summaryrefslogtreecommitdiffstats
path: root/third_party/rust/regex-syntax/src/unicode.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/regex-syntax/src/unicode.rs')
-rw-r--r--third_party/rust/regex-syntax/src/unicode.rs990
1 files changed, 990 insertions, 0 deletions
diff --git a/third_party/rust/regex-syntax/src/unicode.rs b/third_party/rust/regex-syntax/src/unicode.rs
new file mode 100644
index 0000000000..38a996aa05
--- /dev/null
+++ b/third_party/rust/regex-syntax/src/unicode.rs
@@ -0,0 +1,990 @@
+use std::error;
+use std::fmt;
+use std::result;
+
+use hir;
+
+/// A type alias for errors specific to Unicode handling of classes.
+pub type Result<T> = result::Result<T, Error>;
+
+/// An inclusive range of codepoints from a generated file (hence the static
+/// lifetime).
+type Range = &'static [(char, char)];
+
+/// An error that occurs when dealing with Unicode.
+///
+/// We don't impl the Error trait here because these always get converted
+/// into other public errors. (This error type isn't exported.)
+#[derive(Debug)]
+pub enum Error {
+ PropertyNotFound,
+ PropertyValueNotFound,
+ // Not used when unicode-perl is enabled.
+ #[allow(dead_code)]
+ PerlClassNotFound,
+}
+
+/// A type alias for errors specific to Unicode case folding.
+pub type FoldResult<T> = result::Result<T, CaseFoldError>;
+
+/// An error that occurs when Unicode-aware simple case folding fails.
+///
+/// This error can occur when the case mapping tables necessary for Unicode
+/// aware case folding are unavailable. This only occurs when the
+/// `unicode-case` feature is disabled. (The feature is enabled by default.)
+#[derive(Debug)]
+pub struct CaseFoldError(());
+
+impl error::Error for CaseFoldError {}
+
+impl fmt::Display for CaseFoldError {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write!(
+ f,
+ "Unicode-aware case folding is not available \
+ (probably because the unicode-case feature is not enabled)"
+ )
+ }
+}
+
+/// An error that occurs when the Unicode-aware `\w` class is unavailable.
+///
+/// This error can occur when the data tables necessary for the Unicode aware
+/// Perl character class `\w` are unavailable. This only occurs when the
+/// `unicode-perl` feature is disabled. (The feature is enabled by default.)
+#[derive(Debug)]
+pub struct UnicodeWordError(());
+
+impl error::Error for UnicodeWordError {}
+
+impl fmt::Display for UnicodeWordError {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write!(
+ f,
+ "Unicode-aware \\w class is not available \
+ (probably because the unicode-perl feature is not enabled)"
+ )
+ }
+}
+
+/// Return an iterator over the equivalence class of simple case mappings
+/// for the given codepoint. The equivalence class does not include the
+/// given codepoint.
+///
+/// If the equivalence class is empty, then this returns the next scalar
+/// value that has a non-empty equivalence class, if it exists. If no such
+/// scalar value exists, then `None` is returned. The point of this behavior
+/// is to permit callers to avoid calling `simple_fold` more than they need
+/// to, since there is some cost to fetching the equivalence class.
+///
+/// This returns an error if the Unicode case folding tables are not available.
+pub fn simple_fold(
+ c: char,
+) -> FoldResult<result::Result<impl Iterator<Item = char>, Option<char>>> {
+ #[cfg(not(feature = "unicode-case"))]
+ fn imp(
+ _: char,
+ ) -> FoldResult<result::Result<impl Iterator<Item = char>, Option<char>>>
+ {
+ use std::option::IntoIter;
+ Err::<result::Result<IntoIter<char>, _>, _>(CaseFoldError(()))
+ }
+
+ #[cfg(feature = "unicode-case")]
+ fn imp(
+ c: char,
+ ) -> FoldResult<result::Result<impl Iterator<Item = char>, Option<char>>>
+ {
+ use unicode_tables::case_folding_simple::CASE_FOLDING_SIMPLE;
+
+ Ok(CASE_FOLDING_SIMPLE
+ .binary_search_by_key(&c, |&(c1, _)| c1)
+ .map(|i| CASE_FOLDING_SIMPLE[i].1.iter().map(|&c| c))
+ .map_err(|i| {
+ if i >= CASE_FOLDING_SIMPLE.len() {
+ None
+ } else {
+ Some(CASE_FOLDING_SIMPLE[i].0)
+ }
+ }))
+ }
+
+ imp(c)
+}
+
+/// Returns true if and only if the given (inclusive) range contains at least
+/// one Unicode scalar value that has a non-empty non-trivial simple case
+/// mapping.
+///
+/// This function panics if `end < start`.
+///
+/// This returns an error if the Unicode case folding tables are not available.
+pub fn contains_simple_case_mapping(
+ start: char,
+ end: char,
+) -> FoldResult<bool> {
+ #[cfg(not(feature = "unicode-case"))]
+ fn imp(_: char, _: char) -> FoldResult<bool> {
+ Err(CaseFoldError(()))
+ }
+
+ #[cfg(feature = "unicode-case")]
+ fn imp(start: char, end: char) -> FoldResult<bool> {
+ use std::cmp::Ordering;
+ use unicode_tables::case_folding_simple::CASE_FOLDING_SIMPLE;
+
+ assert!(start <= end);
+ Ok(CASE_FOLDING_SIMPLE
+ .binary_search_by(|&(c, _)| {
+ if start <= c && c <= end {
+ Ordering::Equal
+ } else if c > end {
+ Ordering::Greater
+ } else {
+ Ordering::Less
+ }
+ })
+ .is_ok())
+ }
+
+ imp(start, end)
+}
+
+/// A query for finding a character class defined by Unicode. This supports
+/// either use of a property name directly, or lookup by property value. The
+/// former generally refers to Binary properties (see UTS#44, Table 8), but
+/// as a special exception (see UTS#18, Section 1.2) both general categories
+/// (an enumeration) and scripts (a catalog) are supported as if each of their
+/// possible values were a binary property.
+///
+/// In all circumstances, property names and values are normalized and
+/// canonicalized. That is, `GC == gc == GeneralCategory == general_category`.
+///
+/// The lifetime `'a` refers to the shorter of the lifetimes of property name
+/// and property value.
+#[derive(Debug)]
+pub enum ClassQuery<'a> {
+ /// Return a class corresponding to a Unicode binary property, named by
+ /// a single letter.
+ OneLetter(char),
+ /// Return a class corresponding to a Unicode binary property.
+ ///
+ /// Note that, by special exception (see UTS#18, Section 1.2), both
+ /// general category values and script values are permitted here as if
+ /// they were a binary property.
+ Binary(&'a str),
+ /// Return a class corresponding to all codepoints whose property
+ /// (identified by `property_name`) corresponds to the given value
+ /// (identified by `property_value`).
+ ByValue {
+ /// A property name.
+ property_name: &'a str,
+ /// A property value.
+ property_value: &'a str,
+ },
+}
+
+impl<'a> ClassQuery<'a> {
+ fn canonicalize(&self) -> Result<CanonicalClassQuery> {
+ match *self {
+ ClassQuery::OneLetter(c) => self.canonical_binary(&c.to_string()),
+ ClassQuery::Binary(name) => self.canonical_binary(name),
+ ClassQuery::ByValue { property_name, property_value } => {
+ let property_name = symbolic_name_normalize(property_name);
+ let property_value = symbolic_name_normalize(property_value);
+
+ let canon_name = match canonical_prop(&property_name)? {
+ None => return Err(Error::PropertyNotFound),
+ Some(canon_name) => canon_name,
+ };
+ Ok(match canon_name {
+ "General_Category" => {
+ let canon = match canonical_gencat(&property_value)? {
+ None => return Err(Error::PropertyValueNotFound),
+ Some(canon) => canon,
+ };
+ CanonicalClassQuery::GeneralCategory(canon)
+ }
+ "Script" => {
+ let canon = match canonical_script(&property_value)? {
+ None => return Err(Error::PropertyValueNotFound),
+ Some(canon) => canon,
+ };
+ CanonicalClassQuery::Script(canon)
+ }
+ _ => {
+ let vals = match property_values(canon_name)? {
+ None => return Err(Error::PropertyValueNotFound),
+ Some(vals) => vals,
+ };
+ let canon_val =
+ match canonical_value(vals, &property_value) {
+ None => {
+ return Err(Error::PropertyValueNotFound)
+ }
+ Some(canon_val) => canon_val,
+ };
+ CanonicalClassQuery::ByValue {
+ property_name: canon_name,
+ property_value: canon_val,
+ }
+ }
+ })
+ }
+ }
+ }
+
+ fn canonical_binary(&self, name: &str) -> Result<CanonicalClassQuery> {
+ let norm = symbolic_name_normalize(name);
+
+ if let Some(canon) = canonical_prop(&norm)? {
+ return Ok(CanonicalClassQuery::Binary(canon));
+ }
+ if let Some(canon) = canonical_gencat(&norm)? {
+ return Ok(CanonicalClassQuery::GeneralCategory(canon));
+ }
+ if let Some(canon) = canonical_script(&norm)? {
+ return Ok(CanonicalClassQuery::Script(canon));
+ }
+ Err(Error::PropertyNotFound)
+ }
+}
+
+/// Like ClassQuery, but its parameters have been canonicalized. This also
+/// differentiates binary properties from flattened general categories and
+/// scripts.
+#[derive(Debug, Eq, PartialEq)]
+enum CanonicalClassQuery {
+ /// The canonical binary property name.
+ Binary(&'static str),
+ /// The canonical general category name.
+ GeneralCategory(&'static str),
+ /// The canonical script name.
+ Script(&'static str),
+ /// An arbitrary association between property and value, both of which
+ /// have been canonicalized.
+ ///
+ /// Note that by construction, the property name of ByValue will never
+ /// be General_Category or Script. Those two cases are subsumed by the
+ /// eponymous variants.
+ ByValue {
+ /// The canonical property name.
+ property_name: &'static str,
+ /// The canonical property value.
+ property_value: &'static str,
+ },
+}
+
+/// Looks up a Unicode class given a query. If one doesn't exist, then
+/// `None` is returned.
+pub fn class<'a>(query: ClassQuery<'a>) -> Result<hir::ClassUnicode> {
+ use self::CanonicalClassQuery::*;
+
+ match query.canonicalize()? {
+ Binary(name) => bool_property(name),
+ GeneralCategory(name) => gencat(name),
+ Script(name) => script(name),
+ ByValue { property_name: "Age", property_value } => {
+ let mut class = hir::ClassUnicode::empty();
+ for set in ages(property_value)? {
+ class.union(&hir_class(set));
+ }
+ Ok(class)
+ }
+ ByValue { property_name: "Script_Extensions", property_value } => {
+ script_extension(property_value)
+ }
+ ByValue {
+ property_name: "Grapheme_Cluster_Break",
+ property_value,
+ } => gcb(property_value),
+ ByValue { property_name: "Sentence_Break", property_value } => {
+ sb(property_value)
+ }
+ ByValue { property_name: "Word_Break", property_value } => {
+ wb(property_value)
+ }
+ _ => {
+ // What else should we support?
+ Err(Error::PropertyNotFound)
+ }
+ }
+}
+
+/// Returns a Unicode aware class for \w.
+///
+/// This returns an error if the data is not available for \w.
+pub fn perl_word() -> Result<hir::ClassUnicode> {
+ #[cfg(not(feature = "unicode-perl"))]
+ fn imp() -> Result<hir::ClassUnicode> {
+ Err(Error::PerlClassNotFound)
+ }
+
+ #[cfg(feature = "unicode-perl")]
+ fn imp() -> Result<hir::ClassUnicode> {
+ use unicode_tables::perl_word::PERL_WORD;
+ Ok(hir_class(PERL_WORD))
+ }
+
+ imp()
+}
+
+/// Returns a Unicode aware class for \s.
+///
+/// This returns an error if the data is not available for \s.
+pub fn perl_space() -> Result<hir::ClassUnicode> {
+ #[cfg(not(any(feature = "unicode-perl", feature = "unicode-bool")))]
+ fn imp() -> Result<hir::ClassUnicode> {
+ Err(Error::PerlClassNotFound)
+ }
+
+ #[cfg(all(feature = "unicode-perl", not(feature = "unicode-bool")))]
+ fn imp() -> Result<hir::ClassUnicode> {
+ use unicode_tables::perl_space::WHITE_SPACE;
+ Ok(hir_class(WHITE_SPACE))
+ }
+
+ #[cfg(feature = "unicode-bool")]
+ fn imp() -> Result<hir::ClassUnicode> {
+ use unicode_tables::property_bool::WHITE_SPACE;
+ Ok(hir_class(WHITE_SPACE))
+ }
+
+ imp()
+}
+
+/// Returns a Unicode aware class for \d.
+///
+/// This returns an error if the data is not available for \d.
+pub fn perl_digit() -> Result<hir::ClassUnicode> {
+ #[cfg(not(any(feature = "unicode-perl", feature = "unicode-gencat")))]
+ fn imp() -> Result<hir::ClassUnicode> {
+ Err(Error::PerlClassNotFound)
+ }
+
+ #[cfg(all(feature = "unicode-perl", not(feature = "unicode-gencat")))]
+ fn imp() -> Result<hir::ClassUnicode> {
+ use unicode_tables::perl_decimal::DECIMAL_NUMBER;
+ Ok(hir_class(DECIMAL_NUMBER))
+ }
+
+ #[cfg(feature = "unicode-gencat")]
+ fn imp() -> Result<hir::ClassUnicode> {
+ use unicode_tables::general_category::DECIMAL_NUMBER;
+ Ok(hir_class(DECIMAL_NUMBER))
+ }
+
+ imp()
+}
+
+/// Build a Unicode HIR class from a sequence of Unicode scalar value ranges.
+pub fn hir_class(ranges: &[(char, char)]) -> hir::ClassUnicode {
+ let hir_ranges: Vec<hir::ClassUnicodeRange> = ranges
+ .iter()
+ .map(|&(s, e)| hir::ClassUnicodeRange::new(s, e))
+ .collect();
+ hir::ClassUnicode::new(hir_ranges)
+}
+
+/// Returns true only if the given codepoint is in the `\w` character class.
+///
+/// If the `unicode-perl` feature is not enabled, then this returns an error.
+pub fn is_word_character(c: char) -> result::Result<bool, UnicodeWordError> {
+ #[cfg(not(feature = "unicode-perl"))]
+ fn imp(_: char) -> result::Result<bool, UnicodeWordError> {
+ Err(UnicodeWordError(()))
+ }
+
+ #[cfg(feature = "unicode-perl")]
+ fn imp(c: char) -> result::Result<bool, UnicodeWordError> {
+ use is_word_byte;
+ use std::cmp::Ordering;
+ use unicode_tables::perl_word::PERL_WORD;
+
+ if c <= 0x7F as char && is_word_byte(c as u8) {
+ return Ok(true);
+ }
+ Ok(PERL_WORD
+ .binary_search_by(|&(start, end)| {
+ if start <= c && c <= end {
+ Ordering::Equal
+ } else if start > c {
+ Ordering::Greater
+ } else {
+ Ordering::Less
+ }
+ })
+ .is_ok())
+ }
+
+ imp(c)
+}
+
+/// A mapping of property values for a specific property.
+///
+/// The first element of each tuple is a normalized property value while the
+/// second element of each tuple is the corresponding canonical property
+/// value.
+type PropertyValues = &'static [(&'static str, &'static str)];
+
+fn canonical_gencat(normalized_value: &str) -> Result<Option<&'static str>> {
+ Ok(match normalized_value {
+ "any" => Some("Any"),
+ "assigned" => Some("Assigned"),
+ "ascii" => Some("ASCII"),
+ _ => {
+ let gencats = property_values("General_Category")?.unwrap();
+ canonical_value(gencats, normalized_value)
+ }
+ })
+}
+
+fn canonical_script(normalized_value: &str) -> Result<Option<&'static str>> {
+ let scripts = property_values("Script")?.unwrap();
+ Ok(canonical_value(scripts, normalized_value))
+}
+
+/// Find the canonical property name for the given normalized property name.
+///
+/// If no such property exists, then `None` is returned.
+///
+/// The normalized property name must have been normalized according to
+/// UAX44 LM3, which can be done using `symbolic_name_normalize`.
+///
+/// If the property names data is not available, then an error is returned.
+fn canonical_prop(normalized_name: &str) -> Result<Option<&'static str>> {
+ #[cfg(not(any(
+ feature = "unicode-age",
+ feature = "unicode-bool",
+ feature = "unicode-gencat",
+ feature = "unicode-perl",
+ feature = "unicode-script",
+ feature = "unicode-segment",
+ )))]
+ fn imp(_: &str) -> Result<Option<&'static str>> {
+ Err(Error::PropertyNotFound)
+ }
+
+ #[cfg(any(
+ feature = "unicode-age",
+ feature = "unicode-bool",
+ feature = "unicode-gencat",
+ feature = "unicode-perl",
+ feature = "unicode-script",
+ feature = "unicode-segment",
+ ))]
+ fn imp(name: &str) -> Result<Option<&'static str>> {
+ use unicode_tables::property_names::PROPERTY_NAMES;
+
+ Ok(PROPERTY_NAMES
+ .binary_search_by_key(&name, |&(n, _)| n)
+ .ok()
+ .map(|i| PROPERTY_NAMES[i].1))
+ }
+
+ imp(normalized_name)
+}
+
+/// Find the canonical property value for the given normalized property
+/// value.
+///
+/// The given property values should correspond to the values for the property
+/// under question, which can be found using `property_values`.
+///
+/// If no such property value exists, then `None` is returned.
+///
+/// The normalized property value must have been normalized according to
+/// UAX44 LM3, which can be done using `symbolic_name_normalize`.
+fn canonical_value(
+ vals: PropertyValues,
+ normalized_value: &str,
+) -> Option<&'static str> {
+ vals.binary_search_by_key(&normalized_value, |&(n, _)| n)
+ .ok()
+ .map(|i| vals[i].1)
+}
+
+/// Return the table of property values for the given property name.
+///
+/// If the property values data is not available, then an error is returned.
+fn property_values(
+ canonical_property_name: &'static str,
+) -> Result<Option<PropertyValues>> {
+ #[cfg(not(any(
+ feature = "unicode-age",
+ feature = "unicode-bool",
+ feature = "unicode-gencat",
+ feature = "unicode-perl",
+ feature = "unicode-script",
+ feature = "unicode-segment",
+ )))]
+ fn imp(_: &'static str) -> Result<Option<PropertyValues>> {
+ Err(Error::PropertyValueNotFound)
+ }
+
+ #[cfg(any(
+ feature = "unicode-age",
+ feature = "unicode-bool",
+ feature = "unicode-gencat",
+ feature = "unicode-perl",
+ feature = "unicode-script",
+ feature = "unicode-segment",
+ ))]
+ fn imp(name: &'static str) -> Result<Option<PropertyValues>> {
+ use unicode_tables::property_values::PROPERTY_VALUES;
+
+ Ok(PROPERTY_VALUES
+ .binary_search_by_key(&name, |&(n, _)| n)
+ .ok()
+ .map(|i| PROPERTY_VALUES[i].1))
+ }
+
+ imp(canonical_property_name)
+}
+
+// This is only used in some cases, but small enough to just let it be dead
+// instead of figuring out (and maintaining) the right set of features.
+#[allow(dead_code)]
+fn property_set(
+ name_map: &'static [(&'static str, Range)],
+ canonical: &'static str,
+) -> Option<Range> {
+ name_map
+ .binary_search_by_key(&canonical, |x| x.0)
+ .ok()
+ .map(|i| name_map[i].1)
+}
+
+/// Returns an iterator over Unicode Age sets. Each item corresponds to a set
+/// of codepoints that were added in a particular revision of Unicode. The
+/// iterator yields items in chronological order.
+///
+/// If the given age value isn't valid or if the data isn't available, then an
+/// error is returned instead.
+fn ages(canonical_age: &str) -> Result<impl Iterator<Item = Range>> {
+ #[cfg(not(feature = "unicode-age"))]
+ fn imp(_: &str) -> Result<impl Iterator<Item = Range>> {
+ use std::option::IntoIter;
+ Err::<IntoIter<Range>, _>(Error::PropertyNotFound)
+ }
+
+ #[cfg(feature = "unicode-age")]
+ fn imp(canonical_age: &str) -> Result<impl Iterator<Item = Range>> {
+ use unicode_tables::age;
+
+ const AGES: &'static [(&'static str, Range)] = &[
+ ("V1_1", age::V1_1),
+ ("V2_0", age::V2_0),
+ ("V2_1", age::V2_1),
+ ("V3_0", age::V3_0),
+ ("V3_1", age::V3_1),
+ ("V3_2", age::V3_2),
+ ("V4_0", age::V4_0),
+ ("V4_1", age::V4_1),
+ ("V5_0", age::V5_0),
+ ("V5_1", age::V5_1),
+ ("V5_2", age::V5_2),
+ ("V6_0", age::V6_0),
+ ("V6_1", age::V6_1),
+ ("V6_2", age::V6_2),
+ ("V6_3", age::V6_3),
+ ("V7_0", age::V7_0),
+ ("V8_0", age::V8_0),
+ ("V9_0", age::V9_0),
+ ("V10_0", age::V10_0),
+ ("V11_0", age::V11_0),
+ ("V12_0", age::V12_0),
+ ("V12_1", age::V12_1),
+ ];
+ assert_eq!(AGES.len(), age::BY_NAME.len(), "ages are out of sync");
+
+ let pos = AGES.iter().position(|&(age, _)| canonical_age == age);
+ match pos {
+ None => Err(Error::PropertyValueNotFound),
+ Some(i) => Ok(AGES[..i + 1].iter().map(|&(_, classes)| classes)),
+ }
+ }
+
+ imp(canonical_age)
+}
+
+/// Returns the Unicode HIR class corresponding to the given general category.
+///
+/// Name canonicalization is assumed to be performed by the caller.
+///
+/// If the given general category could not be found, or if the general
+/// category data is not available, then an error is returned.
+fn gencat(canonical_name: &'static str) -> Result<hir::ClassUnicode> {
+ #[cfg(not(feature = "unicode-gencat"))]
+ fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
+ Err(Error::PropertyNotFound)
+ }
+
+ #[cfg(feature = "unicode-gencat")]
+ fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
+ use unicode_tables::general_category::BY_NAME;
+ match name {
+ "ASCII" => Ok(hir_class(&[('\0', '\x7F')])),
+ "Any" => Ok(hir_class(&[('\0', '\u{10FFFF}')])),
+ "Assigned" => {
+ let mut cls = gencat("Unassigned")?;
+ cls.negate();
+ Ok(cls)
+ }
+ name => property_set(BY_NAME, name)
+ .map(hir_class)
+ .ok_or(Error::PropertyValueNotFound),
+ }
+ }
+
+ match canonical_name {
+ "Decimal_Number" => perl_digit(),
+ name => imp(name),
+ }
+}
+
+/// Returns the Unicode HIR class corresponding to the given script.
+///
+/// Name canonicalization is assumed to be performed by the caller.
+///
+/// If the given script could not be found, or if the script data is not
+/// available, then an error is returned.
+fn script(canonical_name: &'static str) -> Result<hir::ClassUnicode> {
+ #[cfg(not(feature = "unicode-script"))]
+ fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
+ Err(Error::PropertyNotFound)
+ }
+
+ #[cfg(feature = "unicode-script")]
+ fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
+ use unicode_tables::script::BY_NAME;
+ property_set(BY_NAME, name)
+ .map(hir_class)
+ .ok_or(Error::PropertyValueNotFound)
+ }
+
+ imp(canonical_name)
+}
+
+/// Returns the Unicode HIR class corresponding to the given script extension.
+///
+/// Name canonicalization is assumed to be performed by the caller.
+///
+/// If the given script extension could not be found, or if the script data is
+/// not available, then an error is returned.
+fn script_extension(
+ canonical_name: &'static str,
+) -> Result<hir::ClassUnicode> {
+ #[cfg(not(feature = "unicode-script"))]
+ fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
+ Err(Error::PropertyNotFound)
+ }
+
+ #[cfg(feature = "unicode-script")]
+ fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
+ use unicode_tables::script_extension::BY_NAME;
+ property_set(BY_NAME, name)
+ .map(hir_class)
+ .ok_or(Error::PropertyValueNotFound)
+ }
+
+ imp(canonical_name)
+}
+
+/// Returns the Unicode HIR class corresponding to the given Unicode boolean
+/// property.
+///
+/// Name canonicalization is assumed to be performed by the caller.
+///
+/// If the given boolean property could not be found, or if the boolean
+/// property data is not available, then an error is returned.
+fn bool_property(canonical_name: &'static str) -> Result<hir::ClassUnicode> {
+ #[cfg(not(feature = "unicode-bool"))]
+ fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
+ Err(Error::PropertyNotFound)
+ }
+
+ #[cfg(feature = "unicode-bool")]
+ fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
+ use unicode_tables::property_bool::BY_NAME;
+ property_set(BY_NAME, name)
+ .map(hir_class)
+ .ok_or(Error::PropertyNotFound)
+ }
+
+ match canonical_name {
+ "Decimal_Number" => perl_digit(),
+ "White_Space" => perl_space(),
+ name => imp(name),
+ }
+}
+
+/// Returns the Unicode HIR class corresponding to the given grapheme cluster
+/// break property.
+///
+/// Name canonicalization is assumed to be performed by the caller.
+///
+/// If the given property could not be found, or if the corresponding data is
+/// not available, then an error is returned.
+fn gcb(canonical_name: &'static str) -> Result<hir::ClassUnicode> {
+ #[cfg(not(feature = "unicode-segment"))]
+ fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
+ Err(Error::PropertyNotFound)
+ }
+
+ #[cfg(feature = "unicode-segment")]
+ fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
+ use unicode_tables::grapheme_cluster_break::BY_NAME;
+ property_set(BY_NAME, name)
+ .map(hir_class)
+ .ok_or(Error::PropertyValueNotFound)
+ }
+
+ imp(canonical_name)
+}
+
+/// Returns the Unicode HIR class corresponding to the given word break
+/// property.
+///
+/// Name canonicalization is assumed to be performed by the caller.
+///
+/// If the given property could not be found, or if the corresponding data is
+/// not available, then an error is returned.
+fn wb(canonical_name: &'static str) -> Result<hir::ClassUnicode> {
+ #[cfg(not(feature = "unicode-segment"))]
+ fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
+ Err(Error::PropertyNotFound)
+ }
+
+ #[cfg(feature = "unicode-segment")]
+ fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
+ use unicode_tables::word_break::BY_NAME;
+ property_set(BY_NAME, name)
+ .map(hir_class)
+ .ok_or(Error::PropertyValueNotFound)
+ }
+
+ imp(canonical_name)
+}
+
+/// Returns the Unicode HIR class corresponding to the given sentence
+/// break property.
+///
+/// Name canonicalization is assumed to be performed by the caller.
+///
+/// If the given property could not be found, or if the corresponding data is
+/// not available, then an error is returned.
+fn sb(canonical_name: &'static str) -> Result<hir::ClassUnicode> {
+ #[cfg(not(feature = "unicode-segment"))]
+ fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
+ Err(Error::PropertyNotFound)
+ }
+
+ #[cfg(feature = "unicode-segment")]
+ fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
+ use unicode_tables::sentence_break::BY_NAME;
+ property_set(BY_NAME, name)
+ .map(hir_class)
+ .ok_or(Error::PropertyValueNotFound)
+ }
+
+ imp(canonical_name)
+}
+
+/// Like symbolic_name_normalize_bytes, but operates on a string.
+fn symbolic_name_normalize(x: &str) -> String {
+ let mut tmp = x.as_bytes().to_vec();
+ let len = symbolic_name_normalize_bytes(&mut tmp).len();
+ tmp.truncate(len);
+ // This should always succeed because `symbolic_name_normalize_bytes`
+ // guarantees that `&tmp[..len]` is always valid UTF-8.
+ //
+ // N.B. We could avoid the additional UTF-8 check here, but it's unlikely
+ // to be worth skipping the additional safety check. A benchmark must
+ // justify it first.
+ String::from_utf8(tmp).unwrap()
+}
+
+/// Normalize the given symbolic name in place according to UAX44-LM3.
+///
+/// A "symbolic name" typically corresponds to property names and property
+/// value aliases. Note, though, that it should not be applied to property
+/// string values.
+///
+/// The slice returned is guaranteed to be valid UTF-8 for all possible values
+/// of `slice`.
+///
+/// See: http://unicode.org/reports/tr44/#UAX44-LM3
+fn symbolic_name_normalize_bytes(slice: &mut [u8]) -> &mut [u8] {
+ // I couldn't find a place in the standard that specified that property
+ // names/aliases had a particular structure (unlike character names), but
+ // we assume that it's ASCII only and drop anything that isn't ASCII.
+ let mut start = 0;
+ let mut starts_with_is = false;
+ if slice.len() >= 2 {
+ // Ignore any "is" prefix.
+ starts_with_is = slice[0..2] == b"is"[..]
+ || slice[0..2] == b"IS"[..]
+ || slice[0..2] == b"iS"[..]
+ || slice[0..2] == b"Is"[..];
+ if starts_with_is {
+ start = 2;
+ }
+ }
+ let mut next_write = 0;
+ for i in start..slice.len() {
+ // VALIDITY ARGUMENT: To guarantee that the resulting slice is valid
+ // UTF-8, we ensure that the slice contains only ASCII bytes. In
+ // particular, we drop every non-ASCII byte from the normalized string.
+ let b = slice[i];
+ if b == b' ' || b == b'_' || b == b'-' {
+ continue;
+ } else if b'A' <= b && b <= b'Z' {
+ slice[next_write] = b + (b'a' - b'A');
+ next_write += 1;
+ } else if b <= 0x7F {
+ slice[next_write] = b;
+ next_write += 1;
+ }
+ }
+ // Special case: ISO_Comment has a 'isc' abbreviation. Since we generally
+ // ignore 'is' prefixes, the 'isc' abbreviation gets caught in the cross
+ // fire and ends up creating an alias for 'c' to 'ISO_Comment', but it
+ // is actually an alias for the 'Other' general category.
+ if starts_with_is && next_write == 1 && slice[0] == b'c' {
+ slice[0] = b'i';
+ slice[1] = b's';
+ slice[2] = b'c';
+ next_write = 3;
+ }
+ &mut slice[..next_write]
+}
+
+#[cfg(test)]
+mod tests {
+ use super::{
+ contains_simple_case_mapping, simple_fold, symbolic_name_normalize,
+ symbolic_name_normalize_bytes,
+ };
+
+ #[cfg(feature = "unicode-case")]
+ fn simple_fold_ok(c: char) -> impl Iterator<Item = char> {
+ simple_fold(c).unwrap().unwrap()
+ }
+
+ #[cfg(feature = "unicode-case")]
+ fn simple_fold_err(c: char) -> Option<char> {
+ match simple_fold(c).unwrap() {
+ Ok(_) => unreachable!("simple_fold returned Ok iterator"),
+ Err(next) => next,
+ }
+ }
+
+ #[cfg(feature = "unicode-case")]
+ fn contains_case_map(start: char, end: char) -> bool {
+ contains_simple_case_mapping(start, end).unwrap()
+ }
+
+ #[test]
+ #[cfg(feature = "unicode-case")]
+ fn simple_fold_k() {
+ let xs: Vec<char> = simple_fold_ok('k').collect();
+ assert_eq!(xs, vec!['K', 'K']);
+
+ let xs: Vec<char> = simple_fold_ok('K').collect();
+ assert_eq!(xs, vec!['k', 'K']);
+
+ let xs: Vec<char> = simple_fold_ok('K').collect();
+ assert_eq!(xs, vec!['K', 'k']);
+ }
+
+ #[test]
+ #[cfg(feature = "unicode-case")]
+ fn simple_fold_a() {
+ let xs: Vec<char> = simple_fold_ok('a').collect();
+ assert_eq!(xs, vec!['A']);
+
+ let xs: Vec<char> = simple_fold_ok('A').collect();
+ assert_eq!(xs, vec!['a']);
+ }
+
+ #[test]
+ #[cfg(feature = "unicode-case")]
+ fn simple_fold_empty() {
+ assert_eq!(Some('A'), simple_fold_err('?'));
+ assert_eq!(Some('A'), simple_fold_err('@'));
+ assert_eq!(Some('a'), simple_fold_err('['));
+ assert_eq!(Some('Ⰰ'), simple_fold_err('☃'));
+ }
+
+ #[test]
+ #[cfg(feature = "unicode-case")]
+ fn simple_fold_max() {
+ assert_eq!(None, simple_fold_err('\u{10FFFE}'));
+ assert_eq!(None, simple_fold_err('\u{10FFFF}'));
+ }
+
+ #[test]
+ #[cfg(not(feature = "unicode-case"))]
+ fn simple_fold_disabled() {
+ assert!(simple_fold('a').is_err());
+ }
+
+ #[test]
+ #[cfg(feature = "unicode-case")]
+ fn range_contains() {
+ assert!(contains_case_map('A', 'A'));
+ assert!(contains_case_map('Z', 'Z'));
+ assert!(contains_case_map('A', 'Z'));
+ assert!(contains_case_map('@', 'A'));
+ assert!(contains_case_map('Z', '['));
+ assert!(contains_case_map('☃', 'Ⰰ'));
+
+ assert!(!contains_case_map('[', '['));
+ assert!(!contains_case_map('[', '`'));
+
+ assert!(!contains_case_map('☃', '☃'));
+ }
+
+ #[test]
+ #[cfg(not(feature = "unicode-case"))]
+ fn range_contains_disabled() {
+ assert!(contains_simple_case_mapping('a', 'a').is_err());
+ }
+
+ #[test]
+ #[cfg(feature = "unicode-gencat")]
+ fn regression_466() {
+ use super::{CanonicalClassQuery, ClassQuery};
+
+ let q = ClassQuery::OneLetter('C');
+ assert_eq!(
+ q.canonicalize().unwrap(),
+ CanonicalClassQuery::GeneralCategory("Other")
+ );
+ }
+
+ #[test]
+ fn sym_normalize() {
+ let sym_norm = symbolic_name_normalize;
+
+ assert_eq!(sym_norm("Line_Break"), "linebreak");
+ assert_eq!(sym_norm("Line-break"), "linebreak");
+ assert_eq!(sym_norm("linebreak"), "linebreak");
+ assert_eq!(sym_norm("BA"), "ba");
+ assert_eq!(sym_norm("ba"), "ba");
+ assert_eq!(sym_norm("Greek"), "greek");
+ assert_eq!(sym_norm("isGreek"), "greek");
+ assert_eq!(sym_norm("IS_Greek"), "greek");
+ assert_eq!(sym_norm("isc"), "isc");
+ assert_eq!(sym_norm("is c"), "isc");
+ assert_eq!(sym_norm("is_c"), "isc");
+ }
+
+ #[test]
+ fn valid_utf8_symbolic() {
+ let mut x = b"abc\xFFxyz".to_vec();
+ let y = symbolic_name_normalize_bytes(&mut x);
+ assert_eq!(y, b"abcxyz");
+ }
+}