summaryrefslogtreecommitdiffstats
path: root/third_party/rust/scroll/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/scroll/src/lib.rs')
-rw-r--r--third_party/rust/scroll/src/lib.rs526
1 files changed, 526 insertions, 0 deletions
diff --git a/third_party/rust/scroll/src/lib.rs b/third_party/rust/scroll/src/lib.rs
new file mode 100644
index 0000000000..f16f153810
--- /dev/null
+++ b/third_party/rust/scroll/src/lib.rs
@@ -0,0 +1,526 @@
+//! # Scroll
+//!
+//! ```text, no_run
+//! _______________
+//! ()==( (@==()
+//! '______________'|
+//! | |
+//! | ἀρετή |
+//! __)_____________|
+//! ()==( (@==()
+//! '--------------'
+//!
+//! ```
+//!
+//! Scroll is a library for efficiently and easily reading/writing types from byte arrays. All the builtin types are supported, e.g., `u32`, `i8`, etc., where the type is specified as a type parameter, or type inferred when possible. In addition, it supports zero-copy reading of string slices, or any other kind of slice. The library can be used in a no_std context as well; the [Error](enum.Error.html) type only has the `IO` and `String` variants if the default features are used, and is `no_std` safe when compiled without default features.
+//!
+//! There are 3 traits for reading that you can import:
+//!
+//! 1. [Pread](trait.Pread.html), for reading (immutable) data at an offset;
+//! 2. [Gread](trait.Gread.html), for reading data at an offset which automatically gets incremented by the size;
+//! 3. [IOread](trait.IOread.html), for reading _simple_ data out of a `std::io::Read` based interface, e.g., a stream. (**Note**: only available when compiled with `std`)
+//!
+//! Each of these interfaces also have their corresponding writer versions as well, e.g., [Pwrite](trait.Pwrite.html), [Gwrite](trait.Gwrite.html), and [IOwrite](trait.IOwrite.html), respectively.
+//!
+//! Most familiar will likely be the `Pread` trait (inspired from the C function), which in our case takes an immutable reference to self, an immutable offset to read at, (and _optionally_ a parsing context, more on that later), and then returns the deserialized value.
+//!
+//! Because self is immutable, _**all** reads can be performed in parallel_ and hence are trivially parallelizable.
+//!
+//! For most usecases, you can use [scroll_derive](https://docs.rs/scroll_derive) to annotate your types with `derive(Pread, Pwrite, IOread, IOwrite, SizeWith)` to automatically add sensible derive defaults, and you should be ready to roll. For more complex usescases, you can implement the conversion traits yourself, see the [context module](ctx/index.html) for more information.
+//!
+//! # Example
+//!
+//! A simple example demonstrates its flexibility:
+//!
+//! ```rust
+//! use scroll::{ctx, Pread, LE};
+//! let bytes: [u8; 4] = [0xde, 0xad, 0xbe, 0xef];
+//!
+//! // reads a u32 out of `b` with the endianness of the host machine, at offset 0, turbofish-style
+//! let number: u32 = bytes.pread::<u32>(0).unwrap();
+//! // ...or a byte, with type ascription on the binding.
+//! let byte: u8 = bytes.pread(0).unwrap();
+//!
+//! //If the type is known another way by the compiler, say reading into a struct field, we can omit the turbofish, and type ascription altogether!
+//!
+//! // If we want, we can explicitly add a endianness to read with by calling `pread_with`.
+//! // The following reads a u32 out of `b` with Big Endian byte order, at offset 0
+//! let be_number: u32 = bytes.pread_with(0, scroll::BE).unwrap();
+//! // or a u16 - specify the type either on the variable or with the beloved turbofish
+//! let be_number2 = bytes.pread_with::<u16>(2, scroll::BE).unwrap();
+//!
+//! // Scroll has core friendly errors (no allocation). This will have the type `scroll::Error::BadOffset` because it tried to read beyond the bound
+//! let byte: scroll::Result<i64> = bytes.pread(0);
+//!
+//! // Scroll is extensible: as long as the type implements `TryWithCtx`, then you can read your type out of the byte array!
+//!
+//! // We can parse out custom datatypes, or types with lifetimes
+//! // if they implement the conversion trait `TryFromCtx`; here we parse a C-style \0 delimited &str (safely)
+//! let hello: &[u8] = b"hello_world\0more words";
+//! let hello_world: &str = hello.pread(0).unwrap();
+//! assert_eq!("hello_world", hello_world);
+//!
+//! // ... and this parses the string if its space separated!
+//! use scroll::ctx::*;
+//! let spaces: &[u8] = b"hello world some junk";
+//! let world: &str = spaces.pread_with(6, StrCtx::Delimiter(SPACE)).unwrap();
+//! assert_eq!("world", world);
+//! ```
+//!
+//! # `std::io` API
+//!
+//! Scroll can also read/write simple types from a `std::io::Read` or `std::io::Write` implementor. The built-in numeric types are taken care of for you. If you want to read a custom type, you need to implement the [FromCtx](trait.FromCtx.html) (_how_ to parse) and [SizeWith](ctx/trait.SizeWith.html) (_how_ big the parsed thing will be) traits. You must compile with default features. For example:
+//!
+//! ```rust
+//! use std::io::Cursor;
+//! use scroll::IOread;
+//! let bytes_ = [0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0xef,0xbe,0x00,0x00,];
+//! let mut bytes = Cursor::new(bytes_);
+//!
+//! // this will bump the cursor's Seek
+//! let foo = bytes.ioread::<u64>().unwrap();
+//! // ..ditto
+//! let bar = bytes.ioread::<u32>().unwrap();
+//! ```
+//!
+//! Similarly, we can write to anything that implements `std::io::Write` quite naturally:
+//!
+//! ```rust
+//! use scroll::{IOwrite, LE, BE};
+//! use std::io::{Write, Cursor};
+//!
+//! let mut bytes = [0x0u8; 10];
+//! let mut cursor = Cursor::new(&mut bytes[..]);
+//! cursor.write_all(b"hello").unwrap();
+//! cursor.iowrite_with(0xdeadbeef as u32, BE).unwrap();
+//! assert_eq!(cursor.into_inner(), [0x68, 0x65, 0x6c, 0x6c, 0x6f, 0xde, 0xad, 0xbe, 0xef, 0x0]);
+//! ```
+//!
+//! # Advanced Uses
+//!
+//! Scroll is designed to be highly configurable - it allows you to implement various context (`Ctx`) sensitive traits, which then grants the implementor _automatic_ uses of the `Pread` and/or `Pwrite` traits.
+//!
+//! For example, suppose we have a datatype and we want to specify how to parse or serialize this datatype out of some arbitrary
+//! byte buffer. In order to do this, we need to provide a [TryFromCtx](trait.TryFromCtx.html) impl for our datatype.
+//!
+//! In particular, if we do this for the `[u8]` target, using the convention `(usize, YourCtx)`, you will automatically get access to
+//! calling `pread_with::<YourDatatype>` on arrays of bytes.
+//!
+//! ```rust
+//! use scroll::{self, ctx, Pread, BE, Endian};
+//!
+//! struct Data<'a> {
+//! name: &'a str,
+//! id: u32,
+//! }
+//!
+//! // note the lifetime specified here
+//! impl<'a> ctx::TryFromCtx<'a, Endian> for Data<'a> {
+//! type Error = scroll::Error;
+//! // and the lifetime annotation on `&'a [u8]` here
+//! fn try_from_ctx (src: &'a [u8], endian: Endian)
+//! -> Result<(Self, usize), Self::Error> {
+//! let offset = &mut 0;
+//! let name = src.gread::<&str>(offset)?;
+//! let id = src.gread_with(offset, endian)?;
+//! Ok((Data { name: name, id: id }, *offset))
+//! }
+//! }
+//!
+//! let bytes = b"UserName\x00\x01\x02\x03\x04";
+//! let data = bytes.pread_with::<Data>(0, BE).unwrap();
+//! assert_eq!(data.id, 0x01020304);
+//! assert_eq!(data.name.to_string(), "UserName".to_string());
+//! ```
+//!
+//! Please see the [Pread documentation examples](trait.Pread.html#implementing-your-own-reader)
+
+#![cfg_attr(not(feature = "std"), no_std)]
+
+#[cfg(feature = "derive")]
+#[allow(unused_imports)]
+pub use scroll_derive::{Pread, Pwrite, SizeWith, IOread, IOwrite};
+
+#[cfg(feature = "std")]
+extern crate core;
+
+pub mod ctx;
+mod pread;
+mod pwrite;
+mod greater;
+mod error;
+mod endian;
+mod leb128;
+#[cfg(feature = "std")]
+mod lesser;
+
+pub use crate::endian::*;
+pub use crate::pread::*;
+pub use crate::pwrite::*;
+pub use crate::greater::*;
+pub use crate::error::*;
+pub use crate::leb128::*;
+#[cfg(feature = "std")]
+pub use crate::lesser::*;
+
+#[doc(hidden)]
+pub mod export {
+ pub use ::core::result;
+ pub use ::core::mem;
+}
+
+#[cfg(test)]
+mod tests {
+ #[allow(overflowing_literals)]
+ use super::{LE};
+
+ #[test]
+ fn test_measure_with_bytes() {
+ use super::ctx::MeasureWith;
+ let bytes: [u8; 4] = [0xef, 0xbe, 0xad, 0xde];
+ assert_eq!(bytes.measure_with(&()), 4);
+ }
+
+ #[test]
+ fn test_measurable() {
+ use super::ctx::SizeWith;
+ assert_eq!(8, u64::size_with(&LE));
+ }
+
+ //////////////////////////////////////////////////////////////
+ // begin pread_with
+ //////////////////////////////////////////////////////////////
+
+ macro_rules! pwrite_test {
+ ($write:ident, $read:ident, $deadbeef:expr) => {
+ #[test]
+ fn $write() {
+ use super::{Pwrite, Pread, BE};
+ let mut bytes: [u8; 8] = [0, 0, 0, 0, 0, 0, 0, 0];
+ let b = &mut bytes[..];
+ b.pwrite_with::<$read>($deadbeef, 0, LE).unwrap();
+ assert_eq!(b.pread_with::<$read>(0, LE).unwrap(), $deadbeef);
+ b.pwrite_with::<$read>($deadbeef, 0, BE).unwrap();
+ assert_eq!(b.pread_with::<$read>(0, BE).unwrap(), $deadbeef);
+ }
+ }
+ }
+
+ pwrite_test!(pwrite_and_pread_roundtrip_u16, u16, 0xbeef);
+ pwrite_test!(pwrite_and_pread_roundtrip_i16, i16, 0x7eef);
+ pwrite_test!(pwrite_and_pread_roundtrip_u32, u32, 0xbeefbeef);
+ pwrite_test!(pwrite_and_pread_roundtrip_i32, i32, 0x7eefbeef);
+ pwrite_test!(pwrite_and_pread_roundtrip_u64, u64, 0xbeefbeef7eef7eef);
+ pwrite_test!(pwrite_and_pread_roundtrip_i64, i64, 0x7eefbeef7eef7eef);
+
+ #[test]
+ fn pread_with_be() {
+ use super::{Pread};
+ let bytes: [u8; 2] = [0x7e, 0xef];
+ let b = &bytes[..];
+ let byte: u16 = b.pread_with(0, super::BE).unwrap();
+ assert_eq!(0x7eef, byte);
+ let bytes: [u8; 2] = [0xde, 0xad];
+ let dead: u16 = bytes.pread_with(0, super::BE).unwrap();
+ assert_eq!(0xdead, dead);
+ }
+
+ #[test]
+ fn pread() {
+ use super::{Pread};
+ let bytes: [u8; 2] = [0x7e, 0xef];
+ let b = &bytes[..];
+ let byte: u16 = b.pread(0).unwrap();
+ #[cfg(target_endian = "little")]
+ assert_eq!(0xef7e, byte);
+ #[cfg(target_endian = "big")]
+ assert_eq!(0x7eef, byte);
+ }
+
+ #[test]
+ fn pread_slice() {
+ use super::{Pread};
+ use super::ctx::StrCtx;
+ let bytes: [u8; 2] = [0x7e, 0xef];
+ let b = &bytes[..];
+ let iserr: Result<&str, _> = b.pread_with(0, StrCtx::Length(3));
+ assert!(iserr.is_err());
+ // let bytes2: &[u8] = b.pread_with(0, 2).unwrap();
+ // assert_eq!(bytes2.len(), bytes[..].len());
+ // for i in 0..bytes2.len() {
+ // assert_eq!(bytes2[i], bytes[i])
+ // }
+ }
+
+ #[test]
+ fn pread_str() {
+ use super::Pread;
+ use super::ctx::*;
+ let bytes: [u8; 2] = [0x2e, 0x0];
+ let b = &bytes[..];
+ let s: &str = b.pread(0).unwrap();
+ println!("str: {}", s);
+ assert_eq!(s.len(), bytes[..].len() - 1);
+ let bytes: &[u8] = b"hello, world!\0some_other_things";
+ let hello_world: &str = bytes.pread_with(0, StrCtx::Delimiter(NULL)).unwrap();
+ println!("{:?}", &hello_world);
+ assert_eq!(hello_world.len(), 13);
+ let hello: &str = bytes.pread_with(0, StrCtx::Delimiter(SPACE)).unwrap();
+ println!("{:?}", &hello);
+ assert_eq!(hello.len(), 6);
+ // this could result in underflow so we just try it
+ let _error = bytes.pread_with::<&str>(6, StrCtx::Delimiter(SPACE));
+ let error = bytes.pread_with::<&str>(7, StrCtx::Delimiter(SPACE));
+ println!("{:?}", &error);
+ assert!(error.is_ok());
+ }
+
+ #[test]
+ fn pread_str_weird() {
+ use super::Pread;
+ use super::ctx::*;
+ let bytes: &[u8] = b"";
+ let hello_world = bytes.pread_with::<&str>(0, StrCtx::Delimiter(NULL));
+ println!("1 {:?}", &hello_world);
+ assert_eq!(hello_world.is_err(), true);
+ let error = bytes.pread_with::<&str>(7, StrCtx::Delimiter(SPACE));
+ println!("2 {:?}", &error);
+ assert!(error.is_err());
+ let bytes: &[u8] = b"\0";
+ let null = bytes.pread::<&str>(0).unwrap();
+ println!("3 {:?}", &null);
+ assert_eq!(null.len(), 0);
+ }
+
+ #[test]
+ fn pwrite_str_and_bytes() {
+ use super::{Pread, Pwrite};
+ use super::ctx::*;
+ let astring: &str = "lol hello_world lal\0ala imabytes";
+ let mut buffer = [0u8; 33];
+ buffer.pwrite(astring, 0).unwrap();
+ {
+ let hello_world = buffer.pread_with::<&str>(4, StrCtx::Delimiter(SPACE)).unwrap();
+ assert_eq!(hello_world, "hello_world");
+ }
+ let bytes: &[u8] = b"more\0bytes";
+ buffer.pwrite(bytes, 0).unwrap();
+ let more = bytes.pread_with::<&str>(0, StrCtx::Delimiter(NULL)).unwrap();
+ assert_eq!(more, "more");
+ let bytes = bytes.pread_with::<&str>(more.len() + 1, StrCtx::Delimiter(NULL)).unwrap();
+ assert_eq!(bytes, "bytes");
+ }
+
+ use std::error;
+ use std::fmt::{self, Display};
+
+ #[derive(Debug)]
+ pub struct ExternalError {}
+
+ impl Display for ExternalError {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ write!(fmt, "ExternalError")
+ }
+ }
+
+ impl error::Error for ExternalError {
+ fn description(&self) -> &str {
+ "ExternalError"
+ }
+ fn cause(&self) -> Option<&dyn error::Error> { None}
+ }
+
+ impl From<super::Error> for ExternalError {
+ fn from(err: super::Error) -> Self {
+ //use super::Error::*;
+ match err {
+ _ => ExternalError{},
+ }
+ }
+ }
+
+ #[derive(Debug, PartialEq, Eq)]
+ pub struct Foo(u16);
+
+ impl super::ctx::TryIntoCtx<super::Endian> for Foo {
+ type Error = ExternalError;
+ fn try_into_ctx(self, this: &mut [u8], le: super::Endian) -> Result<usize, Self::Error> {
+ use super::Pwrite;
+ if this.len() < 2 { return Err((ExternalError {}).into()) }
+ this.pwrite_with(self.0, 0, le)?;
+ Ok(2)
+ }
+ }
+
+ impl<'a> super::ctx::TryFromCtx<'a, super::Endian> for Foo {
+ type Error = ExternalError;
+ fn try_from_ctx(this: &'a [u8], le: super::Endian) -> Result<(Self, usize), Self::Error> {
+ use super::Pread;
+ if this.len() > 2 { return Err((ExternalError {}).into()) }
+ let n = this.pread_with(0, le)?;
+ Ok((Foo(n), 2))
+ }
+ }
+
+ #[test]
+ fn pread_with_iter_bytes() {
+ use super::{Pread};
+ let mut bytes_to: [u8; 8] = [0, 0, 0, 0, 0, 0, 0, 0];
+ let bytes_from: [u8; 8] = [1, 2, 3, 4, 5, 6, 7, 8];
+ let bytes_to = &mut bytes_to[..];
+ let bytes_from = &bytes_from[..];
+ for i in 0..bytes_from.len() {
+ bytes_to[i] = bytes_from.pread(i).unwrap();
+ }
+ assert_eq!(bytes_to, bytes_from);
+ }
+
+ //////////////////////////////////////////////////////////////
+ // end pread_with
+ //////////////////////////////////////////////////////////////
+
+ //////////////////////////////////////////////////////////////
+ // begin gread_with
+ //////////////////////////////////////////////////////////////
+ macro_rules! g_test {
+ ($read:ident, $deadbeef:expr, $typ:ty) => {
+ #[test]
+ fn $read() {
+ use super::Pread;
+ let bytes: [u8; 8] = [0xf, 0xe, 0xe, 0xb, 0xd, 0xa, 0xe, 0xd];
+ let mut offset = 0;
+ let deadbeef: $typ = bytes.gread_with(&mut offset, LE).unwrap();
+ assert_eq!(deadbeef, $deadbeef as $typ);
+ assert_eq!(offset, ::std::mem::size_of::<$typ>());
+ }
+ }
+ }
+
+ g_test!(simple_gread_u16, 0xe0f, u16);
+ g_test!(simple_gread_u32, 0xb0e0e0f, u32);
+ g_test!(simple_gread_u64, 0xd0e0a0d0b0e0e0f, u64);
+ g_test!(simple_gread_i64, 940700423303335439, i64);
+
+ macro_rules! simple_float_test {
+ ($read:ident, $deadbeef:expr, $typ:ty) => {
+ #[test]
+ fn $read() {
+ use super::Pread;
+ let bytes: [u8; 8] = [0u8, 0, 0, 0, 0, 0, 224, 63];
+ let mut offset = 0;
+ let deadbeef: $typ = bytes.gread_with(&mut offset, LE).unwrap();
+ assert_eq!(deadbeef, $deadbeef as $typ);
+ assert_eq!(offset, ::std::mem::size_of::<$typ>());
+ }
+ };
+ }
+
+ simple_float_test!(gread_f32, 0.0, f32);
+ simple_float_test!(gread_f64, 0.5, f64);
+
+ macro_rules! g_read_write_test {
+ ($read:ident, $val:expr, $typ:ty) => {
+ #[test]
+ fn $read() {
+ use super::{LE, BE, Pread, Pwrite};
+ let mut buffer = [0u8; 16];
+ let offset = &mut 0;
+ buffer.gwrite_with($val.clone(), offset, LE).unwrap();
+ let o2 = &mut 0;
+ let val: $typ = buffer.gread_with(o2, LE).unwrap();
+ assert_eq!(val, $val);
+ assert_eq!(*offset, ::std::mem::size_of::<$typ>());
+ assert_eq!(*o2, ::std::mem::size_of::<$typ>());
+ assert_eq!(*o2, *offset);
+ buffer.gwrite_with($val.clone(), offset, BE).unwrap();
+ let val: $typ = buffer.gread_with(o2, BE).unwrap();
+ assert_eq!(val, $val);
+ }
+ };
+ }
+
+ g_read_write_test!(gread_gwrite_f64_1, 0.25f64, f64);
+ g_read_write_test!(gread_gwrite_f64_2, 0.5f64, f64);
+ g_read_write_test!(gread_gwrite_f64_3, 0.064, f64);
+
+ g_read_write_test!(gread_gwrite_f32_1, 0.25f32, f32);
+ g_read_write_test!(gread_gwrite_f32_2, 0.5f32, f32);
+ g_read_write_test!(gread_gwrite_f32_3, 0.0f32, f32);
+
+ g_read_write_test!(gread_gwrite_i64_1, 0i64, i64);
+ g_read_write_test!(gread_gwrite_i64_2, -1213213211111i64, i64);
+ g_read_write_test!(gread_gwrite_i64_3, -3000i64, i64);
+
+ g_read_write_test!(gread_gwrite_i32_1, 0i32, i32);
+ g_read_write_test!(gread_gwrite_i32_2, -1213213232, i32);
+ g_read_write_test!(gread_gwrite_i32_3, -3000i32, i32);
+
+ // useful for ferreting out problems with impls
+ #[test]
+ fn gread_with_iter_bytes() {
+ use super::{Pread};
+ let mut bytes_to: [u8; 8] = [0, 0, 0, 0, 0, 0, 0, 0];
+ let bytes_from: [u8; 8] = [1, 2, 3, 4, 5, 6, 7, 8];
+ let bytes_to = &mut bytes_to[..];
+ let bytes_from = &bytes_from[..];
+ let mut offset = &mut 0;
+ for i in 0..bytes_from.len() {
+ bytes_to[i] = bytes_from.gread(&mut offset).unwrap();
+ }
+ assert_eq!(bytes_to, bytes_from);
+ assert_eq!(*offset, bytes_to.len());
+ }
+
+ #[test]
+ fn gread_inout() {
+ use super::{Pread};
+ let mut bytes_to: [u8; 8] = [0, 0, 0, 0, 0, 0, 0, 0];
+ let bytes_from: [u8; 8] = [1, 2, 3, 4, 5, 6, 7, 8];
+ let bytes = &bytes_from[..];
+ let offset = &mut 0;
+ bytes.gread_inout(offset, &mut bytes_to[..]).unwrap();
+ assert_eq!(bytes_to, bytes_from);
+ assert_eq!(*offset, bytes_to.len());
+ }
+
+ #[test]
+ fn gread_with_byte() {
+ use super::{Pread};
+ let bytes: [u8; 1] = [0x7f];
+ let b = &bytes[..];
+ let offset = &mut 0;
+ let byte: u8 = b.gread(offset).unwrap();
+ assert_eq!(0x7f, byte);
+ assert_eq!(*offset, 1);
+ }
+
+ #[test]
+ fn gread_slice() {
+ use super::{Pread};
+ use super::ctx::{StrCtx};
+ let bytes: [u8; 2] = [0x7e, 0xef];
+ let b = &bytes[..];
+ let offset = &mut 0;
+ let res = b.gread_with::<&str>(offset, StrCtx::Length(3));
+ assert!(res.is_err());
+ *offset = 0;
+ let astring: [u8; 3] = [0x45, 042, 0x44];
+ let string = astring.gread_with::<&str>(offset, StrCtx::Length(2));
+ match &string {
+ &Ok(_) => {},
+ &Err(ref err) => {println!("{}", &err); panic!();}
+ }
+ assert_eq!(string.unwrap(), "E*");
+ *offset = 0;
+ let bytes2: &[u8] = b.gread_with(offset, 2).unwrap();
+ assert_eq!(*offset, 2);
+ assert_eq!(bytes2.len(), bytes[..].len());
+ for i in 0..bytes2.len() {
+ assert_eq!(bytes2[i], bytes[i])
+ }
+ }
+
+ /////////////////////////////////////////////////////////////////
+ // end gread_with
+ /////////////////////////////////////////////////////////////////
+}