus, Plus) => { + self.data ^= &other.data; + if self.data.is_zero() { + self.sign = NoSign; + } + } + (Plus, Minus) => { + bitxor_pos_neg(self.digits_mut(), other.digits()); + self.sign = Minus; + self.normalize(); + } + (Minus, Plus) => { + bitxor_neg_pos(self.digits_mut(), other.digits()); + self.normalize(); + } + (Minus, Minus) => { + bitxor_neg_neg(self.digits_mut(), other.digits()); + self.sign = Plus; + self.normalize(); + } + } + } +} + +impl FromStr for BigInt { + type Err = ParseBigIntError; + + #[inline] + fn from_str(s: &str) -> Result<BigInt, ParseBigIntError> { + BigInt::from_str_radix(s, 10) + } +} + +impl Num for BigInt { + type FromStrRadixErr = ParseBigIntError; + + /// Creates and initializes a BigInt. + #[inline] + fn from_str_radix(mut s: &str, radix: u32) -> Result<BigInt, ParseBigIntError> { + let sign = if s.starts_with('-') { + let tail = &s[1..]; + if !tail.starts_with('+') { + s = tail + } + Minus + } else { + Plus + }; + let bu = BigUint::from_str_radix(s, radix)?; + Ok(BigInt::from_biguint(sign, bu)) + } +} + +impl Shl<usize> for BigInt { + type Output = BigInt; + + #[inline] + fn shl(mut self, rhs: usize) -> BigInt { + self <<= rhs; + self + } +} + +impl<'a> Shl<usize> for &'a BigInt { + type Output = BigInt; + + #[inline] + fn shl(self, rhs: usize) -> BigInt { + BigInt::from_biguint(self.sign, &self.data << rhs) + } +} + +impl ShlAssign<usize> for BigInt { + #[inline] + fn shl_assign(&mut self, rhs: usize) { + self.data <<= rhs; + } +} + +// Negative values need a rounding adjustment if there are any ones in the +// bits that are getting shifted out. +fn shr_round_down(i: &BigInt, rhs: usize) -> bool { + i.is_negative() + && biguint::trailing_zeros(&i.data) + .map(|n| n < rhs) + .unwrap_or(false) +} + +impl Shr<usize> for BigInt { + type Output = BigInt; + + #[inline] + fn shr(mut self, rhs: usize) -> BigInt { + self >>= rhs; + self + } +} + +impl<'a> Shr<usize> for &'a BigInt { + type Output = BigInt; + + #[inline] + fn shr(self, rhs: usize) -> BigInt { + let round_down = shr_round_down(self, rhs); + let data = &self.data >> rhs; + BigInt::from_biguint(self.sign, if round_down { data + 1u8 } else { data }) + } +} + +impl ShrAssign<usize> for BigInt { + #[inline] + fn shr_assign(&mut self, rhs: usize) { + let round_down = shr_round_down(self, rhs); + self.data >>= rhs; + if round_down { + self.data += 1u8; + } else if self.data.is_zero() { + self.sign = NoSign; + } + } +} + +impl Zero for BigInt { + #[inline] + fn zero() -> BigInt { + BigInt::from_biguint(NoSign, Zero::zero()) + } + + #[inline] + fn set_zero(&mut self) { + self.data.set_zero(); + self.sign = NoSign; + } + + #[inline] + fn is_zero(&self) -> bool { + self.sign == NoSign + } +} + +impl One for BigInt { + #[inline] + fn one() -> BigInt { + BigInt::from_biguint(Plus, One::one()) + } + + #[inline] + fn set_one(&mut self) { + self.data.set_one(); + self.sign = Plus; + } + + #[inline] + fn is_one(&self) -> bool { + self.sign == Plus && self.data.is_one() + } +} + +impl Signed for BigInt { + #[inline] + fn abs(&self) -> BigInt { + match self.sign { + Plus | NoSign => self.clone(), + Minus => BigInt::from_biguint(Plus, self.data.clone()), + } + } + + #[inline] + fn abs_sub(&self, other: &BigInt) -> BigInt { + if *self <= *other { + Zero::zero() + } else { + self - other + } + } + + #[inline] + fn signum(&self) -> BigInt { + match self.sign { + Plus => BigInt::from_biguint(Plus, One::one()), + Minus => BigInt::from_biguint(Minus, One::one()), + NoSign => Zero::zero(), + } + } + + #[inline] + fn is_positive(&self) -> bool { + self.sign == Plus + } + + #[inline] + fn is_negative(&self) -> bool { + self.sign == Minus + } +} + +/// Help function for pow +/// +/// Computes the effect of the exponent on the sign. +#[inline] +fn powsign<T: Integer>(sign: Sign, other: &T) -> Sign { + if other.is_zero() { + Plus + } else if sign != Minus { + sign + } else if other.is_odd() { + sign + } else { + -sign + } +} + +macro_rules! pow_impl { + ($T:ty) => { + impl<'a> Pow<$T> for &'a BigInt { + type Output = BigInt; + + #[inline] + fn pow(self, rhs: $T) -> BigInt { + BigInt::from_biguint(powsign(self.sign, &rhs), (&self.data).pow(rhs)) + } + } + + impl<'a, 'b> Pow<&'b $T> for &'a BigInt { + type Output = BigInt; + + #[inline] + fn pow(self, rhs: &$T) -> BigInt { + BigInt::from_biguint(powsign(self.sign, rhs), (&self.data).pow(rhs)) + } + } + }; +} + +pow_impl!(u8); +pow_impl!(u16); +pow_impl!(u32); +pow_impl!(u64); +pow_impl!(usize); +#[cfg(has_i128)] +pow_impl!(u128); +pow_impl!(BigUint); + +// A convenience method for getting the absolute value of an i32 in a u32. +#[inline] +fn i32_abs_as_u32(a: i32) -> u32 { + if a == i32::min_value() { + a as u32 + } else { + a.abs() as u32 + } +} + +// A convenience method for getting the absolute value of an i64 in a u64. +#[inline] +fn i64_abs_as_u64(a: i64) -> u64 { + if a == i64::min_value() { + a as u64 + } else { + a.abs() as u64 + } +} + +// A convenience method for getting the absolute value of an i128 in a u128. +#[cfg(has_i128)] +#[inline] +fn i128_abs_as_u128(a: i128) -> u128 { + if a == i128::min_value() { + a as u128 + } else { + a.abs() as u128 + } +} + +// We want to forward to BigUint::add, but it's not clear how that will go until +// we compare both sign and magnitude. So we duplicate this body for every +// val/ref combination, deferring that decision to BigUint's own forwarding. +macro_rules! bigint_add { + ($a:expr, $a_owned:expr, $a_data:expr, $b:expr, $b_owned:expr, $b_data:expr) => { + match ($a.sign, $b.sign) { + (_, NoSign) => $a_owned, + (NoSign, _) => $b_owned, + // same sign => keep the sign with the sum of magnitudes + (Plus, Plus) | (Minus, Minus) => BigInt::from_biguint($a.sign, $a_data + $b_data), + // opposite signs => keep the sign of the larger with the difference of magnitudes + (Plus, Minus) | (Minus, Plus) => match $a.data.cmp(&$b.data) { + Less => BigInt::from_biguint($b.sign, $b_data - $a_data), + Greater => BigInt::from_biguint($a.sign, $a_data - $b_data), + Equal => Zero::zero(), + }, + } + }; +} + +impl<'a, 'b> Add<&'b BigInt> for &'a BigInt { + type Output = BigInt; + + #[inline] + fn add(self, other: &BigInt) -> BigInt { + bigint_add!( + self, + self.clone(), + &self.data, + other, + other.clone(), + &other.data + ) + } +} + +impl<'a> Add<BigInt> for &'a BigInt { + type Output = BigInt; + + #[inline] + fn add(self, other: BigInt) -> BigInt { + bigint_add!(self, self.clone(), &self.data, other, other, other.data) + } +} + +impl<'a> Add<&'a BigInt> for BigInt { + type Output = BigInt; + + #[inline] + fn add(self, other: &BigInt) -> BigInt { + bigint_add!(self, self, self.data, other, other.clone(), &other.data) + } +} + +impl Add<BigInt> for BigInt { + type Output = BigInt; + + #[inline] + fn add(self, other: BigInt) -> BigInt { + bigint_add!(self, self, self.data, other, other, other.data) + } +} + +impl<'a> AddAssign<&'a BigInt> for BigInt { + #[inline] + fn add_assign(&mut self, other: &BigInt) { + let n = mem::replace(self, BigInt::zero()); + *self = n + other; + } +} +forward_val_assign!(impl AddAssign for BigInt, add_assign); + +promote_all_scalars!(impl Add for BigInt, add); +promote_all_scalars_assign!(impl AddAssign for BigInt, add_assign); +forward_all_scalar_binop_to_val_val_commutative!(impl Add<u32> for BigInt, add); +forward_all_scalar_binop_to_val_val_commutative!(impl Add<u64> for BigInt, add); +#[cfg(has_i128)] +forward_all_scalar_binop_to_val_val_commutative!(impl Add<u128> for BigInt, add); + +impl Add<u32> for BigInt { + type Output = BigInt; + + #[inline] + fn add(self, other: u32) -> BigInt { + match self.sign { + NoSign => From::from(other), + Plus => BigInt::from_biguint(Plus, self.data + other), + Minus => match self.data.cmp(&From::from(other)) { + Equal => Zero::zero(), + Less => BigInt::from_biguint(Plus, other - self.data), + Greater => BigInt::from_biguint(Minus, self.data - other), + }, + } + } +} +impl AddAssign<u32> for BigInt { + #[inline] + fn add_assign(&mut self, other: u32) { + let n = mem::replace(self, BigInt::zero()); + *self = n + other; + } +} + +impl Add<u64> for BigInt { + type Output = BigInt; + + #[inline] + fn add(self, other: u64) -> BigInt { + match self.sign { + NoSign => From::from(other), + Plus => BigInt::from_biguint(Plus, self.data + other), + Minus => match self.data.cmp(&From::from(other)) { + Equal => Zero::zero(), + Less => BigInt::from_biguint(Plus, other - self.data), + Greater => BigInt::from_biguint(Minus, self.data - other), + }, + } + } +} +impl AddAssign<u64> for BigInt { + #[inline] + fn add_assign(&mut self, other: u64) { + let n = mem::replace(self, BigInt::zero()); + *self = n + other; + } +} + +#[cfg(has_i128)] +impl Add<u128> for BigInt { + type Output = BigInt; + + #[inline] + fn add(self, other: u128) -> BigInt { + match self.sign { + NoSign => From::from(other), + Plus => BigInt::from_biguint(Plus, self.data + other), + Minus => match self.data.cmp(&From::from(other)) { + Equal => Zero::zero(), + Less => BigInt::from_biguint(Plus, other - self.data), + Greater => BigInt::from_biguint(Minus, self.data - other), + }, + } + } +} +#[cfg(has_i128)] +impl AddAssign<u128> for BigInt { + #[inline] + fn add_assign(&mut self, other: u128) { + let n = mem::replace(self, BigInt::zero()); + *self = n + other; + } +} + +forward_all_scalar_binop_to_val_val_commutative!(impl Add<i32> for BigInt, add); +forward_all_scalar_binop_to_val_val_commutative!(impl Add<i64> for BigInt, add); +#[cfg(has_i128)] +forward_all_scalar_binop_to_val_val_commutative!(impl Add<i128> for BigInt, add); + +impl Add<i32> for BigInt { + type Output = BigInt; + + #[inline] + fn add(self, other: i32) -> BigInt { + if other >= 0 { + self + other as u32 + } else { + self - i32_abs_as_u32(other) + } + } +} +impl AddAssign<i32> for BigInt { + #[inline] + fn add_assign(&mut self, other: i32) { + if other >= 0 { + *self += other as u32; + } else { + *self -= i32_abs_as_u32(other); + } + } +} + +impl Add<i64> for BigInt { + type Output = BigInt; + + #[inline] + fn add(self, other: i64) -> BigInt { + if other >= 0 { + self + other as u64 + } else { + self - i64_abs_as_u64(other) + } + } +} +impl AddAssign<i64> for BigInt { + #[inline] + fn add_assign(&mut self, other: i64) { + if other >= 0 { + *self += other as u64; + } else { + *self -= i64_abs_as_u64(other); + } + } +} + +#[cfg(has_i128)] +impl Add<i128> for BigInt { + type Output = BigInt; + + #[inline] + fn add(self, other: i128) -> BigInt { + if other >= 0 { + self + other as u128 + } else { + self - i128_abs_as_u128(other) + } + } +} +#[cfg(has_i128)] +impl AddAssign<i128> for BigInt { + #[inline] + fn add_assign(&mut self, other: i128) { + if other >= 0 { + *self += other as u128; + } else { + *self -= i128_abs_as_u128(other); + } + } +} + +// We want to forward to BigUint::sub, but it's not clear how that will go until +// we compare both sign and magnitude. So we duplicate this body for every +// val/ref combination, deferring that decision to BigUint's own forwarding. +macro_rules! bigint_sub { + ($a:expr, $a_owned:expr, $a_data:expr, $b:expr, $b_owned:expr, $b_data:expr) => { + match ($a.sign, $b.sign) { + (_, NoSign) => $a_owned, + (NoSign, _) => -$b_owned, + // opposite signs => keep the sign of the left with the sum of magnitudes + (Plus, Minus) | (Minus, Plus) => BigInt::from_biguint($a.sign, $a_data + $b_data), + // same sign => keep or toggle the sign of the left with the difference of magnitudes + (Plus, Plus) | (Minus, Minus) => match $a.data.cmp(&$b.data) { + Less => BigInt::from_biguint(-$a.sign, $b_data - $a_data), + Greater => BigInt::from_biguint($a.sign, $a_data - $b_data), + Equal => Zero::zero(), + }, + } + }; +} + +impl<'a, 'b> Sub<&'b BigInt> for &'a BigInt { + type Output = BigInt; + + #[inline] + fn sub(self, other: &BigInt) -> BigInt { + bigint_sub!( + self, + self.clone(), + &self.data, + other, + other.clone(), + &other.data + ) + } +} + +impl<'a> Sub<BigInt> for &'a BigInt { + type Output = BigInt; + + #[inline] + fn sub(self, other: BigInt) -> BigInt { + bigint_sub!(self, self.clone(), &self.data, other, other, other.data) + } +} + +impl<'a> Sub<&'a BigInt> for BigInt { + type Output = BigInt; + + #[inline] + fn sub(self, other: &BigInt) -> BigInt { + bigint_sub!(self, self, self.data, other, other.clone(), &other.data) + } +} + +impl Sub<BigInt> for BigInt { + type Output = BigInt; + + #[inline] + fn sub(self, other: BigInt) -> BigInt { + bigint_sub!(self, self, self.data, other, other, other.data) + } +} + +impl<'a> SubAssign<&'a BigInt> for BigInt { + #[inline] + fn sub_assign(&mut self, other: &BigInt) { + let n = mem::replace(self, BigInt::zero()); + *self = n - other; + } +} +forward_val_assign!(impl SubAssign for BigInt, sub_assign); + +promote_all_scalars!(impl Sub for BigInt, sub); +promote_all_scalars_assign!(impl SubAssign for BigInt, sub_assign); +forward_all_scalar_binop_to_val_val!(impl Sub<u32> for BigInt, sub); +forward_all_scalar_binop_to_val_val!(impl Sub<u64> for BigInt, sub); +#[cfg(has_i128)] +forward_all_scalar_binop_to_val_val!(impl Sub<u128> for BigInt, sub); + +impl Sub<u32> for BigInt { + type Output = BigInt; + + #[inline] + fn sub(self, other: u32) -> BigInt { + match self.sign { + NoSign => BigInt::from_biguint(Minus, From::from(other)), + Minus => BigInt::from_biguint(Minus, self.data + other), + Plus => match self.data.cmp(&From::from(other)) { + Equal => Zero::zero(), + Greater => BigInt::from_biguint(Plus, self.data - other), + Less => BigInt::from_biguint(Minus, other - self.data), + }, + } + } +} +impl SubAssign<u32> for BigInt { + #[inline] + fn sub_assign(&mut self, other: u32) { + let n = mem::replace(self, BigInt::zero()); + *self = n - other; + } +} + +impl Sub<BigInt> for u32 { + type Output = BigInt; + + #[inline] + fn sub(self, other: BigInt) -> BigInt { + -(other - self) + } +} + +impl Sub<BigInt> for u64 { + type Output = BigInt; + + #[inline] + fn sub(self, other: BigInt) -> BigInt { + -(other - self) + } +} +#[cfg(has_i128)] +impl Sub<BigInt> for u128 { + type Output = BigInt; + + #[inline] + fn sub(self, other: BigInt) -> BigInt { + -(other - self) + } +} + +impl Sub<u64> for BigInt { + type Output = BigInt; + + #[inline] + fn sub(self, other: u64) -> BigInt { + match self.sign { + NoSign => BigInt::from_biguint(Minus, From::from(other)), + Minus => BigInt::from_biguint(Minus, self.data + other), + Plus => match self.data.cmp(&From::from(other)) { + Equal => Zero::zero(), + Greater => BigInt::from_biguint(Plus, self.data - other), + Less => BigInt::from_biguint(Minus, other - self.data), + }, + } + } +} +impl SubAssign<u64> for BigInt { + #[inline] + fn sub_assign(&mut self, other: u64) { + let n = mem::replace(self, BigInt::zero()); + *self = n - other; + } +} + +#[cfg(has_i128)] +impl Sub<u128> for BigInt { + type Output = BigInt; + + #[inline] + fn sub(self, other: u128) -> BigInt { + match self.sign { + NoSign => BigInt::from_biguint(Minus, From::from(other)), + Minus => BigInt::from_biguint(Minus, self.data + other), + Plus => match self.data.cmp(&From::from(other)) { + Equal => Zero::zero(), + Greater => BigInt::from_biguint(Plus, self.data - other), + Less => BigInt::from_biguint(Minus, other - self.data), + }, + } + } +} +#[cfg(has_i128)] +impl SubAssign<u128> for BigInt { + #[inline] + fn sub_assign(&mut self, other: u128) { + let n = mem::replace(self, BigInt::zero()); + *self = n - other; + } +} + +forward_all_scalar_binop_to_val_val!(impl Sub<i32> for BigInt, sub); +forward_all_scalar_binop_to_val_val!(impl Sub<i64> for BigInt, sub); +#[cfg(has_i128)] +forward_all_scalar_binop_to_val_val!(impl Sub<i128> for BigInt, sub); + +impl Sub<i32> for BigInt { + type Output = BigInt; + + #[inline] + fn sub(self, other: i32) -> BigInt { + if other >= 0 { + self - other as u32 + } else { + self + i32_abs_as_u32(other) + } + } +} +impl SubAssign<i32> for BigInt { + #[inline] + fn sub_assign(&mut self, other: i32) { + if other >= 0 { + *self -= other as u32; + } else { + *self += i32_abs_as_u32(other); + } + } +} + +impl Sub<BigInt> for i32 { + type Output = BigInt; + + #[inline] + fn sub(self, other: BigInt) -> BigInt { + if self >= 0 { + self as u32 - other + } else { + -other - i32_abs_as_u32(self) + } + } +} + +impl Sub<i64> for BigInt { + type Output = BigInt; + + #[inline] + fn sub(self, other: i64) -> BigInt { + if other >= 0 { + self - other as u64 + } else { + self + i64_abs_as_u64(other) + } + } +} +impl SubAssign<i64> for BigInt { + #[inline] + fn sub_assign(&mut self, other: i64) { + if other >= 0 { + *self -= other as u64; + } else { + *self += i64_abs_as_u64(other); + } + } +} + +impl Sub<BigInt> for i64 { + type Output = BigInt; + + #[inline] + fn sub(self, other: BigInt) -> BigInt { + if self >= 0 { + self as u64 - other + } else { + -other - i64_abs_as_u64(self) + } + } +} + +#[cfg(has_i128)] +impl Sub<i128> for BigInt { + type Output = BigInt; + + #[inline] + fn sub(self, other: i128) -> BigInt { + if other >= 0 { + self - other as u128 + } else { + self + i128_abs_as_u128(other) + } + } +} +#[cfg(has_i128)] +impl SubAssign<i128> for BigInt { + #[inline] + fn sub_assign(&mut self, other: i128) { + if other >= 0 { + *self -= other as u128; + } else { + *self += i128_abs_as_u128(other); + } + } +} +#[cfg(has_i128)] +impl Sub<BigInt> for i128 { + type Output = BigInt; + + #[inline] + fn sub(self, other: BigInt) -> BigInt { + if self >= 0 { + self as u128 - other + } else { + -other - i128_abs_as_u128(self) + } + } +} + +forward_all_binop_to_ref_ref!(impl Mul for BigInt, mul); + +impl<'a, 'b> Mul<&'b BigInt> for &'a BigInt { + type Output = BigInt; + + #[inline] + fn mul(self, other: &BigInt) -> BigInt { + BigInt::from_biguint(self.sign * other.sign, &self.data * &other.data) + } +} + +impl<'a> MulAssign<&'a BigInt> for BigInt { + #[inline] + fn mul_assign(&mut self, other: &BigInt) { + *self = &*self * other; + } +} +forward_val_assign!(impl MulAssign for BigInt, mul_assign); + +promote_all_scalars!(impl Mul for BigInt, mul); +promote_all_scalars_assign!(impl MulAssign for BigInt, mul_assign); +forward_all_scalar_binop_to_val_val_commutative!(impl Mul<u32> for BigInt, mul); +forward_all_scalar_binop_to_val_val_commutative!(impl Mul<u64> for BigInt, mul); +#[cfg(has_i128)] +forward_all_scalar_binop_to_val_val_commutative!(impl Mul<u128> for BigInt, mul); + +impl Mul<u32> for BigInt { + type Output = BigInt; + + #[inline] + fn mul(self, other: u32) -> BigInt { + BigInt::from_biguint(self.sign, self.data * other) + } +} + +impl MulAssign<u32> for BigInt { + #[inline] + fn mul_assign(&mut self, other: u32) { + self.data *= other; + if self.data.is_zero() { + self.sign = NoSign; + } + } +} + +impl Mul<u64> for BigInt { + type Output = BigInt; + + #[inline] + fn mul(self, other: u64) -> BigInt { + BigInt::from_biguint(self.sign, self.data * other) + } +} + +impl MulAssign<u64> for BigInt { + #[inline] + fn mul_assign(&mut self, other: u64) { + self.data *= other; + if self.data.is_zero() { + self.sign = NoSign; + } + } +} +#[cfg(has_i128)] +impl Mul<u128> for BigInt { + type Output = BigInt; + + #[inline] + fn mul(self, other: u128) -> BigInt { + BigInt::from_biguint(self.sign, self.data * other) + } +} +#[cfg(has_i128)] +impl MulAssign<u128> for BigInt { + #[inline] + fn mul_assign(&mut self, other: u128) { + self.data *= other; + if self.data.is_zero() { + self.sign = NoSign; + } + } +} + +forward_all_scalar_binop_to_val_val_commutative!(impl Mul<i32> for BigInt, mul); +forward_all_scalar_binop_to_val_val_commutative!(impl Mul<i64> for BigInt, mul); +#[cfg(has_i128)] +forward_all_scalar_binop_to_val_val_commutative!(impl Mul<i128> for BigInt, mul); + +impl Mul<i32> for BigInt { + type Output = BigInt; + + #[inline] + fn mul(self, other: i32) -> BigInt { + if other >= 0 { + self * other as u32 + } else { + -(self * i32_abs_as_u32(other)) + } + } +} + +impl MulAssign<i32> for BigInt { + #[inline] + fn mul_assign(&mut self, other: i32) { + if other >= 0 { + *self *= other as u32; + } else { + self.sign = -self.sign; + *self *= i32_abs_as_u32(other); + } + } +} + +impl Mul<i64> for BigInt { + type Output = BigInt; + + #[inline] + fn mul(self, other: i64) -> BigInt { + if other >= 0 { + self * other as u64 + } else { + -(self * i64_abs_as_u64(other)) + } + } +} + +impl MulAssign<i64> for BigInt { + #[inline] + fn mul_assign(&mut self, other: i64) { + if other >= 0 { + *self *= other as u64; + } else { + self.sign = -self.sign; + *self *= i64_abs_as_u64(other); + } + } +} +#[cfg(has_i128)] +impl Mul<i128> for BigInt { + type Output = BigInt; + + #[inline] + fn mul(self, other: i128) -> BigInt { + if other >= 0 { + self * other as u128 + } else { + -(self * i128_abs_as_u128(other)) + } + } +} +#[cfg(has_i128)] +impl MulAssign<i128> for BigInt { + #[inline] + fn mul_assign(&mut self, other: i128) { + if other >= 0 { + *self *= other as u128; + } else { + self.sign = -self.sign; + *self *= i128_abs_as_u128(other); + } + } +} + +forward_all_binop_to_ref_ref!(impl Div for BigInt, div); + +impl<'a, 'b> Div<&'b BigInt> for &'a BigInt { + type Output = BigInt; + + #[inline] + fn div(self, other: &BigInt) -> BigInt { + let (q, _) = self.div_rem(other); + q + } +} + +impl<'a> DivAssign<&'a BigInt> for BigInt { + #[inline] + fn div_assign(&mut self, other: &BigInt) { + *self = &*self / other; + } +} +forward_val_assign!(impl DivAssign for BigInt, div_assign); + +promote_all_scalars!(impl Div for BigInt, div); +promote_all_scalars_assign!(impl DivAssign for BigInt, div_assign); +forward_all_scalar_binop_to_val_val!(impl Div<u32> for BigInt, div); +forward_all_scalar_binop_to_val_val!(impl Div<u64> for BigInt, div); +#[cfg(has_i128)] +forward_all_scalar_binop_to_val_val!(impl Div<u128> for BigInt, div); + +impl Div<u32> for BigInt { + type Output = BigInt; + + #[inline] + fn div(self, other: u32) -> BigInt { + BigInt::from_biguint(self.sign, self.data / other) + } +} + +impl DivAssign<u32> for BigInt { + #[inline] + fn div_assign(&mut self, other: u32) { + self.data /= other; + if self.data.is_zero() { + self.sign = NoSign; + } + } +} + +impl Div<BigInt> for u32 { + type Output = BigInt; + + #[inline] + fn div(self, other: BigInt) -> BigInt { + BigInt::from_biguint(other.sign, self / other.data) + } +} + +impl Div<u64> for BigInt { + type Output = BigInt; + + #[inline] + fn div(self, other: u64) -> BigInt { + BigInt::from_biguint(self.sign, self.data / other) + } +} + +impl DivAssign<u64> for BigInt { + #[inline] + fn div_assign(&mut self, other: u64) { + self.data /= other; + if self.data.is_zero() { + self.sign = NoSign; + } + } +} + +impl Div<BigInt> for u64 { + type Output = BigInt; + + #[inline] + fn div(self, other: BigInt) -> BigInt { + BigInt::from_biguint(other.sign, self / other.data) + } +} + +#[cfg(has_i128)] +impl Div<u128> for BigInt { + type Output = BigInt; + + #[inline] + fn div(self, other: u128) -> BigInt { + BigInt::from_biguint(self.sign, self.data / other) + } +} + +#[cfg(has_i128)] +impl DivAssign<u128> for BigInt { + #[inline] + fn div_assign(&mut self, other: u128) { + self.data /= other; + if self.data.is_zero() { + self.sign = NoSign; + } + } +} + +#[cfg(has_i128)] +impl Div<BigInt> for u128 { + type Output = BigInt; + + #[inline] + fn div(self, other: BigInt) -> BigInt { + BigInt::from_biguint(other.sign, self / other.data) + } +} + +forward_all_scalar_binop_to_val_val!(impl Div<i32> for BigInt, div); +forward_all_scalar_binop_to_val_val!(impl Div<i64> for BigInt, div); +#[cfg(has_i128)] +forward_all_scalar_binop_to_val_val!(impl Div<i128> for BigInt, div); + +impl Div<i32> for BigInt { + type Output = BigInt; + + #[inline] + fn div(self, other: i32) -> BigInt { + if other >= 0 { + self / other as u32 + } else { + -(self / i32_abs_as_u32(other)) + } + } +} + +impl DivAssign<i32> for BigInt { + #[inline] + fn div_assign(&mut self, other: i32) { + if other >= 0 { + *self /= other as u32; + } else { + self.sign = -self.sign; + *self /= i32_abs_as_u32(other); + } + } +} + +impl Div<BigInt> for i32 { + type Output = BigInt; + + #[inline] + fn div(self, other: BigInt) -> BigInt { + if self >= 0 { + self as u32 / other + } else { + -(i32_abs_as_u32(self) / other) + } + } +} + +impl Div<i64> for BigInt { + type Output = BigInt; + + #[inline] + fn div(self, other: i64) -> BigInt { + if other >= 0 { + self / other as u64 + } else { + -(self / i64_abs_as_u64(other)) + } + } +} + +impl DivAssign<i64> for BigInt { + #[inline] + fn div_assign(&mut self, other: i64) { + if other >= 0 { + *self /= other as u64; + } else { + self.sign = -self.sign; + *self /= i64_abs_as_u64(other); + } + } +} + +impl Div<BigInt> for i64 { + type Output = BigInt; + + #[inline] + fn div(self, other: BigInt) -> BigInt { + if self >= 0 { + self as u64 / other + } else { + -(i64_abs_as_u64(self) / other) + } + } +} + +#[cfg(has_i128)] +impl Div<i128> for BigInt { + type Output = BigInt; + + #[inline] + fn div(self, other: i128) -> BigInt { + if other >= 0 { + self / other as u128 + } else { + -(self / i128_abs_as_u128(other)) + } + } +} + +#[cfg(has_i128)] +impl DivAssign<i128> for BigInt { + #[inline] + fn div_assign(&mut self, other: i128) { + if other >= 0 { + *self /= other as u128; + } else { + self.sign = -self.sign; + *self /= i128_abs_as_u128(other); + } + } +} + +#[cfg(has_i128)] +impl Div<BigInt> for i128 { + type Output = BigInt; + + #[inline] + fn div(self, other: BigInt) -> BigInt { + if self >= 0 { + self as u128 / other + } else { + -(i128_abs_as_u128(self) / other) + } + } +} + +forward_all_binop_to_ref_ref!(impl Rem for BigInt, rem); + +impl<'a, 'b> Rem<&'b BigInt> for &'a BigInt { + type Output = BigInt; + + #[inline] + fn rem(self, other: &BigInt) -> BigInt { + let (_, r) = self.div_rem(other); + r + } +} + +impl<'a> RemAssign<&'a BigInt> for BigInt { + #[inline] + fn rem_assign(&mut self, other: &BigInt) { + *self = &*self % other; + } +} +forward_val_assign!(impl RemAssign for BigInt, rem_assign); + +promote_all_scalars!(impl Rem for BigInt, rem); +promote_all_scalars_assign!(impl RemAssign for BigInt, rem_assign); +forward_all_scalar_binop_to_val_val!(impl Rem<u32> for BigInt, rem); +forward_all_scalar_binop_to_val_val!(impl Rem<u64> for BigInt, rem); +#[cfg(has_i128)] +forward_all_scalar_binop_to_val_val!(impl Rem<u128> for BigInt, rem); + +impl Rem<u32> for BigInt { + type Output = BigInt; + + #[inline] + fn rem(self, other: u32) -> BigInt { + BigInt::from_biguint(self.sign, self.data % other) + } +} + +impl RemAssign<u32> for BigInt { + #[inline] + fn rem_assign(&mut self, other: u32) { + self.data %= other; + if self.data.is_zero() { + self.sign = NoSign; + } + } +} + +impl Rem<BigInt> for u32 { + type Output = BigInt; + + #[inline] + fn rem(self, other: BigInt) -> BigInt { + BigInt::from_biguint(Plus, self % other.data) + } +} + +impl Rem<u64> for BigInt { + type Output = BigInt; + + #[inline] + fn rem(self, other: u64) -> BigInt { + BigInt::from_biguint(self.sign, self.data % other) + } +} + +impl RemAssign<u64> for BigInt { + #[inline] + fn rem_assign(&mut self, other: u64) { + self.data %= other; + if self.data.is_zero() { + self.sign = NoSign; + } + } +} + +impl Rem<BigInt> for u64 { + type Output = BigInt; + + #[inline] + fn rem(self, other: BigInt) -> BigInt { + BigInt::from_biguint(Plus, self % other.data) + } +} + +#[cfg(has_i128)] +impl Rem<u128> for BigInt { + type Output = BigInt; + + #[inline] + fn rem(self, other: u128) -> BigInt { + BigInt::from_biguint(self.sign, self.data % other) + } +} + +#[cfg(has_i128)] +impl RemAssign<u128> for BigInt { + #[inline] + fn rem_assign(&mut self, other: u128) { + self.data %= other; + if self.data.is_zero() { + self.sign = NoSign; + } + } +} + +#[cfg(has_i128)] +impl Rem<BigInt> for u128 { + type Output = BigInt; + + #[inline] + fn rem(self, other: BigInt) -> BigInt { + BigInt::from_biguint(Plus, self % other.data) + } +} + +forward_all_scalar_binop_to_val_val!(impl Rem<i32> for BigInt, rem); +forward_all_scalar_binop_to_val_val!(impl Rem<i64> for BigInt, rem); +#[cfg(has_i128)] +forward_all_scalar_binop_to_val_val!(impl Rem<i128> for BigInt, rem); + +impl Rem<i32> for BigInt { + type Output = BigInt; + + #[inline] + fn rem(self, other: i32) -> BigInt { + if other >= 0 { + self % other as u32 + } else { + self % i32_abs_as_u32(other) + } + } +} + +impl RemAssign<i32> for BigInt { + #[inline] + fn rem_assign(&mut self, other: i32) { + if other >= 0 { + *self %= other as u32; + } else { + *self %= i32_abs_as_u32(other); + } + } +} + +impl Rem<BigInt> for i32 { + type Output = BigInt; + + #[inline] + fn rem(self, other: BigInt) -> BigInt { + if self >= 0 { + self as u32 % other + } else { + -(i32_abs_as_u32(self) % other) + } + } +} + +impl Rem<i64> for BigInt { + type Output = BigInt; + + #[inline] + fn rem(self, other: i64) -> BigInt { + if other >= 0 { + self % other as u64 + } else { + self % i64_abs_as_u64(other) + } + } +} + +impl RemAssign<i64> for BigInt { + #[inline] + fn rem_assign(&mut self, other: i64) { + if other >= 0 { + *self %= other as u64; + } else { + *self %= i64_abs_as_u64(other); + } + } +} + +impl Rem<BigInt> for i64 { + type Output = BigInt; + + #[inline] + fn rem(self, other: BigInt) -> BigInt { + if self >= 0 { + self as u64 % other + } else { + -(i64_abs_as_u64(self) % other) + } + } +} + +#[cfg(has_i128)] +impl Rem<i128> for BigInt { + type Output = BigInt; + + #[inline] + fn rem(self, other: i128) -> BigInt { + if other >= 0 { + self % other as u128 + } else { + self % i128_abs_as_u128(other) + } + } +} +#[cfg(has_i128)] +impl RemAssign<i128> for BigInt { + #[inline] + fn rem_assign(&mut self, other: i128) { + if other >= 0 { + *self %= other as u128; + } else { + *self %= i128_abs_as_u128(other); + } + } +} +#[cfg(has_i128)] +impl Rem<BigInt> for i128 { + type Output = BigInt; + + #[inline] + fn rem(self, other: BigInt) -> BigInt { + if self >= 0 { + self as u128 % other + } else { + -(i128_abs_as_u128(self) % other) + } + } +} + +impl Neg for BigInt { + type Output = BigInt; + + #[inline] + fn neg(mut self) -> BigInt { + self.sign = -self.sign; + self + } +} + +impl<'a> Neg for &'a BigInt { + type Output = BigInt; + + #[inline] + fn neg(self) -> BigInt { + -self.clone() + } +} + +impl CheckedAdd for BigInt { + #[inline] + fn checked_add(&self, v: &BigInt) -> Option<BigInt> { + return Some(self.add(v)); + } +} + +impl CheckedSub for BigInt { + #[inline] + fn checked_sub(&self, v: &BigInt) -> Option<BigInt> { + return Some(self.sub(v)); + } +} + +impl CheckedMul for BigInt { + #[inline] + fn checked_mul(&self, v: &BigInt) -> Option<BigInt> { + return Some(self.mul(v)); + } +} + +impl CheckedDiv for BigInt { + #[inline] + fn checked_div(&self, v: &BigInt) -> Option<BigInt> { + if v.is_zero() { + return None; + } + return Some(self.div(v)); + } +} + +impl Integer for BigInt { + #[inline] + fn div_rem(&self, other: &BigInt) -> (BigInt, BigInt) { + // r.sign == self.sign + let (d_ui, r_ui) = self.data.div_mod_floor(&other.data); + let d = BigInt::from_biguint(self.sign, d_ui); + let r = BigInt::from_biguint(self.sign, r_ui); + if other.is_negative() { + (-d, r) + } else { + (d, r) + } + } + + #[inline] + fn div_floor(&self, other: &BigInt) -> BigInt { + let (d, _) = self.div_mod_floor(other); + d + } + + #[inline] + fn mod_floor(&self, other: &BigInt) -> BigInt { + let (_, m) = self.div_mod_floor(other); + m + } + + fn div_mod_floor(&self, other: &BigInt) -> (BigInt, BigInt) { + // m.sign == other.sign + let (d_ui, m_ui) = self.data.div_rem(&other.data); + let d = BigInt::from_biguint(Plus, d_ui); + let m = BigInt::from_biguint(Plus, m_ui); + let one: BigInt = One::one(); + match (self.sign, other.sign) { + (_, NoSign) => panic!(), + (Plus, Plus) | (NoSign, Plus) => (d, m), + (Plus, Minus) | (NoSign, Minus) => { + if m.is_zero() { + (-d, Zero::zero()) + } else { + (-d - one, m + other) + } + } + (Minus, Plus) => { + if m.is_zero() { + (-d, Zero::zero()) + } else { + (-d - one, other - m) + } + } + (Minus, Minus) => (d, -m), + } + } + + /// Calculates the Greatest Common Divisor (GCD) of the number and `other`. + /// + /// The result is always positive. + #[inline] + fn gcd(&self, other: &BigInt) -> BigInt { + BigInt::from_biguint(Plus, self.data.gcd(&other.data)) + } + + /// Calculates the Lowest Common Multiple (LCM) of the number and `other`. + #[inline] + fn lcm(&self, other: &BigInt) -> BigInt { + BigInt::from_biguint(Plus, self.data.lcm(&other.data)) + } + + /// Deprecated, use `is_multiple_of` instead. + #[inline] + fn divides(&self, other: &BigInt) -> bool { + return self.is_multiple_of(other); + } + + /// Returns `true` if the number is a multiple of `other`. + #[inline] + fn is_multiple_of(&self, other: &BigInt) -> bool { + self.data.is_multiple_of(&other.data) + } + + /// Returns `true` if the number is divisible by `2`. + #[inline] + fn is_even(&self) -> bool { + self.data.is_even() + } + + /// Returns `true` if the number is not divisible by `2`. + #[inline] + fn is_odd(&self) -> bool { + self.data.is_odd() + } +} + +impl Roots for BigInt { + fn nth_root(&self, n: u32) -> Self { + assert!( + !(self.is_negative() && n.is_even()), + "root of degree {} is imaginary", + n + ); + + BigInt::from_biguint(self.sign, self.data.nth_root(n)) + } + + fn sqrt(&self) -> Self { + assert!(!self.is_negative(), "square root is imaginary"); + + BigInt::from_biguint(self.sign, self.data.sqrt()) + } + + fn cbrt(&self) -> Self { + BigInt::from_biguint(self.sign, self.data.cbrt()) + } +} + +impl ToPrimitive for BigInt { + #[inline] + fn to_i64(&self) -> Option<i64> { + match self.sign { + Plus => self.data.to_i64(), + NoSign => Some(0), + Minus => self.data.to_u64().and_then(|n| { + let m: u64 = 1 << 63; + if n < m { + Some(-(n as i64)) + } else if n == m { + Some(i64::MIN) + } else { + None + } + }), + } + } + + #[inline] + #[cfg(has_i128)] + fn to_i128(&self) -> Option<i128> { + match self.sign { + Plus => self.data.to_i128(), + NoSign => Some(0), + Minus => self.data.to_u128().and_then(|n| { + let m: u128 = 1 << 127; + if n < m { + Some(-(n as i128)) + } else if n == m { + Some(i128::MIN) + } else { + None + } + }), + } + } + + #[inline] + fn to_u64(&self) -> Option<u64> { + match self.sign { + Plus => self.data.to_u64(), + NoSign => Some(0), + Minus => None, + } + } + + #[inline] + #[cfg(has_i128)] + fn to_u128(&self) -> Option<u128> { + match self.sign { + Plus => self.data.to_u128(), + NoSign => Some(0), + Minus => None, + } + } + + #[inline] + fn to_f32(&self) -> Option<f32> { + self.data + .to_f32() + .map(|n| if self.sign == Minus { -n } else { n }) + } + + #[inline] + fn to_f64(&self) -> Option<f64> { + self.data + .to_f64() + .map(|n| if self.sign == Minus { -n } else { n }) + } +} + +impl FromPrimitive for BigInt { + #[inline] + fn from_i64(n: i64) -> Option<BigInt> { + Some(BigInt::from(n)) + } + + #[inline] + #[cfg(has_i128)] + fn from_i128(n: i128) -> Option<BigInt> { + Some(BigInt::from(n)) + } + + #[inline] + fn from_u64(n: u64) -> Option<BigInt> { + Some(BigInt::from(n)) + } + + #[inline] + #[cfg(has_i128)] + fn from_u128(n: u128) -> Option<BigInt> { + Some(BigInt::from(n)) + } + + #[inline] + fn from_f64(n: f64) -> Option<BigInt> { + if n >= 0.0 { + BigUint::from_f64(n).map(|x| BigInt::from_biguint(Plus, x)) + } else { + BigUint::from_f64(-n).map(|x| BigInt::from_biguint(Minus, x)) + } + } +} + +impl From<i64> for BigInt { + #[inline] + fn from(n: i64) -> Self { + if n >= 0 { + BigInt::from(n as u64) + } else { + let u = u64::MAX - (n as u64) + 1; + BigInt { + sign: Minus, + data: BigUint::from(u), + } + } + } +} + +#[cfg(has_i128)] +impl From<i128> for BigInt { + #[inline] + fn from(n: i128) -> Self { + if n >= 0 { + BigInt::from(n as u128) + } else { + let u = u128::MAX - (n as u128) + 1; + BigInt { + sign: Minus, + data: BigUint::from(u), + } + } + } +} + +macro_rules! impl_bigint_from_int { + ($T:ty) => { + impl From<$T> for BigInt { + #[inline] + fn from(n: $T) -> Self { + BigInt::from(n as i64) + } + } + }; +} + +impl_bigint_from_int!(i8); +impl_bigint_from_int!(i16); +impl_bigint_from_int!(i32); +impl_bigint_from_int!(isize); + +impl From<u64> for BigInt { + #[inline] + fn from(n: u64) -> Self { + if n > 0 { + BigInt { + sign: Plus, + data: BigUint::from(n), + } + } else { + BigInt::zero() + } + } +} + +#[cfg(has_i128)] +impl From<u128> for BigInt { + #[inline] + fn from(n: u128) -> Self { + if n > 0 { + BigInt { + sign: Plus, + data: BigUint::from(n), + } + } else { + BigInt::zero() + } + } +} + +macro_rules! impl_bigint_from_uint { + ($T:ty) => { + impl From<$T> for BigInt { + #[inline] + fn from(n: $T) -> Self { + BigInt::from(n as u64) + } + } + }; +} + +impl_bigint_from_uint!(u8); +impl_bigint_from_uint!(u16); +impl_bigint_from_uint!(u32); +impl_bigint_from_uint!(usize); + +impl From<BigUint> for BigInt { + #[inline] + fn from(n: BigUint) -> Self { + if n.is_zero() { + BigInt::zero() + } else { + BigInt { + sign: Plus, + data: n, + } + } + } +} + +impl IntDigits for BigInt { + #[inline] + fn digits(&self) -> &[BigDigit] { + self.data.digits() + } + #[inline] + fn digits_mut(&mut self) -> &mut Vec<BigDigit> { + self.data.digits_mut() + } + #[inline] + fn normalize(&mut self) { + self.data.normalize(); + if self.data.is_zero() { + self.sign = NoSign; + } + } + #[inline] + fn capacity(&self) -> usize { + self.data.capacity() + } + #[inline] + fn len(&self) -> usize { + self.data.len() + } +} + +#[cfg(feature = "serde")] +impl serde::Serialize for BigInt { + fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> + where + S: serde::Serializer, + { + // Note: do not change the serialization format, or it may break + // forward and backward compatibility of serialized data! + (self.sign, &self.data).serialize(serializer) + } +} + +#[cfg(feature = "serde")] +impl<'de> serde::Deserialize<'de> for BigInt { + fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> + where + D: serde::Deserializer<'de>, + { + let (sign, data) = serde::Deserialize::deserialize(deserializer)?; + Ok(BigInt::from_biguint(sign, data)) + } +} + +/// A generic trait for converting a value to a `BigInt`. This may return +/// `None` when converting from `f32` or `f64`, and will always succeed +/// when converting from any integer or unsigned primitive, or `BigUint`. +pub trait ToBigInt { + /// Converts the value of `self` to a `BigInt`. + fn to_bigint(&self) -> Option<BigInt>; +} + +impl ToBigInt for BigInt { + #[inline] + fn to_bigint(&self) -> Option<BigInt> { + Some(self.clone()) + } +} + +impl ToBigInt for BigUint { + #[inline] + fn to_bigint(&self) -> Option<BigInt> { + if self.is_zero() { + Some(Zero::zero()) + } else { + Some(BigInt { + sign: Plus, + data: self.clone(), + }) + } + } +} + +impl biguint::ToBigUint for BigInt { + #[inline] + fn to_biguint(&self) -> Option<BigUint> { + match self.sign() { + Plus => Some(self.data.clone()), + NoSign => Some(Zero::zero()), + Minus => None, + } + } +} + +macro_rules! impl_to_bigint { + ($T:ty, $from_ty:path) => { + impl ToBigInt for $T { + #[inline] + fn to_bigint(&self) -> Option<BigInt> { + $from_ty(*self) + } + } + }; +} + +impl_to_bigint!(isize, FromPrimitive::from_isize); +impl_to_bigint!(i8, FromPrimitive::from_i8); +impl_to_bigint!(i16, FromPrimitive::from_i16); +impl_to_bigint!(i32, FromPrimitive::from_i32); +impl_to_bigint!(i64, FromPrimitive::from_i64); +#[cfg(has_i128)] +impl_to_bigint!(i128, FromPrimitive::from_i128); + +impl_to_bigint!(usize, FromPrimitive::from_usize); +impl_to_bigint!(u8, FromPrimitive::from_u8); +impl_to_bigint!(u16, FromPrimitive::from_u16); +impl_to_bigint!(u32, FromPrimitive::from_u32); +impl_to_bigint!(u64, FromPrimitive::from_u64); +#[cfg(has_i128)] +impl_to_bigint!(u128, FromPrimitive::from_u128); + +impl_to_bigint!(f32, FromPrimitive::from_f32); +impl_to_bigint!(f64, FromPrimitive::from_f64); + +impl BigInt { + /// Creates and initializes a BigInt. + /// + /// The digits are in little-endian base 2<sup>32</sup>. + #[inline] + pub fn new(sign: Sign, digits: Vec<u32>) -> BigInt { + BigInt::from_biguint(sign, BigUint::new(digits)) + } + + /// Creates and initializes a `BigInt`. + /// + /// The digits are in little-endian base 2<sup>32</sup>. + #[inline] + pub fn from_biguint(mut sign: Sign, mut data: BigUint) -> BigInt { + if sign == NoSign { + data.assign_from_slice(&[]); + } else if data.is_zero() { + sign = NoSign; + } + + BigInt { + sign: sign, + data: data, + } + } + + /// Creates and initializes a `BigInt`. + #[inline] + pub fn from_slice(sign: Sign, slice: &[u32]) -> BigInt { + BigInt::from_biguint(sign, BigUint::from_slice(slice)) + } + + /// Reinitializes a `BigInt`. + #[inline] + pub fn assign_from_slice(&mut self, sign: Sign, slice: &[u32]) { + if sign == NoSign { + self.data.assign_from_slice(&[]); + self.sign = NoSign; + } else { + self.data.assign_from_slice(slice); + self.sign = match self.data.is_zero() { + true => NoSign, + false => sign, + } + } + } + + /// Creates and initializes a `BigInt`. + /// + /// The bytes are in big-endian byte order. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::{BigInt, Sign}; + /// + /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"A"), + /// BigInt::parse_bytes(b"65", 10).unwrap()); + /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"AA"), + /// BigInt::parse_bytes(b"16705", 10).unwrap()); + /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"AB"), + /// BigInt::parse_bytes(b"16706", 10).unwrap()); + /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"Hello world!"), + /// BigInt::parse_bytes(b"22405534230753963835153736737", 10).unwrap()); + /// ``` + #[inline] + pub fn from_bytes_be(sign: Sign, bytes: &[u8]) -> BigInt { + BigInt::from_biguint(sign, BigUint::from_bytes_be(bytes)) + } + + /// Creates and initializes a `BigInt`. + /// + /// The bytes are in little-endian byte order. + #[inline] + pub fn from_bytes_le(sign: Sign, bytes: &[u8]) -> BigInt { + BigInt::from_biguint(sign, BigUint::from_bytes_le(bytes)) + } + + /// Creates and initializes a `BigInt` from an array of bytes in + /// two's complement binary representation. + /// + /// The digits are in big-endian base 2<sup>8</sup>. + #[inline] + pub fn from_signed_bytes_be(digits: &[u8]) -> BigInt { + let sign = match digits.first() { + Some(v) if *v > 0x7f => Sign::Minus, + Some(_) => Sign::Plus, + None => return BigInt::zero(), + }; + + if sign == Sign::Minus { + // two's-complement the content to retrieve the magnitude + let mut digits = Vec::from(digits); + twos_complement_be(&mut digits); + BigInt::from_biguint(sign, BigUint::from_bytes_be(&*digits)) + } else { + BigInt::from_biguint(sign, BigUint::from_bytes_be(digits)) + } + } + + /// Creates and initializes a `BigInt` from an array of bytes in two's complement. + /// + /// The digits are in little-endian base 2<sup>8</sup>. + #[inline] + pub fn from_signed_bytes_le(digits: &[u8]) -> BigInt { + let sign = match digits.last() { + Some(v) if *v > 0x7f => Sign::Minus, + Some(_) => Sign::Plus, + None => return BigInt::zero(), + }; + + if sign == Sign::Minus { + // two's-complement the content to retrieve the magnitude + let mut digits = Vec::from(digits); + twos_complement_le(&mut digits); + BigInt::from_biguint(sign, BigUint::from_bytes_le(&*digits)) + } else { + BigInt::from_biguint(sign, BigUint::from_bytes_le(digits)) + } + } + + /// Creates and initializes a `BigInt`. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::{BigInt, ToBigInt}; + /// + /// assert_eq!(BigInt::parse_bytes(b"1234", 10), ToBigInt::to_bigint(&1234)); + /// assert_eq!(BigInt::parse_bytes(b"ABCD", 16), ToBigInt::to_bigint(&0xABCD)); + /// assert_eq!(BigInt::parse_bytes(b"G", 16), None); + /// ``` + #[inline] + pub fn parse_bytes(buf: &[u8], radix: u32) -> Option<BigInt> { + str::from_utf8(buf) + .ok() + .and_then(|s| BigInt::from_str_radix(s, radix).ok()) + } + + /// Creates and initializes a `BigInt`. Each u8 of the input slice is + /// interpreted as one digit of the number + /// and must therefore be less than `radix`. + /// + /// The bytes are in big-endian byte order. + /// `radix` must be in the range `2...256`. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::{BigInt, Sign}; + /// + /// let inbase190 = vec![15, 33, 125, 12, 14]; + /// let a = BigInt::from_radix_be(Sign::Minus, &inbase190, 190).unwrap(); + /// assert_eq!(a.to_radix_be(190), (Sign:: Minus, inbase190)); + /// ``` + pub fn from_radix_be(sign: Sign, buf: &[u8], radix: u32) -> Option<BigInt> { + BigUint::from_radix_be(buf, radix).map(|u| BigInt::from_biguint(sign, u)) + } + + /// Creates and initializes a `BigInt`. Each u8 of the input slice is + /// interpreted as one digit of the number + /// and must therefore be less than `radix`. + /// + /// The bytes are in little-endian byte order. + /// `radix` must be in the range `2...256`. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::{BigInt, Sign}; + /// + /// let inbase190 = vec![14, 12, 125, 33, 15]; + /// let a = BigInt::from_radix_be(Sign::Minus, &inbase190, 190).unwrap(); + /// assert_eq!(a.to_radix_be(190), (Sign::Minus, inbase190)); + /// ``` + pub fn from_radix_le(sign: Sign, buf: &[u8], radix: u32) -> Option<BigInt> { + BigUint::from_radix_le(buf, radix).map(|u| BigInt::from_biguint(sign, u)) + } + + /// Returns the sign and the byte representation of the `BigInt` in big-endian byte order. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::{ToBigInt, Sign}; + /// + /// let i = -1125.to_bigint().unwrap(); + /// assert_eq!(i.to_bytes_be(), (Sign::Minus, vec![4, 101])); + /// ``` + #[inline] + pub fn to_bytes_be(&self) -> (Sign, Vec<u8>) { + (self.sign, self.data.to_bytes_be()) + } + + /// Returns the sign and the byte representation of the `BigInt` in little-endian byte order. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::{ToBigInt, Sign}; + /// + /// let i = -1125.to_bigint().unwrap(); + /// assert_eq!(i.to_bytes_le(), (Sign::Minus, vec![101, 4])); + /// ``` + #[inline] + pub fn to_bytes_le(&self) -> (Sign, Vec<u8>) { + (self.sign, self.data.to_bytes_le()) + } + + /// Returns the two's complement byte representation of the `BigInt` in big-endian byte order. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::ToBigInt; + /// + /// let i = -1125.to_bigint().unwrap(); + /// assert_eq!(i.to_signed_bytes_be(), vec![251, 155]); + /// ``` + #[inline] + pub fn to_signed_bytes_be(&self) -> Vec<u8> { + let mut bytes = self.data.to_bytes_be(); + let first_byte = bytes.first().map(|v| *v).unwrap_or(0); + if first_byte > 0x7f + && !(first_byte == 0x80 + && bytes.iter().skip(1).all(Zero::is_zero) + && self.sign == Sign::Minus) + { + // msb used by magnitude, extend by 1 byte + bytes.insert(0, 0); + } + if self.sign == Sign::Minus { + twos_complement_be(&mut bytes); + } + bytes + } + + /// Returns the two's complement byte representation of the `BigInt` in little-endian byte order. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::ToBigInt; + /// + /// let i = -1125.to_bigint().unwrap(); + /// assert_eq!(i.to_signed_bytes_le(), vec![155, 251]); + /// ``` + #[inline] + pub fn to_signed_bytes_le(&self) -> Vec<u8> { + let mut bytes = self.data.to_bytes_le(); + let last_byte = bytes.last().map(|v| *v).unwrap_or(0); + if last_byte > 0x7f + && !(last_byte == 0x80 + && bytes.iter().rev().skip(1).all(Zero::is_zero) + && self.sign == Sign::Minus) + { + // msb used by magnitude, extend by 1 byte + bytes.push(0); + } + if self.sign == Sign::Minus { + twos_complement_le(&mut bytes); + } + bytes + } + + /// Returns the integer formatted as a string in the given radix. + /// `radix` must be in the range `2...36`. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::BigInt; + /// + /// let i = BigInt::parse_bytes(b"ff", 16).unwrap(); + /// assert_eq!(i.to_str_radix(16), "ff"); + /// ``` + #[inline] + pub fn to_str_radix(&self, radix: u32) -> String { + let mut v = to_str_radix_reversed(&self.data, radix); + + if self.is_negative() { + v.push(b'-'); + } + + v.reverse(); + unsafe { String::from_utf8_unchecked(v) } + } + + /// Returns the integer in the requested base in big-endian digit order. + /// The output is not given in a human readable alphabet but as a zero + /// based u8 number. + /// `radix` must be in the range `2...256`. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::{BigInt, Sign}; + /// + /// assert_eq!(BigInt::from(-0xFFFFi64).to_radix_be(159), + /// (Sign::Minus, vec![2, 94, 27])); + /// // 0xFFFF = 65535 = 2*(159^2) + 94*159 + 27 + /// ``` + #[inline] + pub fn to_radix_be(&self, radix: u32) -> (Sign, Vec<u8>) { + (self.sign, self.data.to_radix_be(radix)) + } + + /// Returns the integer in the requested base in little-endian digit order. + /// The output is not given in a human readable alphabet but as a zero + /// based u8 number. + /// `radix` must be in the range `2...256`. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::{BigInt, Sign}; + /// + /// assert_eq!(BigInt::from(-0xFFFFi64).to_radix_le(159), + /// (Sign::Minus, vec![27, 94, 2])); + /// // 0xFFFF = 65535 = 27 + 94*159 + 2*(159^2) + /// ``` + #[inline] + pub fn to_radix_le(&self, radix: u32) -> (Sign, Vec<u8>) { + (self.sign, self.data.to_radix_le(radix)) + } + + /// Returns the sign of the `BigInt` as a `Sign`. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::{ToBigInt, Sign}; + /// + /// assert_eq!(ToBigInt::to_bigint(&1234).unwrap().sign(), Sign::Plus); + /// assert_eq!(ToBigInt::to_bigint(&-4321).unwrap().sign(), Sign::Minus); + /// assert_eq!(ToBigInt::to_bigint(&0).unwrap().sign(), Sign::NoSign); + /// ``` + #[inline] + pub fn sign(&self) -> Sign { + self.sign + } + + /// Determines the fewest bits necessary to express the `BigInt`, + /// not including the sign. + #[inline] + pub fn bits(&self) -> usize { + self.data.bits() + } + + /// Converts this `BigInt` into a `BigUint`, if it's not negative. + #[inline] + pub fn to_biguint(&self) -> Option<BigUint> { + match self.sign { + Plus => Some(self.data.clone()), + NoSign => Some(Zero::zero()), + Minus => None, + } + } + + #[inline] + pub fn checked_add(&self, v: &BigInt) -> Option<BigInt> { + return Some(self.add(v)); + } + + #[inline] + pub fn checked_sub(&self, v: &BigInt) -> Option<BigInt> { + return Some(self.sub(v)); + } + + #[inline] + pub fn checked_mul(&self, v: &BigInt) -> Option<BigInt> { + return Some(self.mul(v)); + } + + #[inline] + pub fn checked_div(&self, v: &BigInt) -> Option<BigInt> { + if v.is_zero() { + return None; + } + return Some(self.div(v)); + } + + /// Returns `(self ^ exponent) mod modulus` + /// + /// Note that this rounds like `mod_floor`, not like the `%` operator, + /// which makes a difference when given a negative `self` or `modulus`. + /// The result will be in the interval `[0, modulus)` for `modulus > 0`, + /// or in the interval `(modulus, 0]` for `modulus < 0` + /// + /// Panics if the exponent is negative or the modulus is zero. + pub fn modpow(&self, exponent: &Self, modulus: &Self) -> Self { + assert!( + !exponent.is_negative(), + "negative exponentiation is not supported!" + ); + assert!(!modulus.is_zero(), "divide by zero!"); + + let result = self.data.modpow(&exponent.data, &modulus.data); + if result.is_zero() { + return BigInt::zero(); + } + + // The sign of the result follows the modulus, like `mod_floor`. + let (sign, mag) = match (self.is_negative(), modulus.is_negative()) { + (false, false) => (Plus, result), + (true, false) => (Plus, &modulus.data - result), + (false, true) => (Minus, &modulus.data - result), + (true, true) => (Minus, result), + }; + BigInt::from_biguint(sign, mag) + } + + /// Returns the truncated principal square root of `self` -- + /// see [Roots::sqrt](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#method.sqrt). + pub fn sqrt(&self) -> Self { + Roots::sqrt(self) + } + + /// Returns the truncated principal cube root of `self` -- + /// see [Roots::cbrt](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#method.cbrt). + pub fn cbrt(&self) -> Self { + Roots::cbrt(self) + } + + /// Returns the truncated principal `n`th root of `self` -- + /// See [Roots::nth_root](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#tymethod.nth_root). + pub fn nth_root(&self, n: u32) -> Self { + Roots::nth_root(self, n) + } +} + +impl_sum_iter_type!(BigInt); +impl_product_iter_type!(BigInt); + +/// Perform in-place two's complement of the given binary representation, +/// in little-endian byte order. +#[inline] +fn twos_complement_le(digits: &mut [u8]) { + twos_complement(digits) +} + +/// Perform in-place two's complement of the given binary representation +/// in big-endian byte order. +#[inline] +fn twos_complement_be(digits: &mut [u8]) { + twos_complement(digits.iter_mut().rev()) +} + +/// Perform in-place two's complement of the given digit iterator +/// starting from the least significant byte. +#[inline] +fn twos_complement<'a, I>(digits: I) +where + I: IntoIterator<Item = &'a mut u8>, +{ + let mut carry = true; + for d in digits { + *d = d.not(); + if carry { + *d = d.wrapping_add(1); + carry = d.is_zero(); + } + } +} + +#[test] +fn test_from_biguint() { + fn check(inp_s: Sign, inp_n: usize, ans_s: Sign, ans_n: usize) { + let inp = BigInt::from_biguint(inp_s, FromPrimitive::from_usize(inp_n).unwrap()); + let ans = BigInt { + sign: ans_s, + data: FromPrimitive::from_usize(ans_n).unwrap(), + }; + assert_eq!(inp, ans); + } + check(Plus, 1, Plus, 1); + check(Plus, 0, NoSign, 0); + check(Minus, 1, Minus, 1); + check(NoSign, 1, NoSign, 0); +} + +#[test] +fn test_from_slice() { + fn check(inp_s: Sign, inp_n: u32, ans_s: Sign, ans_n: u32) { + let inp = BigInt::from_slice(inp_s, &[inp_n]); + let ans = BigInt { + sign: ans_s, + data: FromPrimitive::from_u32(ans_n).unwrap(), + }; + assert_eq!(inp, ans); + } + check(Plus, 1, Plus, 1); + check(Plus, 0, NoSign, 0); + check(Minus, 1, Minus, 1); + check(NoSign, 1, NoSign, 0); +} + +#[test] +fn test_assign_from_slice() { + fn check(inp_s: Sign, inp_n: u32, ans_s: Sign, ans_n: u32) { + let mut inp = BigInt::from_slice(Minus, &[2627_u32, 0_u32, 9182_u32, 42_u32]); + inp.assign_from_slice(inp_s, &[inp_n]); + let ans = BigInt { + sign: ans_s, + data: FromPrimitive::from_u32(ans_n).unwrap(), + }; + assert_eq!(inp, ans); + } + check(Plus, 1, Plus, 1); + check(Plus, 0, NoSign, 0); + check(Minus, 1, Minus, 1); + check(NoSign, 1, NoSign, 0); +} |