diff options
Diffstat (limited to 'third_party/rust/wasmparser/src/parser.rs')
-rw-r--r-- | third_party/rust/wasmparser/src/parser.rs | 1338 |
1 files changed, 1338 insertions, 0 deletions
diff --git a/third_party/rust/wasmparser/src/parser.rs b/third_party/rust/wasmparser/src/parser.rs new file mode 100644 index 0000000000..8e6569e334 --- /dev/null +++ b/third_party/rust/wasmparser/src/parser.rs @@ -0,0 +1,1338 @@ +use crate::{AliasSectionReader, InstanceSectionReader, ModuleSectionReader}; +use crate::{BinaryReader, BinaryReaderError, FunctionBody, Range, Result}; +use crate::{DataSectionReader, ElementSectionReader, ExportSectionReader}; +use crate::{FunctionSectionReader, ImportSectionReader, TypeSectionReader}; +use crate::{GlobalSectionReader, MemorySectionReader, TableSectionReader}; +use std::convert::TryInto; +use std::fmt; +use std::iter; + +/// An incremental parser of a binary WebAssembly module. +/// +/// This type is intended to be used to incrementally parse a WebAssembly module +/// as bytes become available for the module. This can also be used to parse +/// modules that are already entirely resident within memory. +/// +/// This primary function for a parser is the [`Parser::parse`] function which +/// will incrementally consume input. You can also use the [`Parser::parse_all`] +/// function to parse a module that is entirely resident in memory. +#[derive(Debug, Clone)] +pub struct Parser { + state: State, + offset: u64, + max_size: u64, +} + +#[derive(Debug, Clone)] +enum State { + ModuleHeader, + SectionStart, + FunctionBody { remaining: u32, len: u32 }, + ModuleCode { remaining: u32, len: u32 }, +} + +/// A successful return payload from [`Parser::parse`]. +/// +/// On success one of two possible values can be returned, either that more data +/// is needed to continue parsing or a chunk of the input was parsed, indicating +/// how much of it was parsed. +#[derive(Debug)] +pub enum Chunk<'a> { + /// This can be returned at any time and indicates that more data is needed + /// to proceed with parsing. Zero bytes were consumed from the input to + /// [`Parser::parse`]. The `usize` value here is a hint as to how many more + /// bytes are needed to continue parsing. + NeedMoreData(u64), + + /// A chunk was successfully parsed. + Parsed { + /// This many bytes of the `data` input to [`Parser::parse`] were + /// consumed to produce `payload`. + consumed: usize, + /// The value that we actually parsed. + payload: Payload<'a>, + }, +} + +/// Values that can be parsed from a wasm module. +/// +/// This enumeration is all possible chunks of pieces that can be parsed by a +/// [`Parser`] from a binary WebAssembly module. Note that for many sections the +/// entire section is parsed all at once, whereas other functions, like the code +/// section, are parsed incrementally. This is a distinction where some +/// sections, like the type section, are required to be fully resident in memory +/// (fully downloaded) before proceeding. Other sections, like the code section, +/// can be processed in a streaming fashion where each function is extracted +/// individually so it can possibly be shipped to another thread while you wait +/// for more functions to get downloaded. +/// +/// Note that payloads, when returned, do not indicate that the wasm module is +/// valid. For example when you receive a `Payload::TypeSection` the type +/// section itself has not yet actually been parsed. The reader returned will be +/// able to parse it, but you'll have to actually iterate the reader to do the +/// full parse. Each payload returned is intended to be a *window* into the +/// original `data` passed to [`Parser::parse`] which can be further processed +/// if necessary. +pub enum Payload<'a> { + /// Indicates the header of a WebAssembly binary. + /// + /// This header also indicates the version number that was parsed, which is + /// currently always 1. + Version { + /// The version number found + num: u32, + /// The range of bytes that were parsed to consume the header of the + /// module. Note that this range is relative to the start of the byte + /// stream. + range: Range, + }, + + /// A type section was received, and the provided reader can be used to + /// parse the contents of the type section. + TypeSection(crate::TypeSectionReader<'a>), + /// A import section was received, and the provided reader can be used to + /// parse the contents of the import section. + ImportSection(crate::ImportSectionReader<'a>), + /// An alias section was received, and the provided reader can be used to + /// parse the contents of the alias section. + AliasSection(crate::AliasSectionReader<'a>), + /// An instance section was received, and the provided reader can be used to + /// parse the contents of the instance section. + InstanceSection(crate::InstanceSectionReader<'a>), + /// A module section was received, and the provided reader can be used to + /// parse the contents of the module section. + ModuleSection(crate::ModuleSectionReader<'a>), + /// A function section was received, and the provided reader can be used to + /// parse the contents of the function section. + FunctionSection(crate::FunctionSectionReader<'a>), + /// A table section was received, and the provided reader can be used to + /// parse the contents of the table section. + TableSection(crate::TableSectionReader<'a>), + /// A memory section was received, and the provided reader can be used to + /// parse the contents of the memory section. + MemorySection(crate::MemorySectionReader<'a>), + /// A global section was received, and the provided reader can be used to + /// parse the contents of the global section. + GlobalSection(crate::GlobalSectionReader<'a>), + /// An export section was received, and the provided reader can be used to + /// parse the contents of the export section. + ExportSection(crate::ExportSectionReader<'a>), + /// A start section was received, and the `u32` here is the index of the + /// start function. + StartSection { + /// The start function index + func: u32, + /// The range of bytes that specify the `func` field, specified in + /// offsets relative to the start of the byte stream. + range: Range, + }, + /// An element section was received, and the provided reader can be used to + /// parse the contents of the element section. + ElementSection(crate::ElementSectionReader<'a>), + /// A data count section was received, and the `u32` here is the contents of + /// the data count section. + DataCountSection { + /// The number of data segments. + count: u32, + /// The range of bytes that specify the `count` field, specified in + /// offsets relative to the start of the byte stream. + range: Range, + }, + /// A data section was received, and the provided reader can be used to + /// parse the contents of the data section. + DataSection(crate::DataSectionReader<'a>), + /// A custom section was found. + CustomSection { + /// The name of the custom section. + name: &'a str, + /// The offset, relative to the start of the original module, that the + /// payload for this custom section starts at. + data_offset: usize, + /// The actual contents of the custom section. + data: &'a [u8], + }, + + /// Indicator of the start of the code section. + /// + /// This entry is returned whenever the code section starts. The `count` + /// field indicates how many entries are in this code section. After + /// receiving this start marker you're guaranteed that the next `count` + /// items will be either `CodeSectionEntry` or an error will be returned. + /// + /// This, unlike other sections, is intended to be used for streaming the + /// contents of the code section. The code section is not required to be + /// fully resident in memory when we parse it. Instead a [`Parser`] is + /// capable of parsing piece-by-piece of a code section. + CodeSectionStart { + /// The number of functions in this section. + count: u32, + /// The range of bytes that represent this section, specified in + /// offsets relative to the start of the byte stream. + range: Range, + /// The size, in bytes, of the remaining contents of this section. + /// + /// This can be used in combination with [`Parser::skip_section`] + /// where the caller will know how many bytes to skip before feeding + /// bytes into `Parser` again. + size: u32, + }, + + /// An entry of the code section, a function, was parsed. + /// + /// This entry indicates that a function was successfully received from the + /// code section, and the payload here is the window into the original input + /// where the function resides. Note that the function itself has not been + /// parsed, it's only been outlined. You'll need to process the + /// `FunctionBody` provided to test whether it parses and/or is valid. + CodeSectionEntry(crate::FunctionBody<'a>), + + /// Indicator of the start of the module code section. + /// + /// This behaves the same as the `CodeSectionStart` payload being returned. + /// You're guaranteed the next `count` items will be of type + /// `ModuleCodeSectionEntry`. + ModuleCodeSectionStart { + /// The number of inline modules in this section. + count: u32, + /// The range of bytes that represent this section, specified in + /// offsets relative to the start of the byte stream. + range: Range, + /// The size, in bytes, of the remaining contents of this section. + size: u32, + }, + + /// An entry of the module code section, a module, was parsed. + /// + /// This variant is special in that it returns a sub-`Parser`. Upon + /// receiving a `ModuleCodeSectionEntry` it is expected that the returned + /// `Parser` will be used instead of the parent `Parser` until the parse has + /// finished. You'll need to feed data into the `Parser` returned until it + /// returns `Payload::End`. After that you'll switch back to the parent + /// parser to resume parsing the rest of the module code section. + /// + /// Note that binaries will not be parsed correctly if you feed the data for + /// a nested module into the parent [`Parser`]. + ModuleCodeSectionEntry { + /// The parser to use to parse the contents of the nested submodule. + /// This parser should be used until it reports `End`. + parser: Parser, + /// The range of bytes, relative to the start of the input stream, of + /// the bytes containing this submodule. + range: Range, + }, + + /// An unknown section was found. + /// + /// This variant is returned for all unknown sections in a wasm file. This + /// likely wants to be interpreted as an error by consumers of the parser, + /// but this can also be used to parse sections unknown to wasmparser at + /// this time. + UnknownSection { + /// The 8-bit identifier for this section. + id: u8, + /// The contents of this section. + contents: &'a [u8], + /// The range of bytes, relative to the start of the original data + /// stream, that the contents of this section reside in. + range: Range, + }, + + /// The end of the WebAssembly module was reached. + End, +} + +impl Parser { + /// Creates a new module parser. + /// + /// Reports errors and ranges relative to `offset` provided, where `offset` + /// is some logical offset within the input stream that we're parsing. + pub fn new(offset: u64) -> Parser { + Parser { + state: State::ModuleHeader, + offset, + max_size: u64::max_value(), + } + } + + /// Attempts to parse a chunk of data. + /// + /// This method will attempt to parse the next incremental portion of a + /// WebAssembly binary. Data available for the module is provided as `data`, + /// and the data can be incomplete if more data has yet to arrive for the + /// module. The `eof` flag indicates whether `data` represents all possible + /// data for the module and no more data will ever be received. + /// + /// There are two ways parsing can succeed with this method: + /// + /// * `Chunk::NeedMoreData` - this indicates that there is not enough bytes + /// in `data` to parse a chunk of this module. The caller needs to wait + /// for more data to be available in this situation before calling this + /// method again. It is guaranteed that this is only returned if `eof` is + /// `false`. + /// + /// * `Chunk::Parsed` - this indicates that a chunk of the input was + /// successfully parsed. The payload is available in this variant of what + /// was parsed, and this also indicates how many bytes of `data` was + /// consumed. It's expected that the caller will not provide these bytes + /// back to the [`Parser`] again. + /// + /// Note that all `Chunk` return values are connected, with a lifetime, to + /// the input buffer. Each parsed chunk borrows the input buffer and is a + /// view into it for successfully parsed chunks. + /// + /// It is expected that you'll call this method until `Payload::End` is + /// reached, at which point you're guaranteed that the module has completely + /// parsed. Note that complete parsing, for the top-level wasm module, + /// implies that `data` is empty and `eof` is `true`. + /// + /// # Errors + /// + /// Parse errors are returned as an `Err`. Errors can happen when the + /// structure of the module is unexpected, or if sections are too large for + /// example. Note that errors are not returned for malformed *contents* of + /// sections here. Sections are generally not individually parsed and each + /// returned [`Payload`] needs to be iterated over further to detect all + /// errors. + /// + /// # Examples + /// + /// An example of reading a wasm file from a stream (`std::io::Read`) and + /// incrementally parsing it. + /// + /// ``` + /// use std::io::Read; + /// use anyhow::Result; + /// use wasmparser::{Parser, Chunk, Payload::*}; + /// + /// fn parse(mut reader: impl Read) -> Result<()> { + /// let mut buf = Vec::new(); + /// let mut parser = Parser::new(0); + /// let mut eof = false; + /// let mut stack = Vec::new(); + /// + /// loop { + /// let (payload, consumed) = match parser.parse(&buf, eof)? { + /// Chunk::NeedMoreData(hint) => { + /// assert!(!eof); // otherwise an error would be returned + /// + /// // Use the hint to preallocate more space, then read + /// // some more data into our buffer. + /// // + /// // Note that the buffer management here is not ideal, + /// // but it's compact enough to fit in an example! + /// let len = buf.len(); + /// buf.extend((0..hint).map(|_| 0u8)); + /// let n = reader.read(&mut buf[len..])?; + /// buf.truncate(len + n); + /// eof = n == 0; + /// continue; + /// } + /// + /// Chunk::Parsed { consumed, payload } => (payload, consumed), + /// }; + /// + /// match payload { + /// // Each of these would be handled individually as necessary + /// Version { .. } => { /* ... */ } + /// TypeSection(_) => { /* ... */ } + /// ImportSection(_) => { /* ... */ } + /// AliasSection(_) => { /* ... */ } + /// InstanceSection(_) => { /* ... */ } + /// ModuleSection(_) => { /* ... */ } + /// FunctionSection(_) => { /* ... */ } + /// TableSection(_) => { /* ... */ } + /// MemorySection(_) => { /* ... */ } + /// GlobalSection(_) => { /* ... */ } + /// ExportSection(_) => { /* ... */ } + /// StartSection { .. } => { /* ... */ } + /// ElementSection(_) => { /* ... */ } + /// DataCountSection { .. } => { /* ... */ } + /// DataSection(_) => { /* ... */ } + /// + /// // Here we know how many functions we'll be receiving as + /// // `CodeSectionEntry`, so we can prepare for that, and + /// // afterwards we can parse and handle each function + /// // individually. + /// CodeSectionStart { .. } => { /* ... */ } + /// CodeSectionEntry(body) => { + /// // here we can iterate over `body` to parse the function + /// // and its locals + /// } + /// + /// // When parsing nested modules we need to switch which + /// // `Parser` we're using. + /// ModuleCodeSectionStart { .. } => { /* ... */ } + /// ModuleCodeSectionEntry { parser: subparser, .. } => { + /// stack.push(parser); + /// parser = subparser; + /// } + /// + /// CustomSection { name, .. } => { /* ... */ } + /// + /// // most likely you'd return an error here + /// UnknownSection { id, .. } => { /* ... */ } + /// + /// // Once we've reached the end of a module we either resume + /// // at the parent module or we break out of the loop because + /// // we're done. + /// End => { + /// if let Some(parent_parser) = stack.pop() { + /// parser = parent_parser; + /// } else { + /// break; + /// } + /// } + /// } + /// + /// // once we're done processing the payload we can forget the + /// // original. + /// buf.drain(..consumed); + /// } + /// + /// Ok(()) + /// } + /// + /// # parse(&b"\0asm\x01\0\0\0"[..]).unwrap(); + /// ``` + pub fn parse<'a>(&mut self, data: &'a [u8], eof: bool) -> Result<Chunk<'a>> { + let (data, eof) = if usize_to_u64(data.len()) > self.max_size { + (&data[..(self.max_size as usize)], true) + } else { + (data, eof) + }; + // TODO: thread through `offset: u64` to `BinaryReader`, remove + // the cast here. + let mut reader = BinaryReader::new_with_offset(data, self.offset as usize); + match self.parse_reader(&mut reader, eof) { + Ok(payload) => { + // Be sure to update our offset with how far we got in the + // reader + self.offset += usize_to_u64(reader.position); + self.max_size -= usize_to_u64(reader.position); + Ok(Chunk::Parsed { + consumed: reader.position, + payload, + }) + } + Err(e) => { + // If we're at EOF then there's no way we can recover from any + // error, so continue to propagate it. + if eof { + return Err(e); + } + + // If our error doesn't look like it can be resolved with more + // data being pulled down, then propagate it, otherwise switch + // the error to "feed me please" + match e.inner.needed_hint { + Some(hint) => Ok(Chunk::NeedMoreData(usize_to_u64(hint))), + None => Err(e), + } + } + } + } + + fn parse_reader<'a>( + &mut self, + reader: &mut BinaryReader<'a>, + eof: bool, + ) -> Result<Payload<'a>> { + use Payload::*; + + match self.state { + State::ModuleHeader => { + let start = reader.original_position(); + let num = reader.read_file_header()?; + self.state = State::SectionStart; + Ok(Version { + num, + range: Range { + start, + end: reader.original_position(), + }, + }) + } + State::SectionStart => { + // If we're at eof and there are no bytes in our buffer, then + // that means we reached the end of the wasm file since it's + // just a bunch of sections concatenated after the module + // header. + if eof && reader.bytes_remaining() == 0 { + return Ok(Payload::End); + } + + let id = reader.read_var_u7()? as u8; + let len_pos = reader.position; + let mut len = reader.read_var_u32()?; + + // Test to make sure that this section actually fits within + // `Parser::max_size`. This doesn't matter for top-level modules + // but it is required for nested modules to correctly ensure + // that all sections live entirely within their section of the + // file. + let section_overflow = self + .max_size + .checked_sub(usize_to_u64(reader.position)) + .and_then(|s| s.checked_sub(len.into())) + .is_none(); + if section_overflow { + return Err(BinaryReaderError::new("section too large", len_pos)); + } + + match id { + 0 => { + let mut content = subreader(reader, len)?; + // Note that if this fails we can't read any more bytes, + // so clear the "we'd succeed if we got this many more + // bytes" because we can't recover from "eof" at this point. + let name = content.read_string().map_err(clear_hint)?; + Ok(Payload::CustomSection { + name, + data_offset: content.original_position(), + data: content.remaining_buffer(), + }) + } + 1 => section(reader, len, TypeSectionReader::new, TypeSection), + 2 => section(reader, len, ImportSectionReader::new, ImportSection), + 3 => section(reader, len, FunctionSectionReader::new, FunctionSection), + 4 => section(reader, len, TableSectionReader::new, TableSection), + 5 => section(reader, len, MemorySectionReader::new, MemorySection), + 6 => section(reader, len, GlobalSectionReader::new, GlobalSection), + 7 => section(reader, len, ExportSectionReader::new, ExportSection), + 8 => { + let (func, range) = single_u32(reader, len, "start")?; + Ok(StartSection { func, range }) + } + 9 => section(reader, len, ElementSectionReader::new, ElementSection), + 10 => { + let start = reader.original_position(); + let count = delimited(reader, &mut len, |r| r.read_var_u32())?; + let range = Range { + start, + end: reader.original_position() + len as usize, + }; + self.state = State::FunctionBody { + remaining: count, + len, + }; + Ok(CodeSectionStart { + count, + range, + size: len, + }) + } + 11 => section(reader, len, DataSectionReader::new, DataSection), + 12 => { + let (count, range) = single_u32(reader, len, "data count")?; + Ok(DataCountSection { count, range }) + } + 100 => section(reader, len, ModuleSectionReader::new, ModuleSection), + 101 => section(reader, len, InstanceSectionReader::new, InstanceSection), + 102 => section(reader, len, AliasSectionReader::new, AliasSection), + 103 => { + let start = reader.original_position(); + let count = delimited(reader, &mut len, |r| r.read_var_u32())?; + let range = Range { + start, + end: reader.original_position() + len as usize, + }; + self.state = State::ModuleCode { + remaining: count, + len, + }; + Ok(ModuleCodeSectionStart { + count, + range, + size: len, + }) + } + id => { + let offset = reader.original_position(); + let contents = reader.read_bytes(len as usize)?; + let range = Range { + start: offset, + end: offset + len as usize, + }; + Ok(UnknownSection { + id, + contents, + range, + }) + } + } + } + + // Once we hit 0 remaining incrementally parsed items, with 0 + // remaining bytes in each section, we're done and can switch back + // to parsing sections. + State::FunctionBody { + remaining: 0, + len: 0, + } + | State::ModuleCode { + remaining: 0, + len: 0, + } => { + self.state = State::SectionStart; + self.parse_reader(reader, eof) + } + + // ... otherwise trailing bytes with no remaining entries in these + // sections indicates an error. + State::FunctionBody { remaining: 0, len } | State::ModuleCode { remaining: 0, len } => { + debug_assert!(len > 0); + let offset = reader.original_position(); + Err(BinaryReaderError::new( + "trailing bytes at end of section", + offset, + )) + } + + // Functions are relatively easy to parse when we know there's at + // least one remaining and at least one byte available to read + // things. + // + // We use the remaining length try to read a u32 size of the + // function, and using that size we require the entire function be + // resident in memory. This means that we're reading whole chunks of + // functions at a time. + // + // Limiting via `Parser::max_size` (nested modules) happens above in + // `fn parse`, and limiting by our section size happens via + // `delimited`. Actual parsing of the function body is delegated to + // the caller to iterate over the `FunctionBody` structure. + State::FunctionBody { remaining, mut len } => { + let body = delimited(reader, &mut len, |r| { + let size = r.read_var_u32()?; + let offset = r.original_position(); + Ok(FunctionBody::new(offset, r.read_bytes(size as usize)?)) + })?; + self.state = State::FunctionBody { + remaining: remaining - 1, + len, + }; + Ok(CodeSectionEntry(body)) + } + + // Modules are trickier than functions. What's going to happen here + // is that we'll be offloading parsing to a sub-`Parser`. This + // sub-`Parser` will be delimited to not read past the size of the + // module that's specified. + // + // So the first thing that happens here is we read the size of the + // module. We use `delimited` to make sure the bytes specifying the + // size of the module are themselves within the module code section. + // + // Once we've read the size of a module, however, there's a few + // pieces of state that we need to update. We as a parser will not + // receive the next `size` bytes, so we need to update our internal + // bookkeeping to account for that: + // + // * The `len`, number of bytes remaining in this section, is + // decremented by `size`. This can underflow, however, meaning + // that the size of the module doesn't fit within the section. + // + // * Our `Parser::max_size` field needs to account for the bytes + // that we're reading. Note that this is guaranteed to not + // underflow, however, because whenever we parse a section header + // we guarantee that its contents fit within our `max_size`. + // + // To update `len` we do that when updating `self.state`, and to + // update `max_size` we do that inline. Note that this will get + // further tweaked after we return with the bytes we read specifying + // the size of the module itself. + State::ModuleCode { remaining, mut len } => { + let size = delimited(reader, &mut len, |r| r.read_var_u32())?; + match len.checked_sub(size) { + Some(i) => len = i, + None => { + return Err(BinaryReaderError::new( + "Unexpected EOF", + reader.original_position(), + )); + } + } + self.state = State::ModuleCode { + remaining: remaining - 1, + len, + }; + let range = Range { + start: reader.original_position(), + end: reader.original_position() + size as usize, + }; + self.max_size -= u64::from(size); + self.offset += u64::from(size); + let mut parser = Parser::new(usize_to_u64(reader.original_position())); + parser.max_size = size.into(); + Ok(ModuleCodeSectionEntry { parser, range }) + } + } + } + + /// Convenience function that can be used to parse a module entirely + /// resident in memory. + /// + /// This function will parse the `data` provided as a WebAssembly module, + /// assuming that `data` represents the entire WebAssembly module. + /// + /// Note that when this function yields `ModuleCodeSectionEntry` + /// no action needs to be taken with the returned parser. The parser will be + /// automatically switched to internally and more payloads will continue to + /// get returned. + pub fn parse_all<'a>( + self, + mut data: &'a [u8], + ) -> impl Iterator<Item = Result<Payload<'a>>> + 'a { + let mut stack = Vec::new(); + let mut cur = self; + let mut done = false; + iter::from_fn(move || { + if done { + return None; + } + let payload = match cur.parse(data, true) { + // Propagate all errors + Err(e) => return Some(Err(e)), + + // This isn't possible because `eof` is always true. + Ok(Chunk::NeedMoreData(_)) => unreachable!(), + + Ok(Chunk::Parsed { payload, consumed }) => { + data = &data[consumed..]; + payload + } + }; + + match &payload { + // If a module ends then we either finished the current + // module or, if there's a parent, we switch back to + // resuming parsing the parent. + Payload::End => match stack.pop() { + Some(p) => cur = p, + None => done = true, + }, + + // When we enter a nested module then we need to update our + // current parser, saving off the previous state. + // + // Afterwards we turn the loop again to recurse in parsing the + // nested module. + Payload::ModuleCodeSectionEntry { parser, range: _ } => { + stack.push(cur.clone()); + cur = parser.clone(); + } + + _ => {} + } + + Some(Ok(payload)) + }) + } + + /// Skip parsing the code or module code section entirely. + /// + /// This function can be used to indicate, after receiving + /// `CodeSectionStart` or `ModuleCodeSectionStart`, that the section + /// will not be parsed. + /// + /// The caller will be responsible for skipping `size` bytes (found in the + /// `CodeSectionStart` or `ModuleCodeSectionStart` payload). Bytes should + /// only be fed into `parse` after the `size` bytes have been skipped. + /// + /// # Panics + /// + /// This function will panic if the parser is not in a state where it's + /// parsing the code or module code section. + /// + /// # Examples + /// + /// ``` + /// use wasmparser::{Result, Parser, Chunk, Range, SectionReader, Payload::*}; + /// + /// fn objdump_headers(mut wasm: &[u8]) -> Result<()> { + /// let mut parser = Parser::new(0); + /// loop { + /// let payload = match parser.parse(wasm, true)? { + /// Chunk::Parsed { consumed, payload } => { + /// wasm = &wasm[consumed..]; + /// payload + /// } + /// // this state isn't possible with `eof = true` + /// Chunk::NeedMoreData(_) => unreachable!(), + /// }; + /// match payload { + /// TypeSection(s) => print_range("type section", &s.range()), + /// ImportSection(s) => print_range("import section", &s.range()), + /// // .. other sections + /// + /// // Print the range of the code section we see, but don't + /// // actually iterate over each individual function. + /// CodeSectionStart { range, size, .. } => { + /// print_range("code section", &range); + /// parser.skip_section(); + /// wasm = &wasm[size as usize..]; + /// } + /// End => break, + /// _ => {} + /// } + /// } + /// Ok(()) + /// } + /// + /// fn print_range(section: &str, range: &Range) { + /// println!("{:>40}: {:#010x} - {:#010x}", section, range.start, range.end); + /// } + /// ``` + pub fn skip_section(&mut self) { + let skip = match self.state { + State::FunctionBody { remaining: _, len } | State::ModuleCode { remaining: _, len } => { + len + } + _ => panic!("wrong state to call `skip_section`"), + }; + self.offset += u64::from(skip); + self.max_size -= u64::from(skip); + self.state = State::SectionStart; + } +} + +fn usize_to_u64(a: usize) -> u64 { + a.try_into().unwrap() +} + +/// Parses an entire section resident in memory into a `Payload`. +/// +/// Requires that `len` bytes are resident in `reader` and uses `ctor`/`variant` +/// to construct the section to return. +fn section<'a, T>( + reader: &mut BinaryReader<'a>, + len: u32, + ctor: fn(&'a [u8], usize) -> Result<T>, + variant: fn(T) -> Payload<'a>, +) -> Result<Payload<'a>> { + let offset = reader.original_position(); + let payload = reader.read_bytes(len as usize)?; + // clear the hint for "need this many more bytes" here because we already + // read all the bytes, so it's not possible to read more bytes if this + // fails. + let reader = ctor(payload, offset).map_err(clear_hint)?; + Ok(variant(reader)) +} + +/// Creates a new `BinaryReader` from the given `reader` which will be reading +/// the first `len` bytes. +/// +/// This means that `len` bytes must be resident in memory at the time of this +/// reading. +fn subreader<'a>(reader: &mut BinaryReader<'a>, len: u32) -> Result<BinaryReader<'a>> { + let offset = reader.original_position(); + let payload = reader.read_bytes(len as usize)?; + Ok(BinaryReader::new_with_offset(payload, offset)) +} + +/// Reads a section that is represented by a single uleb-encoded `u32`. +fn single_u32<'a>(reader: &mut BinaryReader<'a>, len: u32, desc: &str) -> Result<(u32, Range)> { + let range = Range { + start: reader.original_position(), + end: reader.original_position() + len as usize, + }; + let mut content = subreader(reader, len)?; + // We can't recover from "unexpected eof" here because our entire section is + // already resident in memory, so clear the hint for how many more bytes are + // expected. + let index = content.read_var_u32().map_err(clear_hint)?; + if !content.eof() { + return Err(BinaryReaderError::new( + format!("Unexpected content in the {} section", desc), + content.original_position(), + )); + } + Ok((index, range)) +} + +/// Attempts to parse using `f`. +/// +/// This will update `*len` with the number of bytes consumed, and it will cause +/// a failure to be returned instead of the number of bytes consumed exceeds +/// what `*len` currently is. +fn delimited<'a, T>( + reader: &mut BinaryReader<'a>, + len: &mut u32, + f: impl FnOnce(&mut BinaryReader<'a>) -> Result<T>, +) -> Result<T> { + let start = reader.position; + let ret = f(reader)?; + *len = match (reader.position - start) + .try_into() + .ok() + .and_then(|i| len.checked_sub(i)) + { + Some(i) => i, + None => return Err(BinaryReaderError::new("Unexpected EOF", start)), + }; + Ok(ret) +} + +impl Default for Parser { + fn default() -> Parser { + Parser::new(0) + } +} + +impl fmt::Debug for Payload<'_> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + use Payload::*; + match self { + CustomSection { + name, + data_offset, + data: _, + } => f + .debug_struct("CustomSection") + .field("name", name) + .field("data_offset", data_offset) + .field("data", &"...") + .finish(), + Version { num, range } => f + .debug_struct("Version") + .field("num", num) + .field("range", range) + .finish(), + TypeSection(_) => f.debug_tuple("TypeSection").field(&"...").finish(), + ImportSection(_) => f.debug_tuple("ImportSection").field(&"...").finish(), + AliasSection(_) => f.debug_tuple("AliasSection").field(&"...").finish(), + InstanceSection(_) => f.debug_tuple("InstanceSection").field(&"...").finish(), + ModuleSection(_) => f.debug_tuple("ModuleSection").field(&"...").finish(), + FunctionSection(_) => f.debug_tuple("FunctionSection").field(&"...").finish(), + TableSection(_) => f.debug_tuple("TableSection").field(&"...").finish(), + MemorySection(_) => f.debug_tuple("MemorySection").field(&"...").finish(), + GlobalSection(_) => f.debug_tuple("GlobalSection").field(&"...").finish(), + ExportSection(_) => f.debug_tuple("ExportSection").field(&"...").finish(), + ElementSection(_) => f.debug_tuple("ElementSection").field(&"...").finish(), + DataSection(_) => f.debug_tuple("DataSection").field(&"...").finish(), + StartSection { func, range } => f + .debug_struct("StartSection") + .field("func", func) + .field("range", range) + .finish(), + DataCountSection { count, range } => f + .debug_struct("DataCountSection") + .field("count", count) + .field("range", range) + .finish(), + CodeSectionStart { count, range, size } => f + .debug_struct("CodeSectionStart") + .field("count", count) + .field("range", range) + .field("size", size) + .finish(), + CodeSectionEntry(_) => f.debug_tuple("CodeSectionEntry").field(&"...").finish(), + ModuleCodeSectionStart { count, range, size } => f + .debug_struct("ModuleCodeSectionStart") + .field("count", count) + .field("range", range) + .field("size", size) + .finish(), + ModuleCodeSectionEntry { parser: _, range } => f + .debug_struct("ModuleCodeSectionEntry") + .field("range", range) + .finish(), + UnknownSection { id, range, .. } => f + .debug_struct("UnknownSection") + .field("id", id) + .field("range", range) + .finish(), + End => f.write_str("End"), + } + } +} + +fn clear_hint(mut err: BinaryReaderError) -> BinaryReaderError { + err.inner.needed_hint = None; + err +} + +#[cfg(test)] +mod tests { + use super::*; + + macro_rules! assert_matches { + ($a:expr, $b:pat $(,)?) => { + match $a { + $b => {} + a => panic!("`{:?}` doesn't match `{}`", a, stringify!($b)), + } + }; + } + + #[test] + fn header() { + assert!(Parser::default().parse(&[], true).is_err()); + assert_matches!( + Parser::default().parse(&[], false), + Ok(Chunk::NeedMoreData(4)), + ); + assert_matches!( + Parser::default().parse(b"\0", false), + Ok(Chunk::NeedMoreData(3)), + ); + assert_matches!( + Parser::default().parse(b"\0asm", false), + Ok(Chunk::NeedMoreData(4)), + ); + assert_matches!( + Parser::default().parse(b"\0asm\x01\0\0\0", false), + Ok(Chunk::Parsed { + consumed: 8, + payload: Payload::Version { num: 1, .. }, + }), + ); + } + + fn parser_after_header() -> Parser { + let mut p = Parser::default(); + assert_matches!( + p.parse(b"\0asm\x01\0\0\0", false), + Ok(Chunk::Parsed { + consumed: 8, + payload: Payload::Version { num: 1, .. }, + }), + ); + return p; + } + + #[test] + fn start_section() { + assert_matches!( + parser_after_header().parse(&[], false), + Ok(Chunk::NeedMoreData(1)), + ); + assert!(parser_after_header().parse(&[8], true).is_err()); + assert!(parser_after_header().parse(&[8, 1], true).is_err()); + assert!(parser_after_header().parse(&[8, 2], true).is_err()); + assert_matches!( + parser_after_header().parse(&[8], false), + Ok(Chunk::NeedMoreData(1)), + ); + assert_matches!( + parser_after_header().parse(&[8, 1], false), + Ok(Chunk::NeedMoreData(1)), + ); + assert_matches!( + parser_after_header().parse(&[8, 2], false), + Ok(Chunk::NeedMoreData(2)), + ); + assert_matches!( + parser_after_header().parse(&[8, 1, 1], false), + Ok(Chunk::Parsed { + consumed: 3, + payload: Payload::StartSection { func: 1, .. }, + }), + ); + assert!(parser_after_header().parse(&[8, 2, 1, 1], false).is_err()); + assert!(parser_after_header().parse(&[8, 0], false).is_err()); + } + + #[test] + fn end_works() { + assert_matches!( + parser_after_header().parse(&[], true), + Ok(Chunk::Parsed { + consumed: 0, + payload: Payload::End, + }), + ); + } + + #[test] + fn type_section() { + assert!(parser_after_header().parse(&[1], true).is_err()); + assert!(parser_after_header().parse(&[1, 0], false).is_err()); + // assert!(parser_after_header().parse(&[8, 2], true).is_err()); + assert_matches!( + parser_after_header().parse(&[1], false), + Ok(Chunk::NeedMoreData(1)), + ); + assert_matches!( + parser_after_header().parse(&[1, 1], false), + Ok(Chunk::NeedMoreData(1)), + ); + assert_matches!( + parser_after_header().parse(&[1, 1, 1], false), + Ok(Chunk::Parsed { + consumed: 3, + payload: Payload::TypeSection(_), + }), + ); + assert_matches!( + parser_after_header().parse(&[1, 1, 1, 2, 3, 4], false), + Ok(Chunk::Parsed { + consumed: 3, + payload: Payload::TypeSection(_), + }), + ); + } + + #[test] + fn custom_section() { + assert!(parser_after_header().parse(&[0], true).is_err()); + assert!(parser_after_header().parse(&[0, 0], false).is_err()); + assert!(parser_after_header().parse(&[0, 1, 1], false).is_err()); + assert_matches!( + parser_after_header().parse(&[0, 2, 1], false), + Ok(Chunk::NeedMoreData(1)), + ); + assert_matches!( + parser_after_header().parse(&[0, 1, 0], false), + Ok(Chunk::Parsed { + consumed: 3, + payload: Payload::CustomSection { + name: "", + data_offset: 11, + data: b"", + }, + }), + ); + assert_matches!( + parser_after_header().parse(&[0, 2, 1, b'a'], false), + Ok(Chunk::Parsed { + consumed: 4, + payload: Payload::CustomSection { + name: "a", + data_offset: 12, + data: b"", + }, + }), + ); + assert_matches!( + parser_after_header().parse(&[0, 2, 0, b'a'], false), + Ok(Chunk::Parsed { + consumed: 4, + payload: Payload::CustomSection { + name: "", + data_offset: 11, + data: b"a", + }, + }), + ); + } + + #[test] + fn function_section() { + assert!(parser_after_header().parse(&[10], true).is_err()); + assert!(parser_after_header().parse(&[10, 0], true).is_err()); + assert!(parser_after_header().parse(&[10, 1], true).is_err()); + assert_matches!( + parser_after_header().parse(&[10], false), + Ok(Chunk::NeedMoreData(1)) + ); + assert_matches!( + parser_after_header().parse(&[10, 1], false), + Ok(Chunk::NeedMoreData(1)) + ); + let mut p = parser_after_header(); + assert_matches!( + p.parse(&[10, 1, 0], false), + Ok(Chunk::Parsed { + consumed: 3, + payload: Payload::CodeSectionStart { count: 0, .. }, + }), + ); + assert_matches!( + p.parse(&[], true), + Ok(Chunk::Parsed { + consumed: 0, + payload: Payload::End, + }), + ); + let mut p = parser_after_header(); + assert_matches!( + p.parse(&[10, 2, 1, 0], false), + Ok(Chunk::Parsed { + consumed: 3, + payload: Payload::CodeSectionStart { count: 1, .. }, + }), + ); + assert_matches!( + p.parse(&[0], false), + Ok(Chunk::Parsed { + consumed: 1, + payload: Payload::CodeSectionEntry(_), + }), + ); + assert_matches!( + p.parse(&[], true), + Ok(Chunk::Parsed { + consumed: 0, + payload: Payload::End, + }), + ); + + // 1 byte section with 1 function can't read the function body because + // the section is too small + let mut p = parser_after_header(); + assert_matches!( + p.parse(&[10, 1, 1], false), + Ok(Chunk::Parsed { + consumed: 3, + payload: Payload::CodeSectionStart { count: 1, .. }, + }), + ); + assert_eq!( + p.parse(&[0], false).unwrap_err().message(), + "Unexpected EOF" + ); + + // section with 2 functions but section is cut off + let mut p = parser_after_header(); + assert_matches!( + p.parse(&[10, 2, 2], false), + Ok(Chunk::Parsed { + consumed: 3, + payload: Payload::CodeSectionStart { count: 2, .. }, + }), + ); + assert_matches!( + p.parse(&[0], false), + Ok(Chunk::Parsed { + consumed: 1, + payload: Payload::CodeSectionEntry(_), + }), + ); + assert_matches!(p.parse(&[], false), Ok(Chunk::NeedMoreData(1))); + assert_eq!( + p.parse(&[0], false).unwrap_err().message(), + "Unexpected EOF", + ); + + // trailing data is bad + let mut p = parser_after_header(); + assert_matches!( + p.parse(&[10, 3, 1], false), + Ok(Chunk::Parsed { + consumed: 3, + payload: Payload::CodeSectionStart { count: 1, .. }, + }), + ); + assert_matches!( + p.parse(&[0], false), + Ok(Chunk::Parsed { + consumed: 1, + payload: Payload::CodeSectionEntry(_), + }), + ); + assert_eq!( + p.parse(&[0], false).unwrap_err().message(), + "trailing bytes at end of section", + ); + } + + #[test] + fn module_code_errors() { + // no bytes to say size of section + assert!(parser_after_header().parse(&[103], true).is_err()); + // section must start with a u32 + assert!(parser_after_header().parse(&[103, 0], true).is_err()); + // EOF before we finish reading the section + assert!(parser_after_header().parse(&[103, 1], true).is_err()); + } + + #[test] + fn module_code_one() { + let mut p = parser_after_header(); + assert_matches!(p.parse(&[103], false), Ok(Chunk::NeedMoreData(1))); + assert_matches!(p.parse(&[103, 9], false), Ok(Chunk::NeedMoreData(1))); + // Module code section, 10 bytes large, one module. + assert_matches!( + p.parse(&[103, 10, 1], false), + Ok(Chunk::Parsed { + consumed: 3, + payload: Payload::ModuleCodeSectionStart { count: 1, .. }, + }) + ); + // Declare an empty module, which will be 8 bytes large for the header. + // Switch to the sub-parser on success. + let mut sub = match p.parse(&[8], false) { + Ok(Chunk::Parsed { + consumed: 1, + payload: Payload::ModuleCodeSectionEntry { parser, .. }, + }) => parser, + other => panic!("bad parse {:?}", other), + }; + + // Parse the header of the submodule with the sub-parser. + assert_matches!(sub.parse(&[], false), Ok(Chunk::NeedMoreData(4))); + assert_matches!(sub.parse(b"\0asm", false), Ok(Chunk::NeedMoreData(4))); + assert_matches!( + sub.parse(b"\0asm\x01\0\0\0", false), + Ok(Chunk::Parsed { + consumed: 8, + payload: Payload::Version { num: 1, .. }, + }), + ); + + // The sub-parser should be byte-limited so the next byte shouldn't get + // consumed, it's intended for the parent parser. + assert_matches!( + sub.parse(&[10], false), + Ok(Chunk::Parsed { + consumed: 0, + payload: Payload::End, + }), + ); + + // The parent parser should now be back to resuming, and we simulate it + // being done with bytes to ensure that it's safely at the end, + // completing the module code section. + assert_matches!(p.parse(&[], false), Ok(Chunk::NeedMoreData(1))); + assert_matches!( + p.parse(&[], true), + Ok(Chunk::Parsed { + consumed: 0, + payload: Payload::End, + }), + ); + } + + #[test] + fn nested_section_too_big() { + let mut p = parser_after_header(); + // Module code section, 12 bytes large, one module. This leaves 11 bytes + // of payload for the module definition itself. + assert_matches!( + p.parse(&[103, 12, 1], false), + Ok(Chunk::Parsed { + consumed: 3, + payload: Payload::ModuleCodeSectionStart { count: 1, .. }, + }) + ); + // Use one byte to say we're a 10 byte module, which fits exactly within + // our module code section. + let mut sub = match p.parse(&[10], false) { + Ok(Chunk::Parsed { + consumed: 1, + payload: Payload::ModuleCodeSectionEntry { parser, .. }, + }) => parser, + other => panic!("bad parse {:?}", other), + }; + + // use 8 bytes to parse the header, leaving 2 remaining bytes in our + // module. + assert_matches!( + sub.parse(b"\0asm\x01\0\0\0", false), + Ok(Chunk::Parsed { + consumed: 8, + payload: Payload::Version { num: 1, .. }, + }), + ); + + // We can't parse a section which declares its bigger than the outer + // module. This is section 1, one byte big, with one content byte. The + // content byte, however, lives outside of the parent's module code + // section. + assert_eq!( + sub.parse(&[1, 1, 0], false).unwrap_err().message(), + "section too large", + ); + } +} |