summaryrefslogtreecommitdiffstats
path: root/third_party/rust/plane-split/src
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/plane-split/src')
-rwxr-xr-xthird_party/rust/plane-split/src/bsp.rs152
-rwxr-xr-xthird_party/rust/plane-split/src/clip.rs161
-rwxr-xr-xthird_party/rust/plane-split/src/lib.rs301
-rwxr-xr-xthird_party/rust/plane-split/src/polygon.rs597
4 files changed, 1211 insertions, 0 deletions
diff --git a/third_party/rust/plane-split/src/bsp.rs b/third_party/rust/plane-split/src/bsp.rs
new file mode 100755
index 0000000000..b9bb3109d1
--- /dev/null
+++ b/third_party/rust/plane-split/src/bsp.rs
@@ -0,0 +1,152 @@
+use crate::{is_zero, Intersection, Plane, Polygon, Splitter};
+
+use binary_space_partition::{BspNode, Plane as BspPlane, PlaneCut};
+use euclid::{approxeq::ApproxEq, Point3D, Vector3D};
+use num_traits::{Float, One, Zero};
+
+use std::{fmt, iter, ops};
+
+impl<T, U, A> BspPlane for Polygon<T, U, A>
+where
+ T: Copy
+ + fmt::Debug
+ + ApproxEq<T>
+ + ops::Sub<T, Output = T>
+ + ops::Add<T, Output = T>
+ + ops::Mul<T, Output = T>
+ + ops::Div<T, Output = T>
+ + Zero
+ + Float,
+ U: fmt::Debug,
+ A: Copy + fmt::Debug,
+{
+ fn cut(&self, mut poly: Self) -> PlaneCut<Self> {
+ log::debug!("\tCutting anchor {:?} by {:?}", poly.anchor, self.anchor);
+ log::trace!("\t\tbase {:?}", self.plane);
+
+ //Note: we treat `self` as a plane, and `poly` as a concrete polygon here
+ let (intersection, dist) = match self.plane.intersect(&poly.plane) {
+ None => {
+ let ndot = self.plane.normal.dot(poly.plane.normal);
+ log::debug!("\t\tNormals are aligned with {:?}", ndot);
+ let dist = self.plane.offset - ndot * poly.plane.offset;
+ (Intersection::Coplanar, dist)
+ }
+ Some(_) if self.plane.are_outside(&poly.points) => {
+ //Note: we can't start with `are_outside` because it's subject to FP precision
+ let dist = self.plane.signed_distance_sum_to(&poly);
+ (Intersection::Outside, dist)
+ }
+ Some(line) => {
+ //Note: distance isn't relevant here
+ (Intersection::Inside(line), T::zero())
+ }
+ };
+
+ match intersection {
+ //Note: we deliberately make the comparison wider than just with T::epsilon().
+ // This is done to avoid mistakenly ordering items that should be on the same
+ // plane but end up slightly different due to the floating point precision.
+ Intersection::Coplanar if is_zero(dist) => {
+ log::debug!("\t\tCoplanar at {:?}", dist);
+ PlaneCut::Sibling(poly)
+ }
+ Intersection::Coplanar | Intersection::Outside => {
+ log::debug!("\t\tOutside at {:?}", dist);
+ if dist > T::zero() {
+ PlaneCut::Cut {
+ front: vec![poly],
+ back: vec![],
+ }
+ } else {
+ PlaneCut::Cut {
+ front: vec![],
+ back: vec![poly],
+ }
+ }
+ }
+ Intersection::Inside(line) => {
+ log::debug!("\t\tCut across {:?}", line);
+ let (res_add1, res_add2) = poly.split_with_normal(&line, &self.plane.normal);
+ let mut front = Vec::new();
+ let mut back = Vec::new();
+
+ for sub in iter::once(poly)
+ .chain(res_add1)
+ .chain(res_add2)
+ .filter(|p| !p.is_empty())
+ {
+ let dist = self.plane.signed_distance_sum_to(&sub);
+ if dist > T::zero() {
+ log::trace!("\t\t\tdist {:?} -> front: {:?}", dist, sub);
+ front.push(sub)
+ } else {
+ log::trace!("\t\t\tdist {:?} -> back: {:?}", dist, sub);
+ back.push(sub)
+ }
+ }
+
+ PlaneCut::Cut { front, back }
+ }
+ }
+ }
+
+ fn is_aligned(&self, other: &Self) -> bool {
+ self.plane.normal.dot(other.plane.normal) > T::zero()
+ }
+}
+
+/// Binary Space Partitioning splitter, uses a BSP tree.
+pub struct BspSplitter<T, U, A> {
+ tree: BspNode<Polygon<T, U, A>>,
+ result: Vec<Polygon<T, U, A>>,
+}
+
+impl<T, U, A> BspSplitter<T, U, A> {
+ /// Create a new BSP splitter.
+ pub fn new() -> Self {
+ BspSplitter {
+ tree: BspNode::new(),
+ result: Vec::new(),
+ }
+ }
+}
+
+impl<T, U, A> Splitter<T, U, A> for BspSplitter<T, U, A>
+where
+ T: Copy
+ + fmt::Debug
+ + ApproxEq<T>
+ + ops::Sub<T, Output = T>
+ + ops::Add<T, Output = T>
+ + ops::Mul<T, Output = T>
+ + ops::Div<T, Output = T>
+ + Zero
+ + One
+ + Float,
+ U: fmt::Debug,
+ A: Copy + fmt::Debug + Default,
+{
+ fn reset(&mut self) {
+ self.tree = BspNode::new();
+ }
+
+ fn add(&mut self, poly: Polygon<T, U, A>) {
+ self.tree.insert(poly);
+ }
+
+ fn sort(&mut self, view: Vector3D<T, U>) -> &[Polygon<T, U, A>] {
+ //debug!("\t\ttree before sorting {:?}", self.tree);
+ let poly = Polygon {
+ points: [Point3D::origin(); 4],
+ plane: Plane {
+ normal: -view, //Note: BSP `order()` is back to front
+ offset: T::zero(),
+ },
+ anchor: A::default(),
+ };
+ self.result.clear();
+ self.tree.order(&poly, &mut self.result);
+ &self.result
+ }
+}
diff --git a/third_party/rust/plane-split/src/clip.rs b/third_party/rust/plane-split/src/clip.rs
new file mode 100755
index 0000000000..ee240b2f2f
--- /dev/null
+++ b/third_party/rust/plane-split/src/clip.rs
@@ -0,0 +1,161 @@
+use crate::{Intersection, NegativeHemisphereError, Plane, Polygon};
+
+use euclid::{approxeq::ApproxEq, Rect, Scale, Transform3D, Trig, Vector3D};
+use num_traits::{Float, One, Zero};
+
+use std::{fmt, iter, mem, ops};
+
+/// A helper object to clip polygons by a number of planes.
+#[derive(Debug)]
+pub struct Clipper<T, U, A> {
+ clips: Vec<Plane<T, U>>,
+ results: Vec<Polygon<T, U, A>>,
+ temp: Vec<Polygon<T, U, A>>,
+}
+
+impl<
+ T: Copy
+ + fmt::Debug
+ + ApproxEq<T>
+ + ops::Sub<T, Output = T>
+ + ops::Add<T, Output = T>
+ + ops::Mul<T, Output = T>
+ + ops::Div<T, Output = T>
+ + Zero
+ + One
+ + Float,
+ U: fmt::Debug,
+ A: Copy + fmt::Debug,
+ > Clipper<T, U, A>
+{
+ /// Create a new clipper object.
+ pub fn new() -> Self {
+ Clipper {
+ clips: Vec::new(),
+ results: Vec::new(),
+ temp: Vec::new(),
+ }
+ }
+
+ /// Reset the clipper internals, but preserve the allocation.
+ pub fn reset(&mut self) {
+ self.clips.clear();
+ }
+
+ /// Extract the clipping planes that define the frustum for a given transformation.
+ pub fn frustum_planes<V>(
+ t: &Transform3D<T, U, V>,
+ bounds: Option<Rect<T, V>>,
+ ) -> Result<impl Iterator<Item = Plane<T, U>>, NegativeHemisphereError> {
+ let mw = Vector3D::new(t.m14, t.m24, t.m34);
+ let plane_positive = Plane::from_unnormalized(mw, t.m44)?;
+
+ let bounds_iter_maybe = match bounds {
+ Some(bounds) => {
+ let mx = Vector3D::new(t.m11, t.m21, t.m31);
+ let left = bounds.origin.x;
+ let plane_left =
+ Plane::from_unnormalized(mx - mw * Scale::new(left), t.m41 - t.m44 * left)?;
+ let right = bounds.origin.x + bounds.size.width;
+ let plane_right =
+ Plane::from_unnormalized(mw * Scale::new(right) - mx, t.m44 * right - t.m41)?;
+
+ let my = Vector3D::new(t.m12, t.m22, t.m32);
+ let top = bounds.origin.y;
+ let plane_top =
+ Plane::from_unnormalized(my - mw * Scale::new(top), t.m42 - t.m44 * top)?;
+ let bottom = bounds.origin.y + bounds.size.height;
+ let plane_bottom =
+ Plane::from_unnormalized(mw * Scale::new(bottom) - my, t.m44 * bottom - t.m42)?;
+
+ Some(
+ plane_left
+ .into_iter()
+ .chain(plane_right)
+ .chain(plane_top)
+ .chain(plane_bottom),
+ )
+ }
+ None => None,
+ };
+
+ Ok(bounds_iter_maybe
+ .into_iter()
+ .flat_map(|pi| pi)
+ .chain(plane_positive))
+ }
+
+ /// Add a clipping plane to the list. The plane will clip everything behind it,
+ /// where the direction is set by the plane normal.
+ pub fn add(&mut self, plane: Plane<T, U>) {
+ self.clips.push(plane);
+ }
+
+ /// Clip specified polygon by the contained planes, return the fragmented polygons.
+ pub fn clip(&mut self, polygon: Polygon<T, U, A>) -> &[Polygon<T, U, A>] {
+ log::debug!("\tClipping {:?}", polygon);
+ self.results.clear();
+ self.results.push(polygon);
+
+ for clip in &self.clips {
+ self.temp.clear();
+ mem::swap(&mut self.results, &mut self.temp);
+
+ for mut poly in self.temp.drain(..) {
+ let dist = match poly.intersect_plane(clip) {
+ Intersection::Inside(line) => {
+ let (res1, res2) = poly.split_with_normal(&line, &clip.normal);
+ self.results.extend(
+ iter::once(poly)
+ .chain(res1)
+ .chain(res2)
+ .filter(|p| clip.signed_distance_sum_to(p) > T::zero()),
+ );
+ continue;
+ }
+ Intersection::Coplanar => {
+ let ndot = poly.plane.normal.dot(clip.normal);
+ clip.offset - ndot * poly.plane.offset
+ }
+ Intersection::Outside => clip.signed_distance_sum_to(&poly),
+ };
+
+ if dist > T::zero() {
+ self.results.push(poly);
+ }
+ }
+ }
+
+ &self.results
+ }
+
+ /// Clip the primitive with the frustum of the specified transformation,
+ /// returning a sequence of polygons in the transformed space.
+ /// Returns None if the transformation can't be frustum clipped.
+ pub fn clip_transformed<'a, V>(
+ &'a mut self,
+ polygon: Polygon<T, U, A>,
+ transform: &'a Transform3D<T, U, V>,
+ bounds: Option<Rect<T, V>>,
+ ) -> Result<impl 'a + Iterator<Item = Polygon<T, V, A>>, NegativeHemisphereError>
+ where
+ T: Trig,
+ V: 'a + fmt::Debug,
+ {
+ let planes = Self::frustum_planes(transform, bounds)?;
+
+ let old_count = self.clips.len();
+ self.clips.extend(planes);
+ self.clip(polygon);
+ // remove the frustum planes
+ while self.clips.len() > old_count {
+ self.clips.pop();
+ }
+
+ let polys = self
+ .results
+ .drain(..)
+ .flat_map(move |poly| poly.transform(transform));
+ Ok(polys)
+ }
+}
diff --git a/third_party/rust/plane-split/src/lib.rs b/third_party/rust/plane-split/src/lib.rs
new file mode 100755
index 0000000000..991766a53d
--- /dev/null
+++ b/third_party/rust/plane-split/src/lib.rs
@@ -0,0 +1,301 @@
+/*!
+Plane splitting.
+
+Uses [euclid](https://crates.io/crates/euclid) for the math basis.
+Introduces new geometrical primitives and associated logic.
+
+Automatically splits a given set of 4-point polygons into sub-polygons
+that don't intersect each other. This is useful for WebRender, to sort
+the resulting sub-polygons by depth and avoid transparency blending issues.
+*/
+#![warn(missing_docs)]
+
+mod bsp;
+mod clip;
+mod polygon;
+
+use euclid::{approxeq::ApproxEq, Point3D, Scale, Vector3D};
+use num_traits::{Float, One, Zero};
+
+use std::ops;
+
+pub use self::bsp::BspSplitter;
+pub use self::clip::Clipper;
+pub use self::polygon::{Intersection, LineProjection, Polygon};
+
+fn is_zero<T>(value: T) -> bool
+where
+ T: Copy + Zero + ApproxEq<T> + ops::Mul<T, Output = T>,
+{
+ //HACK: this is rough, but the original Epsilon is too strict
+ (value * value).approx_eq(&T::zero())
+}
+
+fn is_zero_vec<T, U>(vec: Vector3D<T, U>) -> bool
+where
+ T: Copy
+ + Zero
+ + ApproxEq<T>
+ + ops::Add<T, Output = T>
+ + ops::Sub<T, Output = T>
+ + ops::Mul<T, Output = T>,
+{
+ vec.dot(vec).approx_eq(&T::zero())
+}
+
+/// A generic line.
+#[derive(Debug)]
+pub struct Line<T, U> {
+ /// Arbitrary point on the line.
+ pub origin: Point3D<T, U>,
+ /// Normalized direction of the line.
+ pub dir: Vector3D<T, U>,
+}
+
+impl<T, U> Line<T, U>
+where
+ T: Copy
+ + One
+ + Zero
+ + ApproxEq<T>
+ + ops::Add<T, Output = T>
+ + ops::Sub<T, Output = T>
+ + ops::Mul<T, Output = T>,
+{
+ /// Check if the line has consistent parameters.
+ pub fn is_valid(&self) -> bool {
+ is_zero(self.dir.dot(self.dir) - T::one())
+ }
+ /// Check if two lines match each other.
+ pub fn matches(&self, other: &Self) -> bool {
+ let diff = self.origin - other.origin;
+ is_zero_vec(self.dir.cross(other.dir)) && is_zero_vec(self.dir.cross(diff))
+ }
+
+ /// Intersect an edge given by the end points.
+ /// Returns the fraction of the edge where the intersection occurs.
+ fn intersect_edge(&self, edge: ops::Range<Point3D<T, U>>) -> Option<T>
+ where
+ T: ops::Div<T, Output = T>,
+ {
+ let edge_vec = edge.end - edge.start;
+ let origin_vec = self.origin - edge.start;
+ // edge.start + edge_vec * t = r + k * d
+ // (edge.start, d) + t * (edge_vec, d) - (r, d) = k
+ // edge.start + t * edge_vec = r + t * (edge_vec, d) * d + (start-r, d) * d
+ // t * (edge_vec - (edge_vec, d)*d) = origin_vec - (origin_vec, d) * d
+ let pr = origin_vec - self.dir * self.dir.dot(origin_vec);
+ let pb = edge_vec - self.dir * self.dir.dot(edge_vec);
+ let denom = pb.dot(pb);
+ if denom.approx_eq(&T::zero()) {
+ None
+ } else {
+ Some(pr.dot(pb) / denom)
+ }
+ }
+}
+
+/// An infinite plane in 3D space, defined by equation:
+/// dot(v, normal) + offset = 0
+/// When used for plane splitting, it's defining a hemisphere
+/// with equation "dot(v, normal) + offset > 0".
+#[derive(Debug, PartialEq)]
+pub struct Plane<T, U> {
+ /// Normalized vector perpendicular to the plane.
+ pub normal: Vector3D<T, U>,
+ /// Constant offset from the normal plane, specified in the
+ /// direction opposite to the normal.
+ pub offset: T,
+}
+
+impl<T: Clone, U> Clone for Plane<T, U> {
+ fn clone(&self) -> Self {
+ Plane {
+ normal: self.normal.clone(),
+ offset: self.offset.clone(),
+ }
+ }
+}
+
+/// An error returned when everything would end up projected
+/// to the negative hemisphere (W <= 0.0);
+#[derive(Clone, Debug, Hash, PartialEq, PartialOrd)]
+pub struct NegativeHemisphereError;
+
+impl<
+ T: Copy
+ + Zero
+ + One
+ + Float
+ + ApproxEq<T>
+ + ops::Sub<T, Output = T>
+ + ops::Add<T, Output = T>
+ + ops::Mul<T, Output = T>
+ + ops::Div<T, Output = T>,
+ U,
+ > Plane<T, U>
+{
+ /// Construct a new plane from unnormalized equation.
+ pub fn from_unnormalized(
+ normal: Vector3D<T, U>,
+ offset: T,
+ ) -> Result<Option<Self>, NegativeHemisphereError> {
+ let square_len = normal.square_length();
+ if square_len < T::approx_epsilon() * T::approx_epsilon() {
+ if offset > T::zero() {
+ Ok(None)
+ } else {
+ Err(NegativeHemisphereError)
+ }
+ } else {
+ let kf = T::one() / square_len.sqrt();
+ Ok(Some(Plane {
+ normal: normal * Scale::new(kf),
+ offset: offset * kf,
+ }))
+ }
+ }
+
+ /// Check if this plane contains another one.
+ pub fn contains(&self, other: &Self) -> bool {
+ //TODO: actually check for inside/outside
+ self.normal == other.normal && self.offset == other.offset
+ }
+
+ /// Return the signed distance from this plane to a point.
+ /// The distance is negative if the point is on the other side of the plane
+ /// from the direction of the normal.
+ pub fn signed_distance_to(&self, point: &Point3D<T, U>) -> T {
+ point.to_vector().dot(self.normal) + self.offset
+ }
+
+ /// Compute the distance across the line to the plane plane,
+ /// starting from the line origin.
+ pub fn distance_to_line(&self, line: &Line<T, U>) -> T
+ where
+ T: ops::Neg<Output = T>,
+ {
+ self.signed_distance_to(&line.origin) / -self.normal.dot(line.dir)
+ }
+
+ /// Compute the sum of signed distances to each of the points
+ /// of another plane. Useful to know the relation of a plane that
+ /// is a product of a split, and we know it doesn't intersect `self`.
+ pub fn signed_distance_sum_to<A>(&self, poly: &Polygon<T, U, A>) -> T {
+ poly.points
+ .iter()
+ .fold(T::zero(), |u, p| u + self.signed_distance_to(p))
+ }
+
+ /// Check if a convex shape defined by a set of points is completely
+ /// outside of this plane. Merely touching the surface is not
+ /// considered an intersection.
+ pub fn are_outside(&self, points: &[Point3D<T, U>]) -> bool {
+ let d0 = self.signed_distance_to(&points[0]);
+ points[1..]
+ .iter()
+ .all(|p| self.signed_distance_to(p) * d0 > T::zero())
+ }
+
+ //TODO(breaking): turn this into Result<Line, DotProduct>
+ /// Compute the line of intersection with another plane.
+ pub fn intersect(&self, other: &Self) -> Option<Line<T, U>> {
+ // compute any point on the intersection between planes
+ // (n1, v) + d1 = 0
+ // (n2, v) + d2 = 0
+ // v = a*n1/w + b*n2/w; w = (n1, n2)
+ // v = (d2*w - d1) / (1 - w*w) * n1 - (d2 - d1*w) / (1 - w*w) * n2
+ let w = self.normal.dot(other.normal);
+ let divisor = T::one() - w * w;
+ if divisor < T::approx_epsilon() * T::approx_epsilon() {
+ return None;
+ }
+ let origin = Point3D::origin() + self.normal * ((other.offset * w - self.offset) / divisor)
+ - other.normal * ((other.offset - self.offset * w) / divisor);
+
+ let cross_dir = self.normal.cross(other.normal);
+ // note: the cross product isn't too close to zero
+ // due to the previous check
+
+ Some(Line {
+ origin,
+ dir: cross_dir.normalize(),
+ })
+ }
+}
+
+/// Generic plane splitter interface
+pub trait Splitter<T, U, A> {
+ /// Reset the splitter results.
+ fn reset(&mut self);
+
+ /// Add a new polygon and return a slice of the subdivisions
+ /// that avoid collision with any of the previously added polygons.
+ fn add(&mut self, polygon: Polygon<T, U, A>);
+
+ /// Sort the produced polygon set by the ascending distance across
+ /// the specified view vector. Return the sorted slice.
+ fn sort(&mut self, view: Vector3D<T, U>) -> &[Polygon<T, U, A>];
+
+ /// Process a set of polygons at once.
+ fn solve(&mut self, input: &[Polygon<T, U, A>], view: Vector3D<T, U>) -> &[Polygon<T, U, A>]
+ where
+ T: Clone,
+ U: Clone,
+ A: Copy,
+ {
+ self.reset();
+ for p in input {
+ self.add(p.clone());
+ }
+ self.sort(view)
+ }
+}
+
+/// Helper method used for benchmarks and tests.
+/// Constructs a 3D grid of polygons.
+#[doc(hidden)]
+pub fn make_grid(count: usize) -> Vec<Polygon<f32, (), usize>> {
+ let mut polys: Vec<Polygon<f32, (), usize>> = Vec::with_capacity(count * 3);
+ let len = count as f32;
+ polys.extend((0..count).map(|i| Polygon {
+ points: [
+ Point3D::new(0.0, i as f32, 0.0),
+ Point3D::new(len, i as f32, 0.0),
+ Point3D::new(len, i as f32, len),
+ Point3D::new(0.0, i as f32, len),
+ ],
+ plane: Plane {
+ normal: Vector3D::new(0.0, 1.0, 0.0),
+ offset: -(i as f32),
+ },
+ anchor: 0,
+ }));
+ polys.extend((0..count).map(|i| Polygon {
+ points: [
+ Point3D::new(i as f32, 0.0, 0.0),
+ Point3D::new(i as f32, len, 0.0),
+ Point3D::new(i as f32, len, len),
+ Point3D::new(i as f32, 0.0, len),
+ ],
+ plane: Plane {
+ normal: Vector3D::new(1.0, 0.0, 0.0),
+ offset: -(i as f32),
+ },
+ anchor: 0,
+ }));
+ polys.extend((0..count).map(|i| Polygon {
+ points: [
+ Point3D::new(0.0, 0.0, i as f32),
+ Point3D::new(len, 0.0, i as f32),
+ Point3D::new(len, len, i as f32),
+ Point3D::new(0.0, len, i as f32),
+ ],
+ plane: Plane {
+ normal: Vector3D::new(0.0, 0.0, 1.0),
+ offset: -(i as f32),
+ },
+ anchor: 0,
+ }));
+ polys
+}
diff --git a/third_party/rust/plane-split/src/polygon.rs b/third_party/rust/plane-split/src/polygon.rs
new file mode 100755
index 0000000000..a7a0b7ade3
--- /dev/null
+++ b/third_party/rust/plane-split/src/polygon.rs
@@ -0,0 +1,597 @@
+use crate::{is_zero, Line, Plane};
+
+use euclid::{approxeq::ApproxEq, default::Point2D, Point3D, Rect, Transform3D, Trig, Vector3D};
+use num_traits::{Float, One, Zero};
+
+use std::{fmt, iter, mem, ops};
+
+/// The projection of a `Polygon` on a line.
+pub struct LineProjection<T> {
+ /// Projected value of each point in the polygon.
+ pub markers: [T; 4],
+}
+
+impl<T> LineProjection<T>
+where
+ T: Copy + PartialOrd + ops::Sub<T, Output = T> + ops::Add<T, Output = T>,
+{
+ /// Get the min/max of the line projection markers.
+ pub fn get_bounds(&self) -> (T, T) {
+ let (mut a, mut b, mut c, mut d) = (
+ self.markers[0],
+ self.markers[1],
+ self.markers[2],
+ self.markers[3],
+ );
+ // bitonic sort of 4 elements
+ // we could not just use `min/max` since they require `Ord` bound
+ //TODO: make it nicer
+ if a > c {
+ mem::swap(&mut a, &mut c);
+ }
+ if b > d {
+ mem::swap(&mut b, &mut d);
+ }
+ if a > b {
+ mem::swap(&mut a, &mut b);
+ }
+ if c > d {
+ mem::swap(&mut c, &mut d);
+ }
+ if b > c {
+ mem::swap(&mut b, &mut c);
+ }
+ debug_assert!(a <= b && b <= c && c <= d);
+ (a, d)
+ }
+
+ /// Check intersection with another line projection.
+ pub fn intersect(&self, other: &Self) -> bool {
+ // compute the bounds of both line projections
+ let span = self.get_bounds();
+ let other_span = other.get_bounds();
+ // compute the total footprint
+ let left = if span.0 < other_span.0 {
+ span.0
+ } else {
+ other_span.0
+ };
+ let right = if span.1 > other_span.1 {
+ span.1
+ } else {
+ other_span.1
+ };
+ // they intersect if the footprint is smaller than the sum
+ right - left < span.1 - span.0 + other_span.1 - other_span.0
+ }
+}
+
+/// Polygon intersection results.
+pub enum Intersection<T> {
+ /// Polygons are coplanar, including the case of being on the same plane.
+ Coplanar,
+ /// Polygon planes are intersecting, but polygons are not.
+ Outside,
+ /// Polygons are actually intersecting.
+ Inside(T),
+}
+
+impl<T> Intersection<T> {
+ /// Return true if the intersection is completely outside.
+ pub fn is_outside(&self) -> bool {
+ match *self {
+ Intersection::Outside => true,
+ _ => false,
+ }
+ }
+ /// Return true if the intersection cuts the source polygon.
+ pub fn is_inside(&self) -> bool {
+ match *self {
+ Intersection::Inside(_) => true,
+ _ => false,
+ }
+ }
+}
+
+/// A convex polygon with 4 points lying on a plane.
+#[derive(Debug, PartialEq)]
+pub struct Polygon<T, U, A> {
+ /// Points making the polygon.
+ pub points: [Point3D<T, U>; 4],
+ /// A plane describing polygon orientation.
+ pub plane: Plane<T, U>,
+ /// A simple anchoring index to allow association of the
+ /// produced split polygons with the original one.
+ pub anchor: A,
+}
+
+impl<T: Clone, U, A: Copy> Clone for Polygon<T, U, A> {
+ fn clone(&self) -> Self {
+ Polygon {
+ points: [
+ self.points[0].clone(),
+ self.points[1].clone(),
+ self.points[2].clone(),
+ self.points[3].clone(),
+ ],
+ plane: self.plane.clone(),
+ anchor: self.anchor,
+ }
+ }
+}
+
+impl<T, U, A> Polygon<T, U, A>
+where
+ T: Copy
+ + fmt::Debug
+ + ApproxEq<T>
+ + ops::Sub<T, Output = T>
+ + ops::Add<T, Output = T>
+ + ops::Mul<T, Output = T>
+ + ops::Div<T, Output = T>
+ + Zero
+ + One
+ + Float,
+ U: fmt::Debug,
+ A: Copy,
+{
+ /// Construct a polygon from points that are already transformed.
+ /// Return None if the polygon doesn't contain any space.
+ pub fn from_points(points: [Point3D<T, U>; 4], anchor: A) -> Option<Self> {
+ let edge1 = points[1] - points[0];
+ let edge2 = points[2] - points[0];
+ let edge3 = points[3] - points[0];
+ let edge4 = points[3] - points[1];
+
+ if edge2.square_length() < T::epsilon() || edge4.square_length() < T::epsilon() {
+ return None;
+ }
+
+ // one of them can be zero for redundant polygons produced by plane splitting
+ //Note: this would be nicer if we used triangles instead of quads in the first place...
+ // see https://github.com/servo/plane-split/issues/17
+ let normal_rough1 = edge1.cross(edge2);
+ let normal_rough2 = edge2.cross(edge3);
+ let square_length1 = normal_rough1.square_length();
+ let square_length2 = normal_rough2.square_length();
+ let normal = if square_length1 > square_length2 {
+ normal_rough1 / square_length1.sqrt()
+ } else {
+ normal_rough2 / square_length2.sqrt()
+ };
+
+ let offset = -points[0].to_vector().dot(normal);
+
+ Some(Polygon {
+ points,
+ plane: Plane { normal, offset },
+ anchor,
+ })
+ }
+
+ /// Construct a polygon from a non-transformed rectangle.
+ pub fn from_rect(rect: Rect<T, U>, anchor: A) -> Self {
+ let min = rect.min();
+ let max = rect.max();
+ let _0 = T::zero();
+ Polygon {
+ points: [
+ min.to_3d(),
+ Point3D::new(max.x, min.y, _0),
+ max.to_3d(),
+ Point3D::new(min.x, max.y, _0),
+ ],
+ plane: Plane {
+ normal: Vector3D::new(T::zero(), T::zero(), T::one()),
+ offset: T::zero(),
+ },
+ anchor,
+ }
+ }
+
+ /// Construct a polygon from a rectangle with 3D transform.
+ pub fn from_transformed_rect<V>(
+ rect: Rect<T, V>,
+ transform: Transform3D<T, V, U>,
+ anchor: A,
+ ) -> Option<Self>
+ where
+ T: Trig + ops::Neg<Output = T>,
+ {
+ let min = rect.min();
+ let max = rect.max();
+ let _0 = T::zero();
+ let points = [
+ transform.transform_point3d(min.to_3d())?,
+ transform.transform_point3d(Point3D::new(max.x, min.y, _0))?,
+ transform.transform_point3d(max.to_3d())?,
+ transform.transform_point3d(Point3D::new(min.x, max.y, _0))?,
+ ];
+ Self::from_points(points, anchor)
+ }
+
+ /// Construct a polygon from a rectangle with an invertible 3D transform.
+ pub fn from_transformed_rect_with_inverse<V>(
+ rect: Rect<T, V>,
+ transform: &Transform3D<T, V, U>,
+ inv_transform: &Transform3D<T, U, V>,
+ anchor: A,
+ ) -> Option<Self>
+ where
+ T: Trig + ops::Neg<Output = T>,
+ {
+ let min = rect.min();
+ let max = rect.max();
+ let _0 = T::zero();
+ let points = [
+ transform.transform_point3d(min.to_3d())?,
+ transform.transform_point3d(Point3D::new(max.x, min.y, _0))?,
+ transform.transform_point3d(max.to_3d())?,
+ transform.transform_point3d(Point3D::new(min.x, max.y, _0))?,
+ ];
+
+ // Compute the normal directly from the transformation. This guarantees consistent polygons
+ // generated from various local rectanges on the same geometry plane.
+ let normal_raw = Vector3D::new(inv_transform.m13, inv_transform.m23, inv_transform.m33);
+ let normal_sql = normal_raw.square_length();
+ if normal_sql.approx_eq(&T::zero()) || transform.m44.approx_eq(&T::zero()) {
+ None
+ } else {
+ let normal = normal_raw / normal_sql.sqrt();
+ let offset = -Vector3D::new(transform.m41, transform.m42, transform.m43).dot(normal)
+ / transform.m44;
+
+ Some(Polygon {
+ points,
+ plane: Plane { normal, offset },
+ anchor,
+ })
+ }
+ }
+
+ /// Bring a point into the local coordinate space, returning
+ /// the 2D normalized coordinates.
+ pub fn untransform_point(&self, point: Point3D<T, U>) -> Point2D<T> {
+ //debug_assert!(self.contains(point));
+ // get axises and target vector
+ let a = self.points[1] - self.points[0];
+ let b = self.points[3] - self.points[0];
+ let c = point - self.points[0];
+ // get pair-wise dot products
+ let a2 = a.dot(a);
+ let ab = a.dot(b);
+ let b2 = b.dot(b);
+ let ca = c.dot(a);
+ let cb = c.dot(b);
+ // compute the final coordinates
+ let denom = ab * ab - a2 * b2;
+ let x = ab * cb - b2 * ca;
+ let y = ab * ca - a2 * cb;
+ Point2D::new(x, y) / denom
+ }
+
+ /// Transform a polygon by an affine transform (preserving straight lines).
+ pub fn transform<V>(&self, transform: &Transform3D<T, U, V>) -> Option<Polygon<T, V, A>>
+ where
+ T: Trig,
+ V: fmt::Debug,
+ {
+ let mut points = [Point3D::origin(); 4];
+ for (out, point) in points.iter_mut().zip(self.points.iter()) {
+ let mut homo = transform.transform_point3d_homogeneous(*point);
+ homo.w = homo.w.max(T::approx_epsilon());
+ *out = homo.to_point3d()?;
+ }
+
+ //Note: this code path could be more efficient if we had inverse-transpose
+ //let n4 = transform.transform_point4d(&Point4D::new(T::zero(), T::zero(), T::one(), T::zero()));
+ //let normal = Point3D::new(n4.x, n4.y, n4.z);
+ Polygon::from_points(points, self.anchor)
+ }
+
+ /// Check if all the points are indeed placed on the plane defined by
+ /// the normal and offset, and the winding order is consistent.
+ pub fn is_valid(&self) -> bool {
+ let is_planar = self
+ .points
+ .iter()
+ .all(|p| is_zero(self.plane.signed_distance_to(p)));
+ let edges = [
+ self.points[1] - self.points[0],
+ self.points[2] - self.points[1],
+ self.points[3] - self.points[2],
+ self.points[0] - self.points[3],
+ ];
+ let anchor = edges[3].cross(edges[0]);
+ let is_winding = edges
+ .iter()
+ .zip(edges[1..].iter())
+ .all(|(a, &b)| a.cross(b).dot(anchor) >= T::zero());
+ is_planar && is_winding
+ }
+
+ /// Check if the polygon doesn't contain any space. This may happen
+ /// after a sequence of splits, and such polygons should be discarded.
+ pub fn is_empty(&self) -> bool {
+ (self.points[0] - self.points[2]).square_length() < T::epsilon()
+ || (self.points[1] - self.points[3]).square_length() < T::epsilon()
+ }
+
+ /// Check if this polygon contains another one.
+ pub fn contains(&self, other: &Self) -> bool {
+ //TODO: actually check for inside/outside
+ self.plane.contains(&other.plane)
+ }
+
+ /// Project this polygon onto a 3D vector, returning a line projection.
+ /// Note: we can think of it as a projection to a ray placed at the origin.
+ pub fn project_on(&self, vector: &Vector3D<T, U>) -> LineProjection<T> {
+ LineProjection {
+ markers: [
+ vector.dot(self.points[0].to_vector()),
+ vector.dot(self.points[1].to_vector()),
+ vector.dot(self.points[2].to_vector()),
+ vector.dot(self.points[3].to_vector()),
+ ],
+ }
+ }
+
+ /// Compute the line of intersection with an infinite plane.
+ pub fn intersect_plane(&self, other: &Plane<T, U>) -> Intersection<Line<T, U>> {
+ if other.are_outside(&self.points) {
+ log::debug!("\t\tOutside of the plane");
+ return Intersection::Outside;
+ }
+ match self.plane.intersect(&other) {
+ Some(line) => Intersection::Inside(line),
+ None => {
+ log::debug!("\t\tCoplanar");
+ Intersection::Coplanar
+ }
+ }
+ }
+
+ /// Compute the line of intersection with another polygon.
+ pub fn intersect(&self, other: &Self) -> Intersection<Line<T, U>> {
+ if self.plane.are_outside(&other.points) || other.plane.are_outside(&self.points) {
+ log::debug!("\t\tOne is completely outside of the other");
+ return Intersection::Outside;
+ }
+ match self.plane.intersect(&other.plane) {
+ Some(line) => {
+ let self_proj = self.project_on(&line.dir);
+ let other_proj = other.project_on(&line.dir);
+ if self_proj.intersect(&other_proj) {
+ Intersection::Inside(line)
+ } else {
+ // projections on the line don't intersect
+ log::debug!("\t\tProjection is outside");
+ Intersection::Outside
+ }
+ }
+ None => {
+ log::debug!("\t\tCoplanar");
+ Intersection::Coplanar
+ }
+ }
+ }
+
+ fn split_impl(
+ &mut self,
+ first: (usize, Point3D<T, U>),
+ second: (usize, Point3D<T, U>),
+ ) -> (Option<Self>, Option<Self>) {
+ //TODO: can be optimized for when the polygon has a redundant 4th vertex
+ //TODO: can be simplified greatly if only working with triangles
+ log::debug!("\t\tReached complex case [{}, {}]", first.0, second.0);
+ let base = first.0;
+ assert!(base < self.points.len());
+ match second.0 - first.0 {
+ 1 => {
+ // rect between the cut at the diagonal
+ let other1 = Polygon {
+ points: [
+ first.1,
+ second.1,
+ self.points[(base + 2) & 3],
+ self.points[base],
+ ],
+ ..self.clone()
+ };
+ // triangle on the near side of the diagonal
+ let other2 = Polygon {
+ points: [
+ self.points[(base + 2) & 3],
+ self.points[(base + 3) & 3],
+ self.points[base],
+ self.points[base],
+ ],
+ ..self.clone()
+ };
+ // triangle being cut out
+ self.points = [first.1, self.points[(base + 1) & 3], second.1, second.1];
+ (Some(other1), Some(other2))
+ }
+ 2 => {
+ // rect on the far side
+ let other = Polygon {
+ points: [
+ first.1,
+ self.points[(base + 1) & 3],
+ self.points[(base + 2) & 3],
+ second.1,
+ ],
+ ..self.clone()
+ };
+ // rect on the near side
+ self.points = [
+ first.1,
+ second.1,
+ self.points[(base + 3) & 3],
+ self.points[base],
+ ];
+ (Some(other), None)
+ }
+ 3 => {
+ // rect between the cut at the diagonal
+ let other1 = Polygon {
+ points: [
+ first.1,
+ self.points[(base + 1) & 3],
+ self.points[(base + 3) & 3],
+ second.1,
+ ],
+ ..self.clone()
+ };
+ // triangle on the far side of the diagonal
+ let other2 = Polygon {
+ points: [
+ self.points[(base + 1) & 3],
+ self.points[(base + 2) & 3],
+ self.points[(base + 3) & 3],
+ self.points[(base + 3) & 3],
+ ],
+ ..self.clone()
+ };
+ // triangle being cut out
+ self.points = [first.1, second.1, self.points[base], self.points[base]];
+ (Some(other1), Some(other2))
+ }
+ _ => panic!("Unexpected indices {} {}", first.0, second.0),
+ }
+ }
+
+ /// Split the polygon along the specified `Line`.
+ /// Will do nothing if the line doesn't belong to the polygon plane.
+ #[deprecated(note = "Use split_with_normal instead")]
+ pub fn split(&mut self, line: &Line<T, U>) -> (Option<Self>, Option<Self>) {
+ log::debug!("\tSplitting");
+ // check if the cut is within the polygon plane first
+ if !is_zero(self.plane.normal.dot(line.dir))
+ || !is_zero(self.plane.signed_distance_to(&line.origin))
+ {
+ log::debug!(
+ "\t\tDoes not belong to the plane, normal dot={:?}, origin distance={:?}",
+ self.plane.normal.dot(line.dir),
+ self.plane.signed_distance_to(&line.origin)
+ );
+ return (None, None);
+ }
+ // compute the intersection points for each edge
+ let mut cuts = [None; 4];
+ for ((&b, &a), cut) in self
+ .points
+ .iter()
+ .cycle()
+ .skip(1)
+ .zip(self.points.iter())
+ .zip(cuts.iter_mut())
+ {
+ if let Some(t) = line.intersect_edge(a..b) {
+ if t >= T::zero() && t < T::one() {
+ *cut = Some(a + (b - a) * t);
+ }
+ }
+ }
+
+ let first = match cuts.iter().position(|c| c.is_some()) {
+ Some(pos) => pos,
+ None => return (None, None),
+ };
+ let second = match cuts[first + 1..].iter().position(|c| c.is_some()) {
+ Some(pos) => first + 1 + pos,
+ None => return (None, None),
+ };
+ self.split_impl(
+ (first, cuts[first].unwrap()),
+ (second, cuts[second].unwrap()),
+ )
+ }
+
+ /// Split the polygon along the specified `Line`, with a normal to the split line provided.
+ /// This is useful when called by the plane splitter, since the other plane's normal
+ /// forms the side direction here, and figuring out the actual line of split isn't needed.
+ /// Will do nothing if the line doesn't belong to the polygon plane.
+ pub fn split_with_normal(
+ &mut self,
+ line: &Line<T, U>,
+ normal: &Vector3D<T, U>,
+ ) -> (Option<Self>, Option<Self>) {
+ log::debug!("\tSplitting with normal");
+ // figure out which side of the split does each point belong to
+ let mut sides = [T::zero(); 4];
+ let (mut cut_positive, mut cut_negative) = (None, None);
+ for (side, point) in sides.iter_mut().zip(&self.points) {
+ *side = normal.dot(*point - line.origin);
+ }
+ // compute the edge intersection points
+ for (i, ((&side1, point1), (&side0, point0))) in sides[1..]
+ .iter()
+ .chain(iter::once(&sides[0]))
+ .zip(self.points[1..].iter().chain(iter::once(&self.points[0])))
+ .zip(sides.iter().zip(&self.points))
+ .enumerate()
+ {
+ // figure out if an edge between 0 and 1 needs to be cut
+ let cut = if side0 < T::zero() && side1 >= T::zero() {
+ &mut cut_positive
+ } else if side0 > T::zero() && side1 <= T::zero() {
+ &mut cut_negative
+ } else {
+ continue;
+ };
+ // compute the cut point by weighting the opposite distances
+ //
+ // Note: this algorithm is designed to not favor one end of the edge over the other.
+ // The previous approach of calling `intersect_edge` sometimes ended up with "t" ever
+ // slightly outside of [0, 1] range, since it was computing it relative to the first point only.
+ //
+ // Given that we are intersecting two straight lines, the triangles on both
+ // sides of intersection are alike, so distances along the [point0, point1] line
+ // are proportional to the side vector lengths we just computed: (side0, side1).
+ let point =
+ (*point0 * side1.abs() + point1.to_vector() * side0.abs()) / (side0 - side1).abs();
+ if cut.is_some() {
+ // We don't expect that the direction changes more than once, unless
+ // the polygon is close to redundant, and we hit precision issues when
+ // computing the sides.
+ log::warn!("Splitting failed due to precision issues: {:?}", sides);
+ break;
+ }
+ *cut = Some((i, point));
+ }
+ // form new polygons
+ if let (Some(first), Some(mut second)) = (cut_positive, cut_negative) {
+ if second.0 < first.0 {
+ second.0 += 4;
+ }
+ self.split_impl(first, second)
+ } else {
+ (None, None)
+ }
+ }
+}
+
+#[test]
+fn test_split_precision() {
+ // regression test for https://bugzilla.mozilla.org/show_bug.cgi?id=1678454
+ let mut polygon = Polygon::<_, (), ()> {
+ points: [
+ Point3D::new(300.0102, 150.00958, 0.0),
+ Point3D::new(606.0, 306.0, 0.0),
+ Point3D::new(300.21954, 150.11946, 0.0),
+ Point3D::new(300.08844, 150.05064, 0.0),
+ ],
+ plane: Plane {
+ normal: Vector3D::zero(),
+ offset: 0.0,
+ },
+ anchor: (),
+ };
+ let line = Line {
+ origin: Point3D::new(3.0690663, -5.8472385, 0.0),
+ dir: Vector3D::new(0.8854436, 0.46474677, -0.0),
+ };
+ let normal = Vector3D::new(0.46474662, -0.8854434, -0.0006389789);
+ polygon.split_with_normal(&line, &normal);
+}