summaryrefslogtreecommitdiffstats
path: root/third_party/rust/tokio-timer/src/timer/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/tokio-timer/src/timer/mod.rs')
-rw-r--r--third_party/rust/tokio-timer/src/timer/mod.rs490
1 files changed, 490 insertions, 0 deletions
diff --git a/third_party/rust/tokio-timer/src/timer/mod.rs b/third_party/rust/tokio-timer/src/timer/mod.rs
new file mode 100644
index 0000000000..05b0672e68
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/timer/mod.rs
@@ -0,0 +1,490 @@
+//! Timer implementation.
+//!
+//! This module contains the types needed to run a timer.
+//!
+//! The [`Timer`] type runs the timer logic. It holds all the necessary state
+//! to track all associated [`Delay`] instances and delivering notifications
+//! once the deadlines are reached.
+//!
+//! The [`Handle`] type is a reference to a [`Timer`] instance. This type is
+//! `Clone`, `Send`, and `Sync`. This type is used to create instances of
+//! [`Delay`].
+//!
+//! The [`Now`] trait describes how to get an [`Instant`] representing the
+//! current moment in time. [`SystemNow`] is the default implementation, where
+//! [`Now::now`] is implemented by calling [`Instant::now`].
+//!
+//! [`Timer`] is generic over [`Now`]. This allows the source of time to be
+//! customized. This ability is especially useful in tests and any environment
+//! where determinism is necessary.
+//!
+//! Note, when using the Tokio runtime, the [`Timer`] does not need to be manually
+//! setup as the runtime comes pre-configured with a [`Timer`] instance.
+//!
+//! [`Timer`]: struct.Timer.html
+//! [`Handle`]: struct.Handle.html
+//! [`Delay`]: ../struct.Delay.html
+//! [`Now`]: ../clock/trait.Now.html
+//! [`Now::now`]: ../clock/trait.Now.html#method.now
+//! [`SystemNow`]: struct.SystemNow.html
+//! [`Instant`]: https://doc.rust-lang.org/std/time/struct.Instant.html
+//! [`Instant::now`]: https://doc.rust-lang.org/std/time/struct.Instant.html#method.now
+
+// This allows the usage of the old `Now` trait.
+#![allow(deprecated)]
+
+mod atomic_stack;
+mod entry;
+mod handle;
+mod now;
+mod registration;
+mod stack;
+
+use self::atomic_stack::AtomicStack;
+use self::entry::Entry;
+use self::stack::Stack;
+
+pub(crate) use self::handle::HandlePriv;
+pub use self::handle::{with_default, Handle};
+pub use self::now::{Now, SystemNow};
+pub(crate) use self::registration::Registration;
+
+use atomic::AtomicU64;
+use wheel;
+use Error;
+
+use tokio_executor::park::{Park, ParkThread, Unpark};
+
+use std::sync::atomic::AtomicUsize;
+use std::sync::atomic::Ordering::SeqCst;
+use std::sync::Arc;
+use std::time::{Duration, Instant};
+use std::usize;
+use std::{cmp, fmt};
+
+/// Timer implementation that drives [`Delay`], [`Interval`], and [`Timeout`].
+///
+/// A `Timer` instance tracks the state necessary for managing time and
+/// notifying the [`Delay`] instances once their deadlines are reached.
+///
+/// It is expected that a single `Timer` instance manages many individual
+/// [`Delay`] instances. The `Timer` implementation is thread-safe and, as such,
+/// is able to handle callers from across threads.
+///
+/// Callers do not use `Timer` directly to create [`Delay`] instances. Instead,
+/// [`Handle`][Handle.struct] is used. A handle for the timer instance is obtained by calling
+/// [`handle`]. [`Handle`][Handle.struct] is the type that implements `Clone` and is `Send +
+/// Sync`.
+///
+/// After creating the `Timer` instance, the caller must repeatedly call
+/// [`turn`]. The timer will perform no work unless [`turn`] is called
+/// repeatedly.
+///
+/// The `Timer` has a resolution of one millisecond. Any unit of time that falls
+/// between milliseconds are rounded up to the next millisecond.
+///
+/// When the `Timer` instance is dropped, any outstanding [`Delay`] instance that
+/// has not elapsed will be notified with an error. At this point, calling
+/// `poll` on the [`Delay`] instance will result in `Err` being returned.
+///
+/// # Implementation
+///
+/// `Timer` is based on the [paper by Varghese and Lauck][paper].
+///
+/// A hashed timing wheel is a vector of slots, where each slot handles a time
+/// slice. As time progresses, the timer walks over the slot for the current
+/// instant, and processes each entry for that slot. When the timer reaches the
+/// end of the wheel, it starts again at the beginning.
+///
+/// The `Timer` implementation maintains six wheels arranged in a set of levels.
+/// As the levels go up, the slots of the associated wheel represent larger
+/// intervals of time. At each level, the wheel has 64 slots. Each slot covers a
+/// range of time equal to the wheel at the lower level. At level zero, each
+/// slot represents one millisecond of time.
+///
+/// The wheels are:
+///
+/// * Level 0: 64 x 1 millisecond slots.
+/// * Level 1: 64 x 64 millisecond slots.
+/// * Level 2: 64 x ~4 second slots.
+/// * Level 3: 64 x ~4 minute slots.
+/// * Level 4: 64 x ~4 hour slots.
+/// * Level 5: 64 x ~12 day slots.
+///
+/// When the timer processes entries at level zero, it will notify all the
+/// [`Delay`] instances as their deadlines have been reached. For all higher
+/// levels, all entries will be redistributed across the wheel at the next level
+/// down. Eventually, as time progresses, entries will [`Delay`] instances will
+/// either be canceled (dropped) or their associated entries will reach level
+/// zero and be notified.
+///
+/// [`Delay`]: ../struct.Delay.html
+/// [`Interval`]: ../struct.Interval.html
+/// [`Timeout`]: ../struct.Timeout.html
+/// [paper]: http://www.cs.columbia.edu/~nahum/w6998/papers/ton97-timing-wheels.pdf
+/// [`handle`]: #method.handle
+/// [`turn`]: #method.turn
+/// [Handle.struct]: struct.Handle.html
+#[derive(Debug)]
+pub struct Timer<T, N = SystemNow> {
+ /// Shared state
+ inner: Arc<Inner>,
+
+ /// Timer wheel
+ wheel: wheel::Wheel<Stack>,
+
+ /// Thread parker. The `Timer` park implementation delegates to this.
+ park: T,
+
+ /// Source of "now" instances
+ now: N,
+}
+
+/// Return value from the `turn` method on `Timer`.
+///
+/// Currently this value doesn't actually provide any functionality, but it may
+/// in the future give insight into what happened during `turn`.
+#[derive(Debug)]
+pub struct Turn(());
+
+/// Timer state shared between `Timer`, `Handle`, and `Registration`.
+pub(crate) struct Inner {
+ /// The instant at which the timer started running.
+ start: Instant,
+
+ /// The last published timer `elapsed` value.
+ elapsed: AtomicU64,
+
+ /// Number of active timeouts
+ num: AtomicUsize,
+
+ /// Head of the "process" linked list.
+ process: AtomicStack,
+
+ /// Unparks the timer thread.
+ unpark: Box<Unpark>,
+}
+
+/// Maximum number of timeouts the system can handle concurrently.
+const MAX_TIMEOUTS: usize = usize::MAX >> 1;
+
+// ===== impl Timer =====
+
+impl<T> Timer<T>
+where
+ T: Park,
+{
+ /// Create a new `Timer` instance that uses `park` to block the current
+ /// thread.
+ ///
+ /// Once the timer has been created, a handle can be obtained using
+ /// [`handle`]. The handle is used to create `Delay` instances.
+ ///
+ /// Use `default` when constructing a `Timer` using the default `park`
+ /// instance.
+ ///
+ /// [`handle`]: #method.handle
+ pub fn new(park: T) -> Self {
+ Timer::new_with_now(park, SystemNow::new())
+ }
+}
+
+impl<T, N> Timer<T, N> {
+ /// Returns a reference to the underlying `Park` instance.
+ pub fn get_park(&self) -> &T {
+ &self.park
+ }
+
+ /// Returns a mutable reference to the underlying `Park` instance.
+ pub fn get_park_mut(&mut self) -> &mut T {
+ &mut self.park
+ }
+}
+
+impl<T, N> Timer<T, N>
+where
+ T: Park,
+ N: Now,
+{
+ /// Create a new `Timer` instance that uses `park` to block the current
+ /// thread and `now` to get the current `Instant`.
+ ///
+ /// Specifying the source of time is useful when testing.
+ pub fn new_with_now(park: T, mut now: N) -> Self {
+ let unpark = Box::new(park.unpark());
+
+ Timer {
+ inner: Arc::new(Inner::new(now.now(), unpark)),
+ wheel: wheel::Wheel::new(),
+ park,
+ now,
+ }
+ }
+
+ /// Returns a handle to the timer.
+ ///
+ /// The `Handle` is how `Delay` instances are created. The `Delay` instances
+ /// can either be created directly or the `Handle` instance can be passed to
+ /// `with_default`, setting the timer as the default timer for the execution
+ /// context.
+ pub fn handle(&self) -> Handle {
+ Handle::new(Arc::downgrade(&self.inner))
+ }
+
+ /// Performs one iteration of the timer loop.
+ ///
+ /// This function must be called repeatedly in order for the `Timer`
+ /// instance to make progress. This is where the work happens.
+ ///
+ /// The `Timer` will use the `Park` instance that was specified in [`new`]
+ /// to block the current thread until the next `Delay` instance elapses. One
+ /// call to `turn` results in at most one call to `park.park()`.
+ ///
+ /// # Return
+ ///
+ /// On success, `Ok(Turn)` is returned, where `Turn` is a placeholder type
+ /// that currently does nothing but may, in the future, have functions add
+ /// to provide information about the call to `turn`.
+ ///
+ /// If the call to `park.park()` fails, then `Err` is returned with the
+ /// error.
+ ///
+ /// [`new`]: #method.new
+ pub fn turn(&mut self, max_wait: Option<Duration>) -> Result<Turn, T::Error> {
+ match max_wait {
+ Some(timeout) => self.park_timeout(timeout)?,
+ None => self.park()?,
+ }
+
+ Ok(Turn(()))
+ }
+
+ /// Converts an `Expiration` to an `Instant`.
+ fn expiration_instant(&self, when: u64) -> Instant {
+ self.inner.start + Duration::from_millis(when)
+ }
+
+ /// Run timer related logic
+ fn process(&mut self) {
+ let now = ::ms(self.now.now() - self.inner.start, ::Round::Down);
+ let mut poll = wheel::Poll::new(now);
+
+ while let Some(entry) = self.wheel.poll(&mut poll, &mut ()) {
+ let when = entry.when_internal().expect("invalid internal entry state");
+
+ // Fire the entry
+ entry.fire(when);
+
+ // Track that the entry has been fired
+ entry.set_when_internal(None);
+ }
+
+ // Update the elapsed cache
+ self.inner.elapsed.store(self.wheel.elapsed(), SeqCst);
+ }
+
+ /// Process the entry queue
+ ///
+ /// This handles adding and canceling timeouts.
+ fn process_queue(&mut self) {
+ for entry in self.inner.process.take() {
+ match (entry.when_internal(), entry.load_state()) {
+ (None, None) => {
+ // Nothing to do
+ }
+ (Some(_), None) => {
+ // Remove the entry
+ self.clear_entry(&entry);
+ }
+ (None, Some(when)) => {
+ // Queue the entry
+ self.add_entry(entry, when);
+ }
+ (Some(_), Some(next)) => {
+ self.clear_entry(&entry);
+ self.add_entry(entry, next);
+ }
+ }
+ }
+ }
+
+ fn clear_entry(&mut self, entry: &Arc<Entry>) {
+ self.wheel.remove(entry, &mut ());
+ entry.set_when_internal(None);
+ }
+
+ /// Fire the entry if it needs to, otherwise queue it to be processed later.
+ ///
+ /// Returns `None` if the entry was fired.
+ fn add_entry(&mut self, entry: Arc<Entry>, when: u64) {
+ use wheel::InsertError;
+
+ entry.set_when_internal(Some(when));
+
+ match self.wheel.insert(when, entry, &mut ()) {
+ Ok(_) => {}
+ Err((entry, InsertError::Elapsed)) => {
+ // The entry's deadline has elapsed, so fire it and update the
+ // internal state accordingly.
+ entry.set_when_internal(None);
+ entry.fire(when);
+ }
+ Err((entry, InsertError::Invalid)) => {
+ // The entry's deadline is invalid, so error it and update the
+ // internal state accordingly.
+ entry.set_when_internal(None);
+ entry.error();
+ }
+ }
+ }
+}
+
+impl Default for Timer<ParkThread, SystemNow> {
+ fn default() -> Self {
+ Timer::new(ParkThread::new())
+ }
+}
+
+impl<T, N> Park for Timer<T, N>
+where
+ T: Park,
+ N: Now,
+{
+ type Unpark = T::Unpark;
+ type Error = T::Error;
+
+ fn unpark(&self) -> Self::Unpark {
+ self.park.unpark()
+ }
+
+ fn park(&mut self) -> Result<(), Self::Error> {
+ self.process_queue();
+
+ match self.wheel.poll_at() {
+ Some(when) => {
+ let now = self.now.now();
+ let deadline = self.expiration_instant(when);
+
+ if deadline > now {
+ self.park.park_timeout(deadline - now)?;
+ } else {
+ self.park.park_timeout(Duration::from_secs(0))?;
+ }
+ }
+ None => {
+ self.park.park()?;
+ }
+ }
+
+ self.process();
+
+ Ok(())
+ }
+
+ fn park_timeout(&mut self, duration: Duration) -> Result<(), Self::Error> {
+ self.process_queue();
+
+ match self.wheel.poll_at() {
+ Some(when) => {
+ let now = self.now.now();
+ let deadline = self.expiration_instant(when);
+
+ if deadline > now {
+ self.park.park_timeout(cmp::min(deadline - now, duration))?;
+ } else {
+ self.park.park_timeout(Duration::from_secs(0))?;
+ }
+ }
+ None => {
+ self.park.park_timeout(duration)?;
+ }
+ }
+
+ self.process();
+
+ Ok(())
+ }
+}
+
+impl<T, N> Drop for Timer<T, N> {
+ fn drop(&mut self) {
+ use std::u64;
+
+ // Shutdown the stack of entries to process, preventing any new entries
+ // from being pushed.
+ self.inner.process.shutdown();
+
+ // Clear the wheel, using u64::MAX allows us to drain everything
+ let mut poll = wheel::Poll::new(u64::MAX);
+
+ while let Some(entry) = self.wheel.poll(&mut poll, &mut ()) {
+ entry.error();
+ }
+ }
+}
+
+// ===== impl Inner =====
+
+impl Inner {
+ fn new(start: Instant, unpark: Box<Unpark>) -> Inner {
+ Inner {
+ num: AtomicUsize::new(0),
+ elapsed: AtomicU64::new(0),
+ process: AtomicStack::new(),
+ start,
+ unpark,
+ }
+ }
+
+ fn elapsed(&self) -> u64 {
+ self.elapsed.load(SeqCst)
+ }
+
+ /// Increment the number of active timeouts
+ fn increment(&self) -> Result<(), Error> {
+ let mut curr = self.num.load(SeqCst);
+
+ loop {
+ if curr == MAX_TIMEOUTS {
+ return Err(Error::at_capacity());
+ }
+
+ let actual = self.num.compare_and_swap(curr, curr + 1, SeqCst);
+
+ if curr == actual {
+ return Ok(());
+ }
+
+ curr = actual;
+ }
+ }
+
+ /// Decrement the number of active timeouts
+ fn decrement(&self) {
+ let prev = self.num.fetch_sub(1, SeqCst);
+ debug_assert!(prev <= MAX_TIMEOUTS);
+ }
+
+ fn queue(&self, entry: &Arc<Entry>) -> Result<(), Error> {
+ if self.process.push(entry)? {
+ // The timer is notified so that it can process the timeout
+ self.unpark.unpark();
+ }
+
+ Ok(())
+ }
+
+ fn normalize_deadline(&self, deadline: Instant) -> u64 {
+ if deadline < self.start {
+ return 0;
+ }
+
+ ::ms(deadline - self.start, ::Round::Up)
+ }
+}
+
+impl fmt::Debug for Inner {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ fmt.debug_struct("Inner").finish()
+ }
+}