summaryrefslogtreecommitdiffstats
path: root/tools/profiler/core/platform.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'tools/profiler/core/platform.cpp')
-rw-r--r--tools/profiler/core/platform.cpp5894
1 files changed, 5894 insertions, 0 deletions
diff --git a/tools/profiler/core/platform.cpp b/tools/profiler/core/platform.cpp
new file mode 100644
index 0000000000..9b193535d9
--- /dev/null
+++ b/tools/profiler/core/platform.cpp
@@ -0,0 +1,5894 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* vim: set ts=8 sts=2 et sw=2 tw=80: */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+// There are three kinds of samples done by the profiler.
+//
+// - A "periodic" sample is the most complex kind. It is done in response to a
+// timer while the profiler is active. It involves writing a stack trace plus
+// a variety of other values (memory measurements, responsiveness
+// measurements, markers, etc.) into the main ProfileBuffer. The sampling is
+// done from off-thread, and so SuspendAndSampleAndResumeThread() is used to
+// get the register values.
+//
+// - A "synchronous" sample is a simpler kind. It is done in response to an API
+// call (profiler_get_backtrace()). It involves writing a stack trace and
+// little else into a temporary ProfileBuffer, and wrapping that up in a
+// ProfilerBacktrace that can be subsequently used in a marker. The sampling
+// is done on-thread, and so Registers::SyncPopulate() is used to get the
+// register values.
+//
+// - A "backtrace" sample is the simplest kind. It is done in response to an
+// API call (profiler_suspend_and_sample_thread()). It involves getting a
+// stack trace via a ProfilerStackCollector; it does not write to a
+// ProfileBuffer. The sampling is done from off-thread, and so uses
+// SuspendAndSampleAndResumeThread() to get the register values.
+
+#include "platform.h"
+
+#include "GeckoProfiler.h"
+#include "GeckoProfilerReporter.h"
+#include "PageInformation.h"
+#include "ProfileBuffer.h"
+#include "ProfiledThreadData.h"
+#include "ProfilerBacktrace.h"
+#include "ProfilerChild.h"
+#include "ProfilerCodeAddressService.h"
+#include "ProfilerIOInterposeObserver.h"
+#include "ProfilerParent.h"
+#include "RegisteredThread.h"
+#include "shared-libraries.h"
+#include "ThreadInfo.h"
+#include "VTuneProfiler.h"
+
+#include "js/TraceLoggerAPI.h"
+#include "js/ProfilingFrameIterator.h"
+#include "memory_hooks.h"
+#include "mozilla/ArrayUtils.h"
+#include "mozilla/Atomics.h"
+#include "mozilla/AutoProfilerLabel.h"
+#include "mozilla/ExtensionPolicyService.h"
+#include "mozilla/extensions/WebExtensionPolicy.h"
+#include "mozilla/net/HttpBaseChannel.h" // for net::TimingStruct
+#include "mozilla/Printf.h"
+#include "mozilla/ProfileBufferChunkManagerSingle.h"
+#include "mozilla/ProfileBufferChunkManagerWithLocalLimit.h"
+#include "mozilla/ProfileChunkedBuffer.h"
+#include "mozilla/SchedulerGroup.h"
+#include "mozilla/Services.h"
+#include "mozilla/StackWalk.h"
+#include "mozilla/StaticPtr.h"
+#include "mozilla/ThreadLocal.h"
+#include "mozilla/TimeStamp.h"
+#include "mozilla/Tuple.h"
+#include "mozilla/UniquePtr.h"
+#include "mozilla/Vector.h"
+#include "BaseProfiler.h"
+#include "nsDirectoryServiceDefs.h"
+#include "nsDirectoryServiceUtils.h"
+#include "nsIDocShell.h"
+#include "nsIHttpProtocolHandler.h"
+#include "nsIObserverService.h"
+#include "nsIPropertyBag2.h"
+#include "nsIXULAppInfo.h"
+#include "nsIXULRuntime.h"
+#include "nsJSPrincipals.h"
+#include "nsMemoryReporterManager.h"
+#include "nsProfilerStartParams.h"
+#include "nsScriptSecurityManager.h"
+#include "nsSystemInfo.h"
+#include "nsThreadUtils.h"
+#include "nsXULAppAPI.h"
+#include "Tracing.h"
+#include "prdtoa.h"
+#include "prtime.h"
+
+#include <algorithm>
+#include <errno.h>
+#include <fstream>
+#include <ostream>
+#include <set>
+#include <sstream>
+#include <type_traits>
+
+#ifdef MOZ_TASK_TRACER
+# include "GeckoTaskTracer.h"
+#endif
+
+#if defined(GP_OS_android)
+# include "mozilla/java/GeckoJavaSamplerNatives.h"
+#endif
+
+// Win32 builds always have frame pointers, so FramePointerStackWalk() always
+// works.
+#if defined(GP_PLAT_x86_windows)
+# define HAVE_NATIVE_UNWIND
+# define USE_FRAME_POINTER_STACK_WALK
+#endif
+
+// Win64 builds always omit frame pointers, so we use the slower
+// MozStackWalk(), which works in that case.
+#if defined(GP_PLAT_amd64_windows)
+# define HAVE_NATIVE_UNWIND
+# define USE_MOZ_STACK_WALK
+#endif
+
+// AArch64 Win64 doesn't seem to use frame pointers, so we use the slower
+// MozStackWalk().
+#if defined(GP_PLAT_arm64_windows)
+# define HAVE_NATIVE_UNWIND
+# define USE_MOZ_STACK_WALK
+#endif
+
+// Mac builds only have frame pointers when MOZ_PROFILING is specified, so
+// FramePointerStackWalk() only works in that case. We don't use MozStackWalk()
+// on Mac.
+#if defined(GP_OS_darwin) && defined(MOZ_PROFILING)
+# define HAVE_NATIVE_UNWIND
+# define USE_FRAME_POINTER_STACK_WALK
+#endif
+
+// Android builds use the ARM Exception Handling ABI to unwind.
+#if defined(GP_PLAT_arm_linux) || defined(GP_PLAT_arm_android)
+# define HAVE_NATIVE_UNWIND
+# define USE_EHABI_STACKWALK
+# include "EHABIStackWalk.h"
+#endif
+
+// Linux/BSD builds use LUL, which uses DWARF info to unwind stacks.
+#if defined(GP_PLAT_amd64_linux) || defined(GP_PLAT_x86_linux) || \
+ defined(GP_PLAT_amd64_android) || defined(GP_PLAT_x86_android) || \
+ defined(GP_PLAT_mips64_linux) || defined(GP_PLAT_arm64_linux) || \
+ defined(GP_PLAT_arm64_android) || defined(GP_PLAT_amd64_freebsd) || \
+ defined(GP_PLAT_arm64_freebsd)
+# define HAVE_NATIVE_UNWIND
+# define USE_LUL_STACKWALK
+# include "lul/LulMain.h"
+# include "lul/platform-linux-lul.h"
+
+// On linux we use LUL for periodic samples and synchronous samples, but we use
+// FramePointerStackWalk for backtrace samples when MOZ_PROFILING is enabled.
+// (See the comment at the top of the file for a definition of
+// periodic/synchronous/backtrace.).
+//
+// FramePointerStackWalk can produce incomplete stacks when the current entry is
+// in a shared library without framepointers, however LUL can take a long time
+// to initialize, which is undesirable for consumers of
+// profiler_suspend_and_sample_thread like the Background Hang Reporter.
+# if defined(MOZ_PROFILING)
+# define USE_FRAME_POINTER_STACK_WALK
+# endif
+#endif
+
+// We can only stackwalk without expensive initialization on platforms which
+// support FramePointerStackWalk or MozStackWalk. LUL Stackwalking requires
+// initializing LUL, and EHABIStackWalk requires initializing EHABI, both of
+// which can be expensive.
+#if defined(USE_FRAME_POINTER_STACK_WALK) || defined(USE_MOZ_STACK_WALK)
+# define HAVE_FASTINIT_NATIVE_UNWIND
+#endif
+
+#ifdef MOZ_VALGRIND
+# include <valgrind/memcheck.h>
+#else
+# define VALGRIND_MAKE_MEM_DEFINED(_addr, _len) ((void)0)
+#endif
+
+#if defined(GP_OS_linux) || defined(GP_OS_android) || defined(GP_OS_freebsd)
+# include <ucontext.h>
+#endif
+
+using namespace mozilla;
+using mozilla::profiler::detail::RacyFeatures;
+
+LazyLogModule gProfilerLog("prof");
+
+// Statically initialized to 0, then set once from profiler_init(), which should
+// be called from the main thread before any other use of the profiler.
+int scProfilerMainThreadId;
+
+#if defined(GP_OS_android)
+class GeckoJavaSampler
+ : public java::GeckoJavaSampler::Natives<GeckoJavaSampler> {
+ private:
+ GeckoJavaSampler();
+
+ public:
+ static double GetProfilerTime() {
+ if (!profiler_is_active()) {
+ return 0.0;
+ }
+ return profiler_time();
+ };
+};
+#endif
+
+constexpr static bool ValidateFeatures() {
+ int expectedFeatureNumber = 0;
+
+ // Feature numbers should start at 0 and increase by 1 each.
+#define CHECK_FEATURE(n_, str_, Name_, desc_) \
+ if ((n_) != expectedFeatureNumber) { \
+ return false; \
+ } \
+ ++expectedFeatureNumber;
+
+ PROFILER_FOR_EACH_FEATURE(CHECK_FEATURE)
+
+#undef CHECK_FEATURE
+
+ return true;
+}
+
+static_assert(ValidateFeatures(), "Feature list is invalid");
+
+// Return all features that are available on this platform.
+static uint32_t AvailableFeatures() {
+ uint32_t features = 0;
+
+#define ADD_FEATURE(n_, str_, Name_, desc_) \
+ ProfilerFeature::Set##Name_(features);
+
+ // Add all the possible features.
+ PROFILER_FOR_EACH_FEATURE(ADD_FEATURE)
+
+#undef ADD_FEATURE
+
+ // Now remove features not supported on this platform/configuration.
+#if !defined(GP_OS_android)
+ ProfilerFeature::ClearJava(features);
+#endif
+#if !defined(HAVE_NATIVE_UNWIND)
+ ProfilerFeature::ClearStackWalk(features);
+#endif
+#if !defined(MOZ_TASK_TRACER)
+ ProfilerFeature::ClearTaskTracer(features);
+#endif
+#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
+ if (getenv("XPCOM_MEM_BLOAT_LOG")) {
+ NS_WARNING("XPCOM_MEM_BLOAT_LOG is set, disabling native allocations.");
+ // The memory hooks are available, but the bloat log is enabled, which is
+ // not compatible with the native allocations tracking. See the comment in
+ // enable_native_allocations() (tools/profiler/core/memory_hooks.cpp) for
+ // more information.
+ ProfilerFeature::ClearNativeAllocations(features);
+ }
+#else
+ // The memory hooks are not available.
+ ProfilerFeature::ClearNativeAllocations(features);
+#endif
+ if (!JS::TraceLoggerSupported()) {
+ ProfilerFeature::ClearJSTracer(features);
+ }
+
+ return features;
+}
+
+// Default features common to all contexts (even if not available).
+static uint32_t DefaultFeatures() {
+ return ProfilerFeature::Java | ProfilerFeature::JS | ProfilerFeature::Leaf |
+ ProfilerFeature::StackWalk | ProfilerFeature::Threads |
+ ProfilerFeature::Screenshots;
+}
+
+// Extra default features when MOZ_PROFILER_STARTUP is set (even if not
+// available).
+static uint32_t StartupExtraDefaultFeatures() {
+ // Enable CPUUtilization by default for startup profiles as it is useful to
+ // see when startup alternates between CPU intensive tasks and being blocked.
+ // Enable file I/Os by default for startup profiles as startup is heavy on
+ // I/O operations.
+ return ProfilerFeature::CPUUtilization | ProfilerFeature::FileIOAll;
+}
+
+// The class is a thin shell around mozglue PlatformMutex. It does not preserve
+// behavior in JS record/replay. It provides a mechanism to determine if it is
+// locked or not in order for memory hooks to avoid re-entering the profiler
+// locked state.
+class PSMutex : private ::mozilla::detail::MutexImpl {
+ public:
+ PSMutex() : ::mozilla::detail::MutexImpl() {}
+
+ void Lock() {
+ const int tid = profiler_current_thread_id();
+ MOZ_ASSERT(tid != 0);
+
+ // This is only designed to catch recursive locking:
+ // - If the current thread doesn't own the mutex, `mOwningThreadId` must be
+ // zero or a different thread id written by another thread; it may change
+ // again at any time, but never to the current thread's id.
+ // - If the current thread owns the mutex, `mOwningThreadId` must be its id.
+ MOZ_ASSERT(mOwningThreadId != tid);
+
+ ::mozilla::detail::MutexImpl::lock();
+
+ // We now hold the mutex, it should have been in the unlocked state before.
+ MOZ_ASSERT(mOwningThreadId == 0);
+ // And we can write our own thread id.
+ mOwningThreadId = tid;
+ }
+
+ [[nodiscard]] bool TryLock() {
+ const int tid = profiler_current_thread_id();
+ MOZ_ASSERT(tid != 0);
+
+ // This is only designed to catch recursive locking:
+ // - If the current thread doesn't own the mutex, `mOwningThreadId` must be
+ // zero or a different thread id written by another thread; it may change
+ // again at any time, but never to the current thread's id.
+ // - If the current thread owns the mutex, `mOwningThreadId` must be its id.
+ MOZ_ASSERT(mOwningThreadId != tid);
+
+ if (!::mozilla::detail::MutexImpl::tryLock()) {
+ // Failed to lock, nothing more to do.
+ return false;
+ }
+
+ // We now hold the mutex, it should have been in the unlocked state before.
+ MOZ_ASSERT(mOwningThreadId == 0);
+ // And we can write our own thread id.
+ mOwningThreadId = tid;
+
+ return true;
+ }
+
+ void Unlock() {
+ // This should never trigger! But check just in case something has gone
+ // very wrong (e.g., memory corruption).
+ AssertCurrentThreadOwns();
+
+ // We're still holding the mutex here, so it's safe to just reset
+ // `mOwningThreadId`.
+ mOwningThreadId = 0;
+
+ ::mozilla::detail::MutexImpl::unlock();
+ }
+
+ // Does the current thread own this mutex?
+ // False positive or false negatives are not possible:
+ // - If `true`, the current thread owns the mutex, it has written its own
+ // `mOwningThreadId` when taking the lock, and no-one else can modify it
+ // until the current thread itself unlocks the mutex.
+ // - If `false`, the current thread does not own the mutex, therefore either
+ // `mOwningThreadId` is zero (unlocked), or it is a different thread id
+ // written by another thread, but it can never be the current thread's id
+ // until the current thread itself locks the mutex.
+ bool IsLockedOnCurrentThread() const {
+ return mOwningThreadId == profiler_current_thread_id();
+ }
+
+ void AssertCurrentThreadOwns() const {
+ MOZ_ASSERT(IsLockedOnCurrentThread());
+ }
+
+ void AssertCurrentThreadDoesNotOwn() const {
+ MOZ_ASSERT(!IsLockedOnCurrentThread());
+ }
+
+ private:
+ // Zero when unlocked, or the thread id of the owning thread.
+ // This should only be used to compare with the current thread id; any other
+ // number (0 or other id) could change at any time because the current thread
+ // wouldn't own the lock.
+ Atomic<int, MemoryOrdering::SequentiallyConsistent> mOwningThreadId{0};
+};
+
+// RAII class to lock the profiler mutex.
+class MOZ_RAII PSAutoLock {
+ public:
+ explicit PSAutoLock(PSMutex& aMutex) : mMutex(aMutex) { mMutex.Lock(); }
+ ~PSAutoLock() { mMutex.Unlock(); }
+
+ private:
+ // Allow PSAutoTryLock to call the following `PSAutoLock(PSMutex&, int)`
+ // constructor through `Maybe<const PSAutoLock>::emplace()`.
+ friend class Maybe<const PSAutoLock>;
+
+ // Special constructor taking an already-locked mutex. The `int` parameter is
+ // necessary to distinguish it from the main constructor.
+ PSAutoLock(PSMutex& aAlreadyLockedMutex, int) : mMutex(aAlreadyLockedMutex) {
+ mMutex.AssertCurrentThreadOwns();
+ }
+
+ PSMutex& mMutex;
+};
+
+// RAII class that attempts to lock the profiler mutex. Example usage:
+// PSAutoTryLock tryLock(gPSMutex);
+// if (tryLock.IsLocked()) { locked_foo(tryLock.LockRef()); }
+class MOZ_RAII PSAutoTryLock {
+ public:
+ explicit PSAutoTryLock(PSMutex& aMutex) {
+ if (aMutex.TryLock()) {
+ mMaybePSAutoLock.emplace(aMutex, 0);
+ }
+ }
+
+ // Return true if the mutex was aquired and locked.
+ [[nodiscard]] bool IsLocked() const { return mMaybePSAutoLock.isSome(); }
+
+ // Assuming the mutex is locked, return a reference to a `PSAutoLock` for that
+ // mutex, which can be passed as proof-of-lock.
+ [[nodiscard]] const PSAutoLock& LockRef() const {
+ MOZ_ASSERT(IsLocked());
+ return mMaybePSAutoLock.ref();
+ }
+
+ private:
+ // `mMaybePSAutoLock` is `Nothing` if locking failed, otherwise it contains a
+ // `const PSAutoLock` holding the locked mutex, and whose reference may be
+ // passed to functions expecting a proof-of-lock.
+ Maybe<const PSAutoLock> mMaybePSAutoLock;
+};
+
+// Only functions that take a PSLockRef arg can access CorePS's and ActivePS's
+// fields.
+typedef const PSAutoLock& PSLockRef;
+
+#define PS_GET(type_, name_) \
+ static type_ name_(PSLockRef) { \
+ MOZ_ASSERT(sInstance); \
+ return sInstance->m##name_; \
+ }
+
+#define PS_GET_LOCKLESS(type_, name_) \
+ static type_ name_() { \
+ MOZ_ASSERT(sInstance); \
+ return sInstance->m##name_; \
+ }
+
+#define PS_GET_AND_SET(type_, name_) \
+ PS_GET(type_, name_) \
+ static void Set##name_(PSLockRef, type_ a##name_) { \
+ MOZ_ASSERT(sInstance); \
+ sInstance->m##name_ = a##name_; \
+ }
+
+static const size_t MAX_JS_FRAMES = 1024;
+using JsFrameBuffer = JS::ProfilingFrameIterator::Frame[MAX_JS_FRAMES];
+
+// All functions in this file can run on multiple threads unless they have an
+// NS_IsMainThread() assertion.
+
+// This class contains the profiler's core global state, i.e. that which is
+// valid even when the profiler is not active. Most profile operations can't do
+// anything useful when this class is not instantiated, so we release-assert
+// its non-nullness in all such operations.
+//
+// Accesses to CorePS are guarded by gPSMutex. Getters and setters take a
+// PSAutoLock reference as an argument as proof that the gPSMutex is currently
+// locked. This makes it clear when gPSMutex is locked and helps avoid
+// accidental unlocked accesses to global state. There are ways to circumvent
+// this mechanism, but please don't do so without *very* good reason and a
+// detailed explanation.
+//
+// The exceptions to this rule:
+//
+// - mProcessStartTime, because it's immutable;
+//
+// - each thread's RacyRegisteredThread object is accessible without locking via
+// TLSRegisteredThread::RacyRegisteredThread().
+class CorePS {
+ private:
+ CorePS()
+ : mProcessStartTime(TimeStamp::ProcessCreation()),
+ // This needs its own mutex, because it is used concurrently from
+ // functions guarded by gPSMutex as well as others without safety (e.g.,
+ // profiler_add_marker). It is *not* used inside the critical section of
+ // the sampler, because mutexes cannot be used there.
+ mCoreBuffer(ProfileChunkedBuffer::ThreadSafety::WithMutex)
+#ifdef USE_LUL_STACKWALK
+ ,
+ mLul(nullptr)
+#endif
+ {
+ MOZ_ASSERT(NS_IsMainThread(),
+ "CorePS must be created from the main thread");
+ }
+
+ ~CorePS() {}
+
+ public:
+ static void Create(PSLockRef aLock) {
+ MOZ_ASSERT(!sInstance);
+ sInstance = new CorePS();
+ }
+
+ static void Destroy(PSLockRef aLock) {
+ MOZ_ASSERT(sInstance);
+ delete sInstance;
+ sInstance = nullptr;
+ }
+
+ // Unlike ActivePS::Exists(), CorePS::Exists() can be called without gPSMutex
+ // being locked. This is because CorePS is instantiated so early on the main
+ // thread that we don't have to worry about it being racy.
+ static bool Exists() { return !!sInstance; }
+
+ static void AddSizeOf(PSLockRef, MallocSizeOf aMallocSizeOf,
+ size_t& aProfSize, size_t& aLulSize) {
+ MOZ_ASSERT(sInstance);
+
+ aProfSize += aMallocSizeOf(sInstance);
+
+ for (auto& registeredThread : sInstance->mRegisteredThreads) {
+ aProfSize += registeredThread->SizeOfIncludingThis(aMallocSizeOf);
+ }
+
+ for (auto& registeredPage : sInstance->mRegisteredPages) {
+ aProfSize += registeredPage->SizeOfIncludingThis(aMallocSizeOf);
+ }
+
+ // Measurement of the following things may be added later if DMD finds it
+ // is worthwhile:
+ // - CorePS::mRegisteredThreads itself (its elements' children are
+ // measured above)
+ // - CorePS::mRegisteredPages itself (its elements' children are
+ // measured above)
+ // - CorePS::mInterposeObserver
+
+#if defined(USE_LUL_STACKWALK)
+ if (sInstance->mLul) {
+ aLulSize += sInstance->mLul->SizeOfIncludingThis(aMallocSizeOf);
+ }
+#endif
+ }
+
+ // No PSLockRef is needed for this field because it's immutable.
+ PS_GET_LOCKLESS(TimeStamp, ProcessStartTime)
+
+ // No PSLockRef is needed for this field because it's thread-safe.
+ PS_GET_LOCKLESS(ProfileChunkedBuffer&, CoreBuffer)
+
+ PS_GET(const Vector<UniquePtr<RegisteredThread>>&, RegisteredThreads)
+
+ PS_GET(JsFrameBuffer&, JsFrames)
+
+ static void AppendRegisteredThread(
+ PSLockRef, UniquePtr<RegisteredThread>&& aRegisteredThread) {
+ MOZ_ASSERT(sInstance);
+ MOZ_RELEASE_ASSERT(
+ sInstance->mRegisteredThreads.append(std::move(aRegisteredThread)));
+ }
+
+ static void RemoveRegisteredThread(PSLockRef,
+ RegisteredThread* aRegisteredThread) {
+ MOZ_ASSERT(sInstance);
+ // Remove aRegisteredThread from mRegisteredThreads.
+ for (UniquePtr<RegisteredThread>& rt : sInstance->mRegisteredThreads) {
+ if (rt.get() == aRegisteredThread) {
+ sInstance->mRegisteredThreads.erase(&rt);
+ return;
+ }
+ }
+ }
+
+ PS_GET(Vector<RefPtr<PageInformation>>&, RegisteredPages)
+
+ static void AppendRegisteredPage(PSLockRef,
+ RefPtr<PageInformation>&& aRegisteredPage) {
+ MOZ_ASSERT(sInstance);
+ struct RegisteredPageComparator {
+ PageInformation* aA;
+ bool operator()(PageInformation* aB) const { return aA->Equals(aB); }
+ };
+
+ auto foundPageIter = std::find_if(
+ sInstance->mRegisteredPages.begin(), sInstance->mRegisteredPages.end(),
+ RegisteredPageComparator{aRegisteredPage.get()});
+
+ if (foundPageIter != sInstance->mRegisteredPages.end()) {
+ if ((*foundPageIter)->Url().EqualsLiteral("about:blank")) {
+ // When a BrowsingContext is loaded, the first url loaded in it will be
+ // about:blank, and if the principal matches, the first document loaded
+ // in it will share an inner window. That's why we should delete the
+ // intermittent about:blank if they share the inner window.
+ sInstance->mRegisteredPages.erase(foundPageIter);
+ } else {
+ // Do not register the same page again.
+ return;
+ }
+ }
+
+ MOZ_RELEASE_ASSERT(
+ sInstance->mRegisteredPages.append(std::move(aRegisteredPage)));
+ }
+
+ static void RemoveRegisteredPage(PSLockRef,
+ uint64_t aRegisteredInnerWindowID) {
+ MOZ_ASSERT(sInstance);
+ // Remove RegisteredPage from mRegisteredPages by given inner window ID.
+ sInstance->mRegisteredPages.eraseIf([&](const RefPtr<PageInformation>& rd) {
+ return rd->InnerWindowID() == aRegisteredInnerWindowID;
+ });
+ }
+
+ static void ClearRegisteredPages(PSLockRef) {
+ MOZ_ASSERT(sInstance);
+ sInstance->mRegisteredPages.clear();
+ }
+
+ PS_GET(const Vector<BaseProfilerCount*>&, Counters)
+
+ static void AppendCounter(PSLockRef, BaseProfilerCount* aCounter) {
+ MOZ_ASSERT(sInstance);
+ // we don't own the counter; they may be stored in static objects
+ MOZ_RELEASE_ASSERT(sInstance->mCounters.append(aCounter));
+ }
+
+ static void RemoveCounter(PSLockRef, BaseProfilerCount* aCounter) {
+ // we may be called to remove a counter after the profiler is stopped or
+ // late in shutdown.
+ if (sInstance) {
+ auto* counter = std::find(sInstance->mCounters.begin(),
+ sInstance->mCounters.end(), aCounter);
+ MOZ_RELEASE_ASSERT(counter != sInstance->mCounters.end());
+ sInstance->mCounters.erase(counter);
+ }
+ }
+
+#ifdef USE_LUL_STACKWALK
+ static lul::LUL* Lul(PSLockRef) {
+ MOZ_ASSERT(sInstance);
+ return sInstance->mLul.get();
+ }
+ static void SetLul(PSLockRef, UniquePtr<lul::LUL> aLul) {
+ MOZ_ASSERT(sInstance);
+ sInstance->mLul = std::move(aLul);
+ }
+#endif
+
+ PS_GET_AND_SET(const nsACString&, ProcessName)
+ PS_GET_AND_SET(const nsACString&, ETLDplus1)
+
+ private:
+ // The singleton instance
+ static CorePS* sInstance;
+
+ // The time that the process started.
+ const TimeStamp mProcessStartTime;
+
+ // The thread-safe blocks-oriented buffer into which all profiling data is
+ // recorded.
+ // ActivePS controls the lifetime of the underlying contents buffer: When
+ // ActivePS does not exist, mCoreBuffer is empty and rejects all reads&writes;
+ // see ActivePS for further details.
+ // Note: This needs to live here outside of ActivePS, because some producers
+ // are indirectly controlled (e.g., by atomic flags) and therefore may still
+ // attempt to write some data shortly after ActivePS has shutdown and deleted
+ // the underlying buffer in memory.
+ ProfileChunkedBuffer mCoreBuffer;
+
+ // Info on all the registered threads.
+ // ThreadIds in mRegisteredThreads are unique.
+ Vector<UniquePtr<RegisteredThread>> mRegisteredThreads;
+
+ // Info on all the registered pages.
+ // InnerWindowIDs in mRegisteredPages are unique.
+ Vector<RefPtr<PageInformation>> mRegisteredPages;
+
+ // Non-owning pointers to all active counters
+ Vector<BaseProfilerCount*> mCounters;
+
+#ifdef USE_LUL_STACKWALK
+ // LUL's state. Null prior to the first activation, non-null thereafter.
+ UniquePtr<lul::LUL> mLul;
+#endif
+
+ // Process name, provided by child process initialization code.
+ nsAutoCString mProcessName;
+ // Private name, provided by child process initialization code (eTLD+1 in
+ // fission)
+ nsAutoCString mETLDplus1;
+
+ // This memory buffer is used by the MergeStacks mechanism. Previously it was
+ // stack allocated, but this led to a stack overflow, as it was too much
+ // memory. Here the buffer can be pre-allocated, and shared with the
+ // MergeStacks feature as needed. MergeStacks is only run while holding the
+ // lock, so it is safe to have only one instance allocated for all of the
+ // threads.
+ JsFrameBuffer mJsFrames;
+};
+
+CorePS* CorePS::sInstance = nullptr;
+
+ProfileChunkedBuffer& profiler_get_core_buffer() {
+ MOZ_ASSERT(CorePS::Exists());
+ return CorePS::CoreBuffer();
+}
+
+class SamplerThread;
+
+static SamplerThread* NewSamplerThread(PSLockRef aLock, uint32_t aGeneration,
+ double aInterval);
+
+struct LiveProfiledThreadData {
+ RegisteredThread* mRegisteredThread;
+ UniquePtr<ProfiledThreadData> mProfiledThreadData;
+};
+
+// The buffer size is provided as a number of "entries", this is their size in
+// bytes.
+constexpr static uint32_t scBytesPerEntry = 8;
+
+// This class contains the profiler's global state that is valid only when the
+// profiler is active. When not instantiated, the profiler is inactive.
+//
+// Accesses to ActivePS are guarded by gPSMutex, in much the same fashion as
+// CorePS.
+//
+class ActivePS {
+ private:
+ // We need to decide how many chunks of what size we want to fit in the given
+ // total maximum capacity for this process, in the (likely) context of
+ // multiple processes doing the same choice and having an inter-process
+ // mechanism to control the overal memory limit.
+
+ // Minimum chunk size allowed, enough for at least one stack.
+ constexpr static uint32_t scMinimumChunkSize =
+ 2 * ProfileBufferChunkManager::scExpectedMaximumStackSize;
+
+ // Ideally we want at least 2 unreleased chunks to work with (1 current and 1
+ // next), and 2 released chunks (so that one can be recycled when old, leaving
+ // one with some data).
+ constexpr static uint32_t scMinimumNumberOfChunks = 4;
+
+ // And we want to limit chunks to a maximum size, which is a compromise
+ // between:
+ // - A big size, which helps with reducing the rate of allocations and IPCs.
+ // - A small size, which helps with equalizing the duration of recorded data
+ // (as the inter-process controller will discard the oldest chunks in all
+ // Firefox processes).
+ constexpr static uint32_t scMaximumChunkSize = 1024 * 1024;
+
+ public:
+ // We should be able to store at least the minimum number of the smallest-
+ // possible chunks.
+ constexpr static uint32_t scMinimumBufferSize =
+ scMinimumNumberOfChunks * scMinimumChunkSize;
+ // Note: Keep in sync with GeckoThread.maybeStartGeckoProfiler:
+ // https://searchfox.org/mozilla-central/source/mobile/android/geckoview/src/main/java/org/mozilla/gecko/GeckoThread.java
+ constexpr static uint32_t scMinimumBufferEntries =
+ scMinimumBufferSize / scBytesPerEntry;
+
+ // Limit to 2GiB.
+ constexpr static uint32_t scMaximumBufferSize = 2u * 1024u * 1024u * 1024u;
+ constexpr static uint32_t scMaximumBufferEntries =
+ scMaximumBufferSize / scBytesPerEntry;
+
+ constexpr static uint32_t ClampToAllowedEntries(uint32_t aEntries) {
+ if (aEntries <= scMinimumBufferEntries) {
+ return scMinimumBufferEntries;
+ }
+ if (aEntries >= scMaximumBufferEntries) {
+ return scMaximumBufferEntries;
+ }
+ return aEntries;
+ }
+
+ private:
+ constexpr static uint32_t ChunkSizeForEntries(uint32_t aEntries) {
+ return uint32_t(std::min(size_t(ClampToAllowedEntries(aEntries)) *
+ scBytesPerEntry / scMinimumNumberOfChunks,
+ size_t(scMaximumChunkSize)));
+ }
+
+ static uint32_t AdjustFeatures(uint32_t aFeatures, uint32_t aFilterCount) {
+ // Filter out any features unavailable in this platform/configuration.
+ aFeatures &= AvailableFeatures();
+
+ // Always enable ProfilerFeature::Threads if we have a filter, because
+ // users sometimes ask to filter by a list of threads but forget to
+ // explicitly specify ProfilerFeature::Threads.
+ if (aFilterCount > 0) {
+ aFeatures |= ProfilerFeature::Threads;
+ }
+
+ // Some features imply others.
+ if (aFeatures & ProfilerFeature::FileIOAll) {
+ aFeatures |= ProfilerFeature::MainThreadIO | ProfilerFeature::FileIO;
+ } else if (aFeatures & ProfilerFeature::FileIO) {
+ aFeatures |= ProfilerFeature::MainThreadIO;
+ }
+
+ return aFeatures;
+ }
+
+ ActivePS(PSLockRef aLock, PowerOfTwo32 aCapacity, double aInterval,
+ uint32_t aFeatures, const char** aFilters, uint32_t aFilterCount,
+ uint64_t aActiveBrowsingContextID, const Maybe<double>& aDuration)
+ : mGeneration(sNextGeneration++),
+ mCapacity(aCapacity),
+ mDuration(aDuration),
+ mInterval(aInterval),
+ mFeatures(AdjustFeatures(aFeatures, aFilterCount)),
+ mActiveBrowsingContextID(aActiveBrowsingContextID),
+ mProfileBufferChunkManager(
+ size_t(ClampToAllowedEntries(aCapacity.Value())) * scBytesPerEntry,
+ ChunkSizeForEntries(aCapacity.Value())),
+ mProfileBuffer([this]() -> ProfileChunkedBuffer& {
+ CorePS::CoreBuffer().SetChunkManager(mProfileBufferChunkManager);
+ return CorePS::CoreBuffer();
+ }()),
+ // The new sampler thread doesn't start sampling immediately because the
+ // main loop within Run() is blocked until this function's caller
+ // unlocks gPSMutex.
+ mSamplerThread(NewSamplerThread(aLock, mGeneration, aInterval)),
+ mInterposeObserver((ProfilerFeature::HasMainThreadIO(aFeatures) ||
+ ProfilerFeature::HasFileIO(aFeatures) ||
+ ProfilerFeature::HasFileIOAll(aFeatures))
+ ? new ProfilerIOInterposeObserver()
+ : nullptr),
+ mIsPaused(false),
+ mIsSamplingPaused(false)
+#if defined(GP_OS_linux) || defined(GP_OS_freebsd)
+ ,
+ mWasSamplingPaused(false)
+#endif
+ {
+ // Deep copy aFilters.
+ MOZ_ALWAYS_TRUE(mFilters.resize(aFilterCount));
+ for (uint32_t i = 0; i < aFilterCount; ++i) {
+ mFilters[i] = aFilters[i];
+ }
+
+#if !defined(RELEASE_OR_BETA)
+ if (mInterposeObserver) {
+ // We need to register the observer on the main thread, because we want
+ // to observe IO that happens on the main thread.
+ // IOInterposer needs to be initialized before calling
+ // IOInterposer::Register or our observer will be silently dropped.
+ if (NS_IsMainThread()) {
+ IOInterposer::Init();
+ IOInterposer::Register(IOInterposeObserver::OpAll, mInterposeObserver);
+ } else {
+ RefPtr<ProfilerIOInterposeObserver> observer = mInterposeObserver;
+ NS_DispatchToMainThread(
+ NS_NewRunnableFunction("ActivePS::ActivePS", [=]() {
+ IOInterposer::Init();
+ IOInterposer::Register(IOInterposeObserver::OpAll, observer);
+ }));
+ }
+ }
+#endif
+ }
+
+ ~ActivePS() {
+#if !defined(RELEASE_OR_BETA)
+ if (mInterposeObserver) {
+ // We need to unregister the observer on the main thread, because that's
+ // where we've registered it.
+ if (NS_IsMainThread()) {
+ IOInterposer::Unregister(IOInterposeObserver::OpAll,
+ mInterposeObserver);
+ } else {
+ RefPtr<ProfilerIOInterposeObserver> observer = mInterposeObserver;
+ NS_DispatchToMainThread(
+ NS_NewRunnableFunction("ActivePS::~ActivePS", [=]() {
+ IOInterposer::Unregister(IOInterposeObserver::OpAll, observer);
+ }));
+ }
+ }
+#endif
+ CorePS::CoreBuffer().ResetChunkManager();
+ }
+
+ bool ThreadSelected(const char* aThreadName) {
+ if (mFilters.empty()) {
+ return true;
+ }
+
+ std::string name = aThreadName;
+ std::transform(name.begin(), name.end(), name.begin(), ::tolower);
+
+ for (uint32_t i = 0; i < mFilters.length(); ++i) {
+ std::string filter = mFilters[i];
+
+ if (filter == "*") {
+ return true;
+ }
+
+ std::transform(filter.begin(), filter.end(), filter.begin(), ::tolower);
+
+ // Crude, non UTF-8 compatible, case insensitive substring search
+ if (name.find(filter) != std::string::npos) {
+ return true;
+ }
+
+ // If the filter starts with pid:, check for a pid match
+ if (filter.find("pid:") == 0) {
+ std::string mypid = std::to_string(profiler_current_process_id());
+ if (filter.compare(4, std::string::npos, mypid) == 0) {
+ return true;
+ }
+ }
+ }
+
+ return false;
+ }
+
+ public:
+ static void Create(PSLockRef aLock, PowerOfTwo32 aCapacity, double aInterval,
+ uint32_t aFeatures, const char** aFilters,
+ uint32_t aFilterCount, uint64_t aActiveBrowsingContextID,
+ const Maybe<double>& aDuration) {
+ MOZ_ASSERT(!sInstance);
+ sInstance = new ActivePS(aLock, aCapacity, aInterval, aFeatures, aFilters,
+ aFilterCount, aActiveBrowsingContextID, aDuration);
+ }
+
+ [[nodiscard]] static SamplerThread* Destroy(PSLockRef aLock) {
+ MOZ_ASSERT(sInstance);
+ auto samplerThread = sInstance->mSamplerThread;
+ delete sInstance;
+ sInstance = nullptr;
+
+ return samplerThread;
+ }
+
+ static bool Exists(PSLockRef) { return !!sInstance; }
+
+ static bool Equals(PSLockRef, PowerOfTwo32 aCapacity,
+ const Maybe<double>& aDuration, double aInterval,
+ uint32_t aFeatures, const char** aFilters,
+ uint32_t aFilterCount, uint64_t aActiveBrowsingContextID) {
+ MOZ_ASSERT(sInstance);
+ if (sInstance->mCapacity != aCapacity ||
+ sInstance->mDuration != aDuration ||
+ sInstance->mInterval != aInterval ||
+ sInstance->mFeatures != aFeatures ||
+ sInstance->mFilters.length() != aFilterCount ||
+ sInstance->mActiveBrowsingContextID != aActiveBrowsingContextID) {
+ return false;
+ }
+
+ for (uint32_t i = 0; i < sInstance->mFilters.length(); ++i) {
+ if (strcmp(sInstance->mFilters[i].c_str(), aFilters[i]) != 0) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ static size_t SizeOf(PSLockRef, MallocSizeOf aMallocSizeOf) {
+ MOZ_ASSERT(sInstance);
+
+ size_t n = aMallocSizeOf(sInstance);
+
+ n += sInstance->mProfileBuffer.SizeOfExcludingThis(aMallocSizeOf);
+
+ // Measurement of the following members may be added later if DMD finds it
+ // is worthwhile:
+ // - mLiveProfiledThreads (both the array itself, and the contents)
+ // - mDeadProfiledThreads (both the array itself, and the contents)
+ //
+
+ return n;
+ }
+
+ static bool ShouldProfileThread(PSLockRef aLock, ThreadInfo* aInfo) {
+ MOZ_ASSERT(sInstance);
+ return ((aInfo->IsMainThread() || FeatureThreads(aLock)) &&
+ sInstance->ThreadSelected(aInfo->Name()));
+ }
+
+ [[nodiscard]] static bool AppendPostSamplingCallback(
+ PSLockRef, PostSamplingCallback&& aCallback);
+
+ // Writes out the current active configuration of the profile.
+ static void WriteActiveConfiguration(
+ PSLockRef aLock, JSONWriter& aWriter,
+ const Span<const char>& aPropertyName = MakeStringSpan("")) {
+ if (!sInstance) {
+ if (!aPropertyName.empty()) {
+ aWriter.NullProperty(aPropertyName);
+ } else {
+ aWriter.NullElement();
+ }
+ return;
+ };
+
+ if (!aPropertyName.empty()) {
+ aWriter.StartObjectProperty(aPropertyName);
+ } else {
+ aWriter.StartObjectElement();
+ }
+
+ {
+ aWriter.StartArrayProperty("features", aWriter.SingleLineStyle);
+#define WRITE_ACTIVE_FEATURES(n_, str_, Name_, desc_) \
+ if (profiler_feature_active(ProfilerFeature::Name_)) { \
+ aWriter.StringElement(str_); \
+ }
+
+ PROFILER_FOR_EACH_FEATURE(WRITE_ACTIVE_FEATURES)
+#undef WRITE_ACTIVE_FEATURES
+ aWriter.EndArray();
+ }
+ {
+ aWriter.StartArrayProperty("threads", aWriter.SingleLineStyle);
+ for (const auto& filter : sInstance->mFilters) {
+ aWriter.StringElement(filter);
+ }
+ aWriter.EndArray();
+ }
+ {
+ // Now write all the simple values.
+
+ // The interval is also available on profile.meta.interval
+ aWriter.DoubleProperty("interval", sInstance->mInterval);
+ aWriter.IntProperty("capacity", sInstance->mCapacity.Value());
+ if (sInstance->mDuration) {
+ aWriter.DoubleProperty("duration", sInstance->mDuration.value());
+ }
+ // Here, we are converting uint64_t to double. Browsing Context IDs are
+ // being created using `nsContentUtils::GenerateProcessSpecificId`, which
+ // is specifically designed to only use 53 of the 64 bits to be lossless
+ // when passed into and out of JS as a double.
+ aWriter.DoubleProperty("activeBrowsingContextID",
+ sInstance->mActiveBrowsingContextID);
+ }
+ aWriter.EndObject();
+ }
+
+ PS_GET(uint32_t, Generation)
+
+ PS_GET(PowerOfTwo32, Capacity)
+
+ PS_GET(Maybe<double>, Duration)
+
+ PS_GET(double, Interval)
+
+ PS_GET(uint32_t, Features)
+
+ PS_GET(uint64_t, ActiveBrowsingContextID)
+
+#define PS_GET_FEATURE(n_, str_, Name_, desc_) \
+ static bool Feature##Name_(PSLockRef) { \
+ MOZ_ASSERT(sInstance); \
+ return ProfilerFeature::Has##Name_(sInstance->mFeatures); \
+ }
+
+ PROFILER_FOR_EACH_FEATURE(PS_GET_FEATURE)
+
+#undef PS_GET_FEATURE
+
+ static uint32_t JSFlags(PSLockRef aLock) {
+ uint32_t Flags = 0;
+ Flags |=
+ FeatureJS(aLock) ? uint32_t(JSInstrumentationFlags::StackSampling) : 0;
+ Flags |= FeatureJSTracer(aLock)
+ ? uint32_t(JSInstrumentationFlags::TraceLogging)
+ : 0;
+ Flags |= FeatureJSAllocations(aLock)
+ ? uint32_t(JSInstrumentationFlags::Allocations)
+ : 0;
+ return Flags;
+ }
+
+ PS_GET(const Vector<std::string>&, Filters)
+
+ // Not using PS_GET, because only the "Controlled" interface of
+ // `mProfileBufferChunkManager` should be exposed here.
+ static ProfileBufferControlledChunkManager& ControlledChunkManager(
+ PSLockRef) {
+ MOZ_ASSERT(sInstance);
+ return sInstance->mProfileBufferChunkManager;
+ }
+
+ static void FulfillChunkRequests(PSLockRef) {
+ MOZ_ASSERT(sInstance);
+ sInstance->mProfileBufferChunkManager.FulfillChunkRequests();
+ }
+
+ static ProfileBuffer& Buffer(PSLockRef) {
+ MOZ_ASSERT(sInstance);
+ return sInstance->mProfileBuffer;
+ }
+
+ static const Vector<LiveProfiledThreadData>& LiveProfiledThreads(PSLockRef) {
+ MOZ_ASSERT(sInstance);
+ return sInstance->mLiveProfiledThreads;
+ }
+
+ // Returns an array containing (RegisteredThread*, ProfiledThreadData*) pairs
+ // for all threads that should be included in a profile, both for threads
+ // that are still registered, and for threads that have been unregistered but
+ // still have data in the buffer.
+ // For threads that have already been unregistered, the RegisteredThread
+ // pointer will be null.
+ // The returned array is sorted by thread register time.
+ // Do not hold on to the return value across thread registration or profiler
+ // restarts.
+ static Vector<std::pair<RegisteredThread*, ProfiledThreadData*>>
+ ProfiledThreads(PSLockRef) {
+ MOZ_ASSERT(sInstance);
+ Vector<std::pair<RegisteredThread*, ProfiledThreadData*>> array;
+ MOZ_RELEASE_ASSERT(
+ array.initCapacity(sInstance->mLiveProfiledThreads.length() +
+ sInstance->mDeadProfiledThreads.length()));
+ for (auto& t : sInstance->mLiveProfiledThreads) {
+ MOZ_RELEASE_ASSERT(array.append(
+ std::make_pair(t.mRegisteredThread, t.mProfiledThreadData.get())));
+ }
+ for (auto& t : sInstance->mDeadProfiledThreads) {
+ MOZ_RELEASE_ASSERT(
+ array.append(std::make_pair((RegisteredThread*)nullptr, t.get())));
+ }
+
+ std::sort(array.begin(), array.end(),
+ [](const std::pair<RegisteredThread*, ProfiledThreadData*>& a,
+ const std::pair<RegisteredThread*, ProfiledThreadData*>& b) {
+ return a.second->Info()->RegisterTime() <
+ b.second->Info()->RegisterTime();
+ });
+ return array;
+ }
+
+ static Vector<RefPtr<PageInformation>> ProfiledPages(PSLockRef aLock) {
+ MOZ_ASSERT(sInstance);
+ Vector<RefPtr<PageInformation>> array;
+ for (auto& d : CorePS::RegisteredPages(aLock)) {
+ MOZ_RELEASE_ASSERT(array.append(d));
+ }
+ for (auto& d : sInstance->mDeadProfiledPages) {
+ MOZ_RELEASE_ASSERT(array.append(d));
+ }
+ // We don't need to sort the pages like threads since we won't show them
+ // as a list.
+ return array;
+ }
+
+ // Do a linear search through mLiveProfiledThreads to find the
+ // ProfiledThreadData object for a RegisteredThread.
+ static ProfiledThreadData* GetProfiledThreadData(
+ PSLockRef, RegisteredThread* aRegisteredThread) {
+ MOZ_ASSERT(sInstance);
+ for (const LiveProfiledThreadData& thread :
+ sInstance->mLiveProfiledThreads) {
+ if (thread.mRegisteredThread == aRegisteredThread) {
+ return thread.mProfiledThreadData.get();
+ }
+ }
+ return nullptr;
+ }
+
+ static ProfiledThreadData* AddLiveProfiledThread(
+ PSLockRef, RegisteredThread* aRegisteredThread,
+ UniquePtr<ProfiledThreadData>&& aProfiledThreadData) {
+ MOZ_ASSERT(sInstance);
+ MOZ_RELEASE_ASSERT(
+ sInstance->mLiveProfiledThreads.append(LiveProfiledThreadData{
+ aRegisteredThread, std::move(aProfiledThreadData)}));
+
+ // Return a weak pointer to the ProfiledThreadData object.
+ return sInstance->mLiveProfiledThreads.back().mProfiledThreadData.get();
+ }
+
+ static void UnregisterThread(PSLockRef aLockRef,
+ RegisteredThread* aRegisteredThread) {
+ MOZ_ASSERT(sInstance);
+
+ DiscardExpiredDeadProfiledThreads(aLockRef);
+
+ // Find the right entry in the mLiveProfiledThreads array and remove the
+ // element, moving the ProfiledThreadData object for the thread into the
+ // mDeadProfiledThreads array.
+ // The thread's RegisteredThread object gets destroyed here.
+ for (size_t i = 0; i < sInstance->mLiveProfiledThreads.length(); i++) {
+ LiveProfiledThreadData& thread = sInstance->mLiveProfiledThreads[i];
+ if (thread.mRegisteredThread == aRegisteredThread) {
+ thread.mProfiledThreadData->NotifyUnregistered(
+ sInstance->mProfileBuffer.BufferRangeEnd());
+ MOZ_RELEASE_ASSERT(sInstance->mDeadProfiledThreads.append(
+ std::move(thread.mProfiledThreadData)));
+ sInstance->mLiveProfiledThreads.erase(
+ &sInstance->mLiveProfiledThreads[i]);
+ return;
+ }
+ }
+ }
+
+ PS_GET_AND_SET(bool, IsPaused)
+
+ // True if sampling is paused (though generic `SetIsPaused()` or specific
+ // `SetIsSamplingPaused()`).
+ static bool IsSamplingPaused(PSLockRef lock) {
+ MOZ_ASSERT(sInstance);
+ return IsPaused(lock) || sInstance->mIsSamplingPaused;
+ }
+
+ static void SetIsSamplingPaused(PSLockRef, bool aIsSamplingPaused) {
+ MOZ_ASSERT(sInstance);
+ sInstance->mIsSamplingPaused = aIsSamplingPaused;
+ }
+
+#if defined(GP_OS_linux) || defined(GP_OS_freebsd)
+ PS_GET_AND_SET(bool, WasSamplingPaused)
+#endif
+
+ static void DiscardExpiredDeadProfiledThreads(PSLockRef) {
+ MOZ_ASSERT(sInstance);
+ uint64_t bufferRangeStart = sInstance->mProfileBuffer.BufferRangeStart();
+ // Discard any dead threads that were unregistered before bufferRangeStart.
+ sInstance->mDeadProfiledThreads.eraseIf(
+ [bufferRangeStart](
+ const UniquePtr<ProfiledThreadData>& aProfiledThreadData) {
+ Maybe<uint64_t> bufferPosition =
+ aProfiledThreadData->BufferPositionWhenUnregistered();
+ MOZ_RELEASE_ASSERT(bufferPosition,
+ "should have unregistered this thread");
+ return *bufferPosition < bufferRangeStart;
+ });
+ }
+
+ static void UnregisterPage(PSLockRef aLock,
+ uint64_t aRegisteredInnerWindowID) {
+ MOZ_ASSERT(sInstance);
+ auto& registeredPages = CorePS::RegisteredPages(aLock);
+ for (size_t i = 0; i < registeredPages.length(); i++) {
+ RefPtr<PageInformation>& page = registeredPages[i];
+ if (page->InnerWindowID() == aRegisteredInnerWindowID) {
+ page->NotifyUnregistered(sInstance->mProfileBuffer.BufferRangeEnd());
+ MOZ_RELEASE_ASSERT(
+ sInstance->mDeadProfiledPages.append(std::move(page)));
+ registeredPages.erase(&registeredPages[i--]);
+ }
+ }
+ }
+
+ static void DiscardExpiredPages(PSLockRef) {
+ MOZ_ASSERT(sInstance);
+ uint64_t bufferRangeStart = sInstance->mProfileBuffer.BufferRangeStart();
+ // Discard any dead pages that were unregistered before
+ // bufferRangeStart.
+ sInstance->mDeadProfiledPages.eraseIf(
+ [bufferRangeStart](const RefPtr<PageInformation>& aProfiledPage) {
+ Maybe<uint64_t> bufferPosition =
+ aProfiledPage->BufferPositionWhenUnregistered();
+ MOZ_RELEASE_ASSERT(bufferPosition,
+ "should have unregistered this page");
+ return *bufferPosition < bufferRangeStart;
+ });
+ }
+
+ static void ClearUnregisteredPages(PSLockRef) {
+ MOZ_ASSERT(sInstance);
+ sInstance->mDeadProfiledPages.clear();
+ }
+
+ static void ClearExpiredExitProfiles(PSLockRef) {
+ MOZ_ASSERT(sInstance);
+ uint64_t bufferRangeStart = sInstance->mProfileBuffer.BufferRangeStart();
+ // Discard exit profiles that were gathered before our buffer RangeStart.
+ // If we have started to overwrite our data from when the Base profile was
+ // added, we should get rid of that Base profile because it's now older than
+ // our oldest Gecko profile data.
+ //
+ // When adding: (In practice the starting buffer should be empty)
+ // v Start == End
+ // | <-- Buffer range, initially empty.
+ // ^ mGeckoIndexWhenBaseProfileAdded < Start FALSE -> keep it
+ //
+ // Later, still in range:
+ // v Start v End
+ // |=========| <-- Buffer range growing.
+ // ^ mGeckoIndexWhenBaseProfileAdded < Start FALSE -> keep it
+ //
+ // Even later, now out of range:
+ // v Start v End
+ // |============| <-- Buffer range full and sliding.
+ // ^ mGeckoIndexWhenBaseProfileAdded < Start TRUE! -> Discard it
+ if (sInstance->mBaseProfileThreads &&
+ sInstance->mGeckoIndexWhenBaseProfileAdded
+ .ConvertToProfileBufferIndex() <
+ CorePS::CoreBuffer().GetState().mRangeStart) {
+ DEBUG_LOG("ClearExpiredExitProfiles() - Discarding base profile %p",
+ sInstance->mBaseProfileThreads.get());
+ sInstance->mBaseProfileThreads.reset();
+ }
+ sInstance->mExitProfiles.eraseIf(
+ [bufferRangeStart](const ExitProfile& aExitProfile) {
+ return aExitProfile.mBufferPositionAtGatherTime < bufferRangeStart;
+ });
+ }
+
+ static void AddBaseProfileThreads(PSLockRef aLock,
+ UniquePtr<char[]> aBaseProfileThreads) {
+ MOZ_ASSERT(sInstance);
+ DEBUG_LOG("AddBaseProfileThreads(%p)", aBaseProfileThreads.get());
+ sInstance->mBaseProfileThreads = std::move(aBaseProfileThreads);
+ sInstance->mGeckoIndexWhenBaseProfileAdded =
+ ProfileBufferBlockIndex::CreateFromProfileBufferIndex(
+ CorePS::CoreBuffer().GetState().mRangeEnd);
+ }
+
+ static UniquePtr<char[]> MoveBaseProfileThreads(PSLockRef aLock) {
+ MOZ_ASSERT(sInstance);
+
+ ClearExpiredExitProfiles(aLock);
+
+ DEBUG_LOG("MoveBaseProfileThreads() - Consuming base profile %p",
+ sInstance->mBaseProfileThreads.get());
+ return std::move(sInstance->mBaseProfileThreads);
+ }
+
+ static void AddExitProfile(PSLockRef aLock, const nsCString& aExitProfile) {
+ MOZ_ASSERT(sInstance);
+
+ ClearExpiredExitProfiles(aLock);
+
+ MOZ_RELEASE_ASSERT(sInstance->mExitProfiles.append(
+ ExitProfile{aExitProfile, sInstance->mProfileBuffer.BufferRangeEnd()}));
+ }
+
+ static Vector<nsCString> MoveExitProfiles(PSLockRef aLock) {
+ MOZ_ASSERT(sInstance);
+
+ ClearExpiredExitProfiles(aLock);
+
+ Vector<nsCString> profiles;
+ MOZ_RELEASE_ASSERT(
+ profiles.initCapacity(sInstance->mExitProfiles.length()));
+ for (auto& profile : sInstance->mExitProfiles) {
+ MOZ_RELEASE_ASSERT(profiles.append(std::move(profile.mJSON)));
+ }
+ sInstance->mExitProfiles.clear();
+ return profiles;
+ }
+
+ private:
+ // The singleton instance.
+ static ActivePS* sInstance;
+
+ // We need to track activity generations. If we didn't we could have the
+ // following scenario.
+ //
+ // - profiler_stop() locks gPSMutex, de-instantiates ActivePS, unlocks
+ // gPSMutex, deletes the SamplerThread (which does a join).
+ //
+ // - profiler_start() runs on a different thread, locks gPSMutex,
+ // re-instantiates ActivePS, unlocks gPSMutex -- all before the join
+ // completes.
+ //
+ // - SamplerThread::Run() locks gPSMutex, sees that ActivePS is instantiated,
+ // and continues as if the start/stop pair didn't occur. Also
+ // profiler_stop() is stuck, unable to finish.
+ //
+ // By checking ActivePS *and* the generation, we can avoid this scenario.
+ // sNextGeneration is used to track the next generation number; it is static
+ // because it must persist across different ActivePS instantiations.
+ const uint32_t mGeneration;
+ static uint32_t sNextGeneration;
+
+ // The maximum number of entries in mProfileBuffer.
+ const PowerOfTwo32 mCapacity;
+
+ // The maximum duration of entries in mProfileBuffer, in seconds.
+ const Maybe<double> mDuration;
+
+ // The interval between samples, measured in milliseconds.
+ const double mInterval;
+
+ // The profile features that are enabled.
+ const uint32_t mFeatures;
+
+ // Substrings of names of threads we want to profile.
+ Vector<std::string> mFilters;
+
+ // Browsing Context ID of the active active browser screen's active tab.
+ // It's being used to determine the profiled tab. It's "0" if we failed to
+ // get the ID.
+ const uint64_t mActiveBrowsingContextID;
+
+ // The chunk manager used by `mProfileBuffer` below.
+ ProfileBufferChunkManagerWithLocalLimit mProfileBufferChunkManager;
+
+ // The buffer into which all samples are recorded.
+ ProfileBuffer mProfileBuffer;
+
+ // ProfiledThreadData objects for any threads that were profiled at any point
+ // during this run of the profiler:
+ // - mLiveProfiledThreads contains all threads that are still registered, and
+ // - mDeadProfiledThreads contains all threads that have already been
+ // unregistered but for which there is still data in the profile buffer.
+ Vector<LiveProfiledThreadData> mLiveProfiledThreads;
+ Vector<UniquePtr<ProfiledThreadData>> mDeadProfiledThreads;
+
+ // Info on all the dead pages.
+ // Registered pages are being moved to this array after unregistration.
+ // We are keeping them in case we need them in the profile data.
+ // We are removing them when we ensure that we won't need them anymore.
+ Vector<RefPtr<PageInformation>> mDeadProfiledPages;
+
+ // The current sampler thread. This class is not responsible for destroying
+ // the SamplerThread object; the Destroy() method returns it so the caller
+ // can destroy it.
+ SamplerThread* const mSamplerThread;
+
+ // The interposer that records main thread I/O.
+ RefPtr<ProfilerIOInterposeObserver> mInterposeObserver;
+
+ // Is the profiler fully paused?
+ bool mIsPaused;
+
+ // Is the profiler periodic sampling paused?
+ bool mIsSamplingPaused;
+
+#if defined(GP_OS_linux) || defined(GP_OS_freebsd)
+ // Used to record whether the sampler was paused just before forking. False
+ // at all times except just before/after forking.
+ bool mWasSamplingPaused;
+#endif
+
+ // Optional startup profile thread array from BaseProfiler.
+ UniquePtr<char[]> mBaseProfileThreads;
+ ProfileBufferBlockIndex mGeckoIndexWhenBaseProfileAdded;
+
+ struct ExitProfile {
+ nsCString mJSON;
+ uint64_t mBufferPositionAtGatherTime;
+ };
+ Vector<ExitProfile> mExitProfiles;
+};
+
+ActivePS* ActivePS::sInstance = nullptr;
+uint32_t ActivePS::sNextGeneration = 0;
+
+#undef PS_GET
+#undef PS_GET_LOCKLESS
+#undef PS_GET_AND_SET
+
+// The mutex that guards accesses to CorePS and ActivePS.
+static PSMutex gPSMutex;
+
+Atomic<uint32_t, MemoryOrdering::Relaxed> RacyFeatures::sActiveAndFeatures(0);
+
+// Each live thread has a RegisteredThread, and we store a reference to it in
+// TLS. This class encapsulates that TLS, and also handles the associated
+// profiling stack used by AutoProfilerLabel.
+class TLSRegisteredThread {
+ public:
+ // This should only be called once before any other access.
+ // In this case it's called from `profiler_init()` on the main thread, before
+ // the main thread registers itself.
+ static void Init() {
+ MOZ_ASSERT(sState == State::Uninitialized, "Already initialized");
+ AutoProfilerLabel::ProfilingStackOwnerTLS::Init();
+ MOZ_ASSERT(
+ AutoProfilerLabel::ProfilingStackOwnerTLS::sState !=
+ AutoProfilerLabel::ProfilingStackOwnerTLS::State::Uninitialized,
+ "Unexpected ProfilingStackOwnerTLS::sState after "
+ "ProfilingStackOwnerTLS::Init()");
+ sState =
+ (AutoProfilerLabel::ProfilingStackOwnerTLS::sState ==
+ AutoProfilerLabel::ProfilingStackOwnerTLS::State::Initialized &&
+ sRegisteredThread.init())
+ ? State::Initialized
+ : State::Unavailable;
+ }
+
+ static bool IsTLSInited() {
+ MOZ_ASSERT(sState != State::Uninitialized,
+ "TLSRegisteredThread should only be accessed after Init()");
+ return sState == State::Initialized;
+ }
+
+ // Get the entire RegisteredThread. Accesses are guarded by gPSMutex.
+ static class RegisteredThread* RegisteredThread(PSLockRef) {
+ if (!IsTLSInited()) {
+ return nullptr;
+ }
+ return sRegisteredThread.get();
+ }
+
+ // Get only the RacyRegisteredThread. Accesses are not guarded by gPSMutex.
+ static class RacyRegisteredThread* RacyRegisteredThread() {
+ if (!IsTLSInited()) {
+ return nullptr;
+ }
+ class RegisteredThread* registeredThread = sRegisteredThread.get();
+ return registeredThread ? &registeredThread->RacyRegisteredThread()
+ : nullptr;
+ }
+
+ // Get only the ProfilingStack. Accesses are not guarded by gPSMutex.
+ // RacyRegisteredThread() can also be used to get the ProfilingStack, but that
+ // is marginally slower because it requires an extra pointer indirection.
+ static ProfilingStack* Stack() {
+ if (!IsTLSInited()) {
+ return nullptr;
+ }
+ ProfilingStackOwner* profilingStackOwner =
+ AutoProfilerLabel::ProfilingStackOwnerTLS::Get();
+ if (!profilingStackOwner) {
+ return nullptr;
+ }
+ return &profilingStackOwner->ProfilingStack();
+ }
+
+ static void SetRegisteredThreadAndAutoProfilerLabelProfilingStack(
+ PSLockRef, class RegisteredThread* aRegisteredThread) {
+ if (!IsTLSInited()) {
+ return;
+ }
+ MOZ_RELEASE_ASSERT(
+ aRegisteredThread,
+ "Use ResetRegisteredThread() instead of SetRegisteredThread(nullptr)");
+ sRegisteredThread.set(aRegisteredThread);
+ ProfilingStackOwner& profilingStackOwner =
+ aRegisteredThread->RacyRegisteredThread().ProfilingStackOwner();
+ profilingStackOwner.AddRef();
+ AutoProfilerLabel::ProfilingStackOwnerTLS::Set(&profilingStackOwner);
+ }
+
+ // Only reset the registered thread. The AutoProfilerLabel's ProfilingStack
+ // is kept, because the thread may not have unregistered itself yet, so it may
+ // still push/pop labels even after the profiler has shut down.
+ static void ResetRegisteredThread(PSLockRef) {
+ if (!IsTLSInited()) {
+ return;
+ }
+ sRegisteredThread.set(nullptr);
+ }
+
+ // Reset the AutoProfilerLabels' ProfilingStack, because the thread is
+ // unregistering itself.
+ static void ResetAutoProfilerLabelProfilingStack(PSLockRef) {
+ if (!IsTLSInited()) {
+ return;
+ }
+ MOZ_RELEASE_ASSERT(
+ AutoProfilerLabel::ProfilingStackOwnerTLS::Get(),
+ "ResetAutoProfilerLabelProfilingStack should only be called once");
+ AutoProfilerLabel::ProfilingStackOwnerTLS::Get()->Release();
+ AutoProfilerLabel::ProfilingStackOwnerTLS::Set(nullptr);
+ }
+
+ private:
+ // Only written once from `profiler_init` calling
+ // `TLSRegisteredThread::Init()`; all reads should only happen after `Init()`,
+ // so there is no need to make it atomic.
+ enum class State { Uninitialized = 0, Initialized, Unavailable };
+ static State sState;
+
+ // This is a non-owning reference to the RegisteredThread;
+ // CorePS::mRegisteredThreads is the owning reference. On thread
+ // deregistration, this reference is cleared and the RegisteredThread is
+ // destroyed.
+ static MOZ_THREAD_LOCAL(class RegisteredThread*) sRegisteredThread;
+};
+
+// Zero-initialized to State::Uninitialized.
+/* static */
+TLSRegisteredThread::State TLSRegisteredThread::sState;
+
+/* static */
+MOZ_THREAD_LOCAL(RegisteredThread*) TLSRegisteredThread::sRegisteredThread;
+
+// Only written once from `profiler_init` (through `TLSRegisteredThread::Init()`
+// and `AutoProfilerLabel::ProfilingStackOwnerTLS::Init()`); all reads should
+// only happen after `Init()`, so there is no need to make it atomic.
+// Zero-initialized to State::Uninitialized.
+/* static */
+AutoProfilerLabel::ProfilingStackOwnerTLS::State
+ AutoProfilerLabel::ProfilingStackOwnerTLS::sState;
+
+// Although you can access a thread's ProfilingStack via
+// TLSRegisteredThread::sRegisteredThread, we also have a second TLS pointer
+// directly to the ProfilingStack. Here's why.
+//
+// - We need to be able to push to and pop from the ProfilingStack in
+// AutoProfilerLabel.
+//
+// - The class functions are hot and must be defined in GeckoProfiler.h so they
+// can be inlined.
+//
+// - We don't want to expose TLSRegisteredThread (and RegisteredThread) in
+// GeckoProfiler.h.
+//
+// This second pointer isn't ideal, but does provide a way to satisfy those
+// constraints. TLSRegisteredThread is responsible for updating it.
+//
+// The (Racy)RegisteredThread and AutoProfilerLabel::ProfilingStackOwnerTLS
+// co-own the thread's ProfilingStack, so whichever is reset second, is
+// responsible for destroying the ProfilingStack; Because MOZ_THREAD_LOCAL
+// doesn't support RefPtr, AddRef&Release are done explicitly in
+// TLSRegisteredThread.
+/* static */
+MOZ_THREAD_LOCAL(ProfilingStackOwner*)
+AutoProfilerLabel::ProfilingStackOwnerTLS::sProfilingStackOwnerTLS;
+
+/* static */
+void AutoProfilerLabel::ProfilingStackOwnerTLS::Init() {
+ MOZ_ASSERT(sState == State::Uninitialized, "Already initialized");
+ sState =
+ sProfilingStackOwnerTLS.init() ? State::Initialized : State::Unavailable;
+}
+
+void ProfilingStackOwner::DumpStackAndCrash() const {
+ fprintf(stderr,
+ "ProfilingStackOwner::DumpStackAndCrash() thread id: %d, size: %u\n",
+ profiler_current_thread_id(), unsigned(mProfilingStack.stackSize()));
+ js::ProfilingStackFrame* allFrames = mProfilingStack.frames;
+ for (uint32_t i = 0; i < mProfilingStack.stackSize(); i++) {
+ js::ProfilingStackFrame& frame = allFrames[i];
+ if (frame.isLabelFrame()) {
+ fprintf(stderr, "%u: label frame, sp=%p, label='%s' (%s)\n", unsigned(i),
+ frame.stackAddress(), frame.label(),
+ frame.dynamicString() ? frame.dynamicString() : "-");
+ } else {
+ fprintf(stderr, "%u: non-label frame\n", unsigned(i));
+ }
+ }
+
+ MOZ_CRASH("Non-empty stack!");
+}
+
+// The name of the main thread.
+static const char* const kMainThreadName = "GeckoMain";
+
+////////////////////////////////////////////////////////////////////////
+// BEGIN sampling/unwinding code
+
+// The registers used for stack unwinding and a few other sampling purposes.
+// The ctor does nothing; users are responsible for filling in the fields.
+class Registers {
+ public:
+ Registers() : mPC{nullptr}, mSP{nullptr}, mFP{nullptr}, mLR{nullptr} {}
+
+#if defined(HAVE_NATIVE_UNWIND)
+ // Fills in mPC, mSP, mFP, mLR, and mContext for a synchronous sample.
+ void SyncPopulate();
+#endif
+
+ void Clear() { memset(this, 0, sizeof(*this)); }
+
+ // These fields are filled in by
+ // Sampler::SuspendAndSampleAndResumeThread() for periodic and backtrace
+ // samples, and by SyncPopulate() for synchronous samples.
+ Address mPC; // Instruction pointer.
+ Address mSP; // Stack pointer.
+ Address mFP; // Frame pointer.
+ Address mLR; // ARM link register.
+#if defined(GP_OS_linux) || defined(GP_OS_android) || defined(GP_OS_freebsd)
+ // This contains all the registers, which means it duplicates the four fields
+ // above. This is ok.
+ ucontext_t* mContext; // The context from the signal handler.
+#endif
+};
+
+// Setting MAX_NATIVE_FRAMES too high risks the unwinder wasting a lot of time
+// looping on corrupted stacks.
+static const size_t MAX_NATIVE_FRAMES = 1024;
+
+struct NativeStack {
+ void* mPCs[MAX_NATIVE_FRAMES];
+ void* mSPs[MAX_NATIVE_FRAMES];
+ size_t mCount; // Number of frames filled.
+
+ NativeStack() : mPCs(), mSPs(), mCount(0) {}
+};
+
+Atomic<bool> WALKING_JS_STACK(false);
+
+struct AutoWalkJSStack {
+ bool walkAllowed;
+
+ AutoWalkJSStack() : walkAllowed(false) {
+ walkAllowed = WALKING_JS_STACK.compareExchange(false, true);
+ }
+
+ ~AutoWalkJSStack() {
+ if (walkAllowed) {
+ WALKING_JS_STACK = false;
+ }
+ }
+};
+
+// Merges the profiling stack, native stack, and JS stack, outputting the
+// details to aCollector.
+static void MergeStacks(uint32_t aFeatures, bool aIsSynchronous,
+ const RegisteredThread& aRegisteredThread,
+ const Registers& aRegs, const NativeStack& aNativeStack,
+ ProfilerStackCollector& aCollector,
+ JsFrameBuffer aJsFrames) {
+ // WARNING: this function runs within the profiler's "critical section".
+ // WARNING: this function might be called while the profiler is inactive, and
+ // cannot rely on ActivePS.
+
+ const ProfilingStack& profilingStack =
+ aRegisteredThread.RacyRegisteredThread().ProfilingStack();
+ const js::ProfilingStackFrame* profilingStackFrames = profilingStack.frames;
+ uint32_t profilingStackFrameCount = profilingStack.stackSize();
+ JSContext* context = aRegisteredThread.GetJSContext();
+
+ // Make a copy of the JS stack into a JSFrame array. This is necessary since,
+ // like the native stack, the JS stack is iterated youngest-to-oldest and we
+ // need to iterate oldest-to-youngest when adding frames to aInfo.
+
+ // Non-periodic sampling passes Nothing() as the buffer write position to
+ // ProfilingFrameIterator to avoid incorrectly resetting the buffer position
+ // of sampled JIT frames inside the JS engine.
+ Maybe<uint64_t> samplePosInBuffer;
+ if (!aIsSynchronous) {
+ // aCollector.SamplePositionInBuffer() will return Nothing() when
+ // profiler_suspend_and_sample_thread is called from the background hang
+ // reporter.
+ samplePosInBuffer = aCollector.SamplePositionInBuffer();
+ }
+ uint32_t jsCount = 0;
+
+ // Only walk jit stack if profiling frame iterator is turned on.
+ if (context && JS::IsProfilingEnabledForContext(context)) {
+ AutoWalkJSStack autoWalkJSStack;
+
+ if (autoWalkJSStack.walkAllowed) {
+ JS::ProfilingFrameIterator::RegisterState registerState;
+ registerState.pc = aRegs.mPC;
+ registerState.sp = aRegs.mSP;
+ registerState.lr = aRegs.mLR;
+ registerState.fp = aRegs.mFP;
+
+ JS::ProfilingFrameIterator jsIter(context, registerState,
+ samplePosInBuffer);
+ for (; jsCount < MAX_JS_FRAMES && !jsIter.done(); ++jsIter) {
+ if (aIsSynchronous || jsIter.isWasm()) {
+ uint32_t extracted =
+ jsIter.extractStack(aJsFrames, jsCount, MAX_JS_FRAMES);
+ jsCount += extracted;
+ if (jsCount == MAX_JS_FRAMES) {
+ break;
+ }
+ } else {
+ Maybe<JS::ProfilingFrameIterator::Frame> frame =
+ jsIter.getPhysicalFrameWithoutLabel();
+ if (frame.isSome()) {
+ aJsFrames[jsCount++] = frame.value();
+ }
+ }
+ }
+ }
+ }
+
+ // While the profiling stack array is ordered oldest-to-youngest, the JS and
+ // native arrays are ordered youngest-to-oldest. We must add frames to aInfo
+ // oldest-to-youngest. Thus, iterate over the profiling stack forwards and JS
+ // and native arrays backwards. Note: this means the terminating condition
+ // jsIndex and nativeIndex is being < 0.
+ uint32_t profilingStackIndex = 0;
+ int32_t jsIndex = jsCount - 1;
+ int32_t nativeIndex = aNativeStack.mCount - 1;
+
+ uint8_t* lastLabelFrameStackAddr = nullptr;
+ uint8_t* jitEndStackAddr = nullptr;
+
+ // Iterate as long as there is at least one frame remaining.
+ while (profilingStackIndex != profilingStackFrameCount || jsIndex >= 0 ||
+ nativeIndex >= 0) {
+ // There are 1 to 3 frames available. Find and add the oldest.
+ uint8_t* profilingStackAddr = nullptr;
+ uint8_t* jsStackAddr = nullptr;
+ uint8_t* nativeStackAddr = nullptr;
+ uint8_t* jsActivationAddr = nullptr;
+
+ if (profilingStackIndex != profilingStackFrameCount) {
+ const js::ProfilingStackFrame& profilingStackFrame =
+ profilingStackFrames[profilingStackIndex];
+
+ if (profilingStackFrame.isLabelFrame() ||
+ profilingStackFrame.isSpMarkerFrame()) {
+ lastLabelFrameStackAddr = (uint8_t*)profilingStackFrame.stackAddress();
+ }
+
+ // Skip any JS_OSR frames. Such frames are used when the JS interpreter
+ // enters a jit frame on a loop edge (via on-stack-replacement, or OSR).
+ // To avoid both the profiling stack frame and jit frame being recorded
+ // (and showing up twice), the interpreter marks the interpreter
+ // profiling stack frame as JS_OSR to ensure that it doesn't get counted.
+ if (profilingStackFrame.isOSRFrame()) {
+ profilingStackIndex++;
+ continue;
+ }
+
+ MOZ_ASSERT(lastLabelFrameStackAddr);
+ profilingStackAddr = lastLabelFrameStackAddr;
+ }
+
+ if (jsIndex >= 0) {
+ jsStackAddr = (uint8_t*)aJsFrames[jsIndex].stackAddress;
+ jsActivationAddr = (uint8_t*)aJsFrames[jsIndex].activation;
+ }
+
+ if (nativeIndex >= 0) {
+ nativeStackAddr = (uint8_t*)aNativeStack.mSPs[nativeIndex];
+ }
+
+ // If there's a native stack frame which has the same SP as a profiling
+ // stack frame, pretend we didn't see the native stack frame. Ditto for a
+ // native stack frame which has the same SP as a JS stack frame. In effect
+ // this means profiling stack frames or JS frames trump conflicting native
+ // frames.
+ if (nativeStackAddr && (profilingStackAddr == nativeStackAddr ||
+ jsStackAddr == nativeStackAddr)) {
+ nativeStackAddr = nullptr;
+ nativeIndex--;
+ MOZ_ASSERT(profilingStackAddr || jsStackAddr);
+ }
+
+ // Sanity checks.
+ MOZ_ASSERT_IF(profilingStackAddr,
+ profilingStackAddr != jsStackAddr &&
+ profilingStackAddr != nativeStackAddr);
+ MOZ_ASSERT_IF(jsStackAddr, jsStackAddr != profilingStackAddr &&
+ jsStackAddr != nativeStackAddr);
+ MOZ_ASSERT_IF(nativeStackAddr, nativeStackAddr != profilingStackAddr &&
+ nativeStackAddr != jsStackAddr);
+
+ // Check to see if profiling stack frame is top-most.
+ if (profilingStackAddr > jsStackAddr &&
+ profilingStackAddr > nativeStackAddr) {
+ MOZ_ASSERT(profilingStackIndex < profilingStackFrameCount);
+ const js::ProfilingStackFrame& profilingStackFrame =
+ profilingStackFrames[profilingStackIndex];
+
+ // Sp marker frames are just annotations and should not be recorded in
+ // the profile.
+ if (!profilingStackFrame.isSpMarkerFrame()) {
+ // The JIT only allows the top-most frame to have a nullptr pc.
+ MOZ_ASSERT_IF(
+ profilingStackFrame.isJsFrame() && profilingStackFrame.script() &&
+ !profilingStackFrame.pc(),
+ &profilingStackFrame ==
+ &profilingStack.frames[profilingStack.stackSize() - 1]);
+ aCollector.CollectProfilingStackFrame(profilingStackFrame);
+ }
+ profilingStackIndex++;
+ continue;
+ }
+
+ // Check to see if JS jit stack frame is top-most
+ if (jsStackAddr > nativeStackAddr) {
+ MOZ_ASSERT(jsIndex >= 0);
+ const JS::ProfilingFrameIterator::Frame& jsFrame = aJsFrames[jsIndex];
+ jitEndStackAddr = (uint8_t*)jsFrame.endStackAddress;
+ // Stringifying non-wasm JIT frames is delayed until streaming time. To
+ // re-lookup the entry in the JitcodeGlobalTable, we need to store the
+ // JIT code address (OptInfoAddr) in the circular buffer.
+ //
+ // Note that we cannot do this when we are sychronously sampling the
+ // current thread; that is, when called from profiler_get_backtrace. The
+ // captured backtrace is usually externally stored for an indeterminate
+ // amount of time, such as in nsRefreshDriver. Problematically, the
+ // stored backtrace may be alive across a GC during which the profiler
+ // itself is disabled. In that case, the JS engine is free to discard its
+ // JIT code. This means that if we inserted such OptInfoAddr entries into
+ // the buffer, nsRefreshDriver would now be holding on to a backtrace
+ // with stale JIT code return addresses.
+ if (aIsSynchronous ||
+ jsFrame.kind == JS::ProfilingFrameIterator::Frame_Wasm) {
+ aCollector.CollectWasmFrame(jsFrame.label);
+ } else if (jsFrame.kind ==
+ JS::ProfilingFrameIterator::Frame_BaselineInterpreter) {
+ // Materialize a ProfilingStackFrame similar to the C++ Interpreter. We
+ // also set the IS_BLINTERP_FRAME flag to differentiate though.
+ JSScript* script = jsFrame.interpreterScript;
+ jsbytecode* pc = jsFrame.interpreterPC();
+ js::ProfilingStackFrame stackFrame;
+ constexpr uint32_t ExtraFlags =
+ uint32_t(js::ProfilingStackFrame::Flags::IS_BLINTERP_FRAME);
+ stackFrame.initJsFrame<JS::ProfilingCategoryPair::JS_BaselineInterpret,
+ ExtraFlags>("", jsFrame.label, script, pc,
+ jsFrame.realmID);
+ aCollector.CollectProfilingStackFrame(stackFrame);
+ } else {
+ MOZ_ASSERT(jsFrame.kind == JS::ProfilingFrameIterator::Frame_Ion ||
+ jsFrame.kind == JS::ProfilingFrameIterator::Frame_Baseline);
+ aCollector.CollectJitReturnAddr(jsFrame.returnAddress());
+ }
+
+ jsIndex--;
+ continue;
+ }
+
+ // If we reach here, there must be a native stack frame and it must be the
+ // greatest frame.
+ if (nativeStackAddr &&
+ // If the latest JS frame was JIT, this could be the native frame that
+ // corresponds to it. In that case, skip the native frame, because
+ // there's no need for the same frame to be present twice in the stack.
+ // The JS frame can be considered the symbolicated version of the native
+ // frame.
+ (!jitEndStackAddr || nativeStackAddr < jitEndStackAddr) &&
+ // This might still be a JIT operation, check to make sure that is not
+ // in range of the NEXT JavaScript's stacks' activation address.
+ (!jsActivationAddr || nativeStackAddr > jsActivationAddr)) {
+ MOZ_ASSERT(nativeIndex >= 0);
+ void* addr = (void*)aNativeStack.mPCs[nativeIndex];
+ aCollector.CollectNativeLeafAddr(addr);
+ }
+ if (nativeIndex >= 0) {
+ nativeIndex--;
+ }
+ }
+
+ // Update the JS context with the current profile sample buffer generation.
+ //
+ // Only do this for periodic samples. We don't want to do this for
+ // synchronous samples, and we also don't want to do it for calls to
+ // profiler_suspend_and_sample_thread() from the background hang reporter -
+ // in that case, aCollector.BufferRangeStart() will return Nothing().
+ if (!aIsSynchronous && context && aCollector.BufferRangeStart()) {
+ uint64_t bufferRangeStart = *aCollector.BufferRangeStart();
+ JS::SetJSContextProfilerSampleBufferRangeStart(context, bufferRangeStart);
+ }
+}
+
+#if defined(GP_OS_windows) && defined(USE_MOZ_STACK_WALK)
+static HANDLE GetThreadHandle(PlatformData* aData);
+#endif
+
+#if defined(USE_FRAME_POINTER_STACK_WALK) || defined(USE_MOZ_STACK_WALK)
+static void StackWalkCallback(uint32_t aFrameNumber, void* aPC, void* aSP,
+ void* aClosure) {
+ NativeStack* nativeStack = static_cast<NativeStack*>(aClosure);
+ MOZ_ASSERT(nativeStack->mCount < MAX_NATIVE_FRAMES);
+ nativeStack->mSPs[nativeStack->mCount] = aSP;
+ nativeStack->mPCs[nativeStack->mCount] = aPC;
+ nativeStack->mCount++;
+}
+#endif
+
+#if defined(USE_FRAME_POINTER_STACK_WALK)
+static void DoFramePointerBacktrace(PSLockRef aLock,
+ const RegisteredThread& aRegisteredThread,
+ const Registers& aRegs,
+ NativeStack& aNativeStack) {
+ // WARNING: this function runs within the profiler's "critical section".
+ // WARNING: this function might be called while the profiler is inactive, and
+ // cannot rely on ActivePS.
+
+ // Start with the current function. We use 0 as the frame number here because
+ // the FramePointerStackWalk() call below will use 1..N. This is a bit weird
+ // but it doesn't matter because StackWalkCallback() doesn't use the frame
+ // number argument.
+ StackWalkCallback(/* frameNum */ 0, aRegs.mPC, aRegs.mSP, &aNativeStack);
+
+ uint32_t maxFrames = uint32_t(MAX_NATIVE_FRAMES - aNativeStack.mCount);
+
+ const void* stackEnd = aRegisteredThread.StackTop();
+ if (aRegs.mFP >= aRegs.mSP && aRegs.mFP <= stackEnd) {
+ FramePointerStackWalk(StackWalkCallback, /* skipFrames */ 0, maxFrames,
+ &aNativeStack, reinterpret_cast<void**>(aRegs.mFP),
+ const_cast<void*>(stackEnd));
+ }
+}
+#endif
+
+#if defined(USE_MOZ_STACK_WALK)
+static void DoMozStackWalkBacktrace(PSLockRef aLock,
+ const RegisteredThread& aRegisteredThread,
+ const Registers& aRegs,
+ NativeStack& aNativeStack) {
+ // WARNING: this function runs within the profiler's "critical section".
+ // WARNING: this function might be called while the profiler is inactive, and
+ // cannot rely on ActivePS.
+
+ // Start with the current function. We use 0 as the frame number here because
+ // the MozStackWalkThread() call below will use 1..N. This is a bit weird but
+ // it doesn't matter because StackWalkCallback() doesn't use the frame number
+ // argument.
+ StackWalkCallback(/* frameNum */ 0, aRegs.mPC, aRegs.mSP, &aNativeStack);
+
+ uint32_t maxFrames = uint32_t(MAX_NATIVE_FRAMES - aNativeStack.mCount);
+
+ HANDLE thread = GetThreadHandle(aRegisteredThread.GetPlatformData());
+ MOZ_ASSERT(thread);
+ MozStackWalkThread(StackWalkCallback, /* skipFrames */ 0, maxFrames,
+ &aNativeStack, thread, /* context */ nullptr);
+}
+#endif
+
+#ifdef USE_EHABI_STACKWALK
+static void DoEHABIBacktrace(PSLockRef aLock,
+ const RegisteredThread& aRegisteredThread,
+ const Registers& aRegs,
+ NativeStack& aNativeStack) {
+ // WARNING: this function runs within the profiler's "critical section".
+ // WARNING: this function might be called while the profiler is inactive, and
+ // cannot rely on ActivePS.
+
+ aNativeStack.mCount =
+ EHABIStackWalk(aRegs.mContext->uc_mcontext,
+ const_cast<void*>(aRegisteredThread.StackTop()),
+ aNativeStack.mSPs, aNativeStack.mPCs, MAX_NATIVE_FRAMES);
+}
+#endif
+
+#ifdef USE_LUL_STACKWALK
+
+// See the comment at the callsite for why this function is necessary.
+# if defined(MOZ_HAVE_ASAN_BLACKLIST)
+MOZ_ASAN_BLACKLIST static void ASAN_memcpy(void* aDst, const void* aSrc,
+ size_t aLen) {
+ // The obvious thing to do here is call memcpy(). However, although
+ // ASAN_memcpy() is not instrumented by ASAN, memcpy() still is, and the
+ // false positive still manifests! So we must implement memcpy() ourselves
+ // within this function.
+ char* dst = static_cast<char*>(aDst);
+ const char* src = static_cast<const char*>(aSrc);
+
+ for (size_t i = 0; i < aLen; i++) {
+ dst[i] = src[i];
+ }
+}
+# endif
+
+static void DoLULBacktrace(PSLockRef aLock,
+ const RegisteredThread& aRegisteredThread,
+ const Registers& aRegs, NativeStack& aNativeStack) {
+ // WARNING: this function runs within the profiler's "critical section".
+ // WARNING: this function might be called while the profiler is inactive, and
+ // cannot rely on ActivePS.
+
+ const mcontext_t* mc = &aRegs.mContext->uc_mcontext;
+
+ lul::UnwindRegs startRegs;
+ memset(&startRegs, 0, sizeof(startRegs));
+
+# if defined(GP_PLAT_amd64_linux) || defined(GP_PLAT_amd64_android)
+ startRegs.xip = lul::TaggedUWord(mc->gregs[REG_RIP]);
+ startRegs.xsp = lul::TaggedUWord(mc->gregs[REG_RSP]);
+ startRegs.xbp = lul::TaggedUWord(mc->gregs[REG_RBP]);
+# elif defined(GP_PLAT_amd64_freebsd)
+ startRegs.xip = lul::TaggedUWord(mc->mc_rip);
+ startRegs.xsp = lul::TaggedUWord(mc->mc_rsp);
+ startRegs.xbp = lul::TaggedUWord(mc->mc_rbp);
+# elif defined(GP_PLAT_arm_linux) || defined(GP_PLAT_arm_android)
+ startRegs.r15 = lul::TaggedUWord(mc->arm_pc);
+ startRegs.r14 = lul::TaggedUWord(mc->arm_lr);
+ startRegs.r13 = lul::TaggedUWord(mc->arm_sp);
+ startRegs.r12 = lul::TaggedUWord(mc->arm_ip);
+ startRegs.r11 = lul::TaggedUWord(mc->arm_fp);
+ startRegs.r7 = lul::TaggedUWord(mc->arm_r7);
+# elif defined(GP_PLAT_arm64_linux) || defined(GP_PLAT_arm64_android)
+ startRegs.pc = lul::TaggedUWord(mc->pc);
+ startRegs.x29 = lul::TaggedUWord(mc->regs[29]);
+ startRegs.x30 = lul::TaggedUWord(mc->regs[30]);
+ startRegs.sp = lul::TaggedUWord(mc->sp);
+# elif defined(GP_PLAT_arm64_freebsd)
+ startRegs.pc = lul::TaggedUWord(mc->mc_gpregs.gp_elr);
+ startRegs.x29 = lul::TaggedUWord(mc->mc_gpregs.gp_x[29]);
+ startRegs.x30 = lul::TaggedUWord(mc->mc_gpregs.gp_lr);
+ startRegs.sp = lul::TaggedUWord(mc->mc_gpregs.gp_sp);
+# elif defined(GP_PLAT_x86_linux) || defined(GP_PLAT_x86_android)
+ startRegs.xip = lul::TaggedUWord(mc->gregs[REG_EIP]);
+ startRegs.xsp = lul::TaggedUWord(mc->gregs[REG_ESP]);
+ startRegs.xbp = lul::TaggedUWord(mc->gregs[REG_EBP]);
+# elif defined(GP_PLAT_mips64_linux)
+ startRegs.pc = lul::TaggedUWord(mc->pc);
+ startRegs.sp = lul::TaggedUWord(mc->gregs[29]);
+ startRegs.fp = lul::TaggedUWord(mc->gregs[30]);
+# else
+# error "Unknown plat"
+# endif
+
+ // Copy up to N_STACK_BYTES from rsp-REDZONE upwards, but not going past the
+ // stack's registered top point. Do some basic sanity checks too. This
+ // assumes that the TaggedUWord holding the stack pointer value is valid, but
+ // it should be, since it was constructed that way in the code just above.
+
+ // We could construct |stackImg| so that LUL reads directly from the stack in
+ // question, rather than from a copy of it. That would reduce overhead and
+ // space use a bit. However, it gives a problem with dynamic analysis tools
+ // (ASan, TSan, Valgrind) which is that such tools will report invalid or
+ // racing memory accesses, and such accesses will be reported deep inside LUL.
+ // By taking a copy here, we can either sanitise the copy (for Valgrind) or
+ // copy it using an unchecked memcpy (for ASan, TSan). That way we don't have
+ // to try and suppress errors inside LUL.
+ //
+ // N_STACK_BYTES is set to 160KB. This is big enough to hold all stacks
+ // observed in some minutes of testing, whilst keeping the size of this
+ // function (DoNativeBacktrace)'s frame reasonable. Most stacks observed in
+ // practice are small, 4KB or less, and so the copy costs are insignificant
+ // compared to other profiler overhead.
+ //
+ // |stackImg| is allocated on this (the sampling thread's) stack. That
+ // implies that the frame for this function is at least N_STACK_BYTES large.
+ // In general it would be considered unacceptable to have such a large frame
+ // on a stack, but it only exists for the unwinder thread, and so is not
+ // expected to be a problem. Allocating it on the heap is troublesome because
+ // this function runs whilst the sampled thread is suspended, so any heap
+ // allocation risks deadlock. Allocating it as a global variable is not
+ // thread safe, which would be a problem if we ever allow multiple sampler
+ // threads. Hence allocating it on the stack seems to be the least-worst
+ // option.
+
+ lul::StackImage stackImg;
+
+ {
+# if defined(GP_PLAT_amd64_linux) || defined(GP_PLAT_amd64_android) || \
+ defined(GP_PLAT_amd64_freebsd)
+ uintptr_t rEDZONE_SIZE = 128;
+ uintptr_t start = startRegs.xsp.Value() - rEDZONE_SIZE;
+# elif defined(GP_PLAT_arm_linux) || defined(GP_PLAT_arm_android)
+ uintptr_t rEDZONE_SIZE = 0;
+ uintptr_t start = startRegs.r13.Value() - rEDZONE_SIZE;
+# elif defined(GP_PLAT_arm64_linux) || defined(GP_PLAT_arm64_android) || \
+ defined(GP_PLAT_arm64_freebsd)
+ uintptr_t rEDZONE_SIZE = 0;
+ uintptr_t start = startRegs.sp.Value() - rEDZONE_SIZE;
+# elif defined(GP_PLAT_x86_linux) || defined(GP_PLAT_x86_android)
+ uintptr_t rEDZONE_SIZE = 0;
+ uintptr_t start = startRegs.xsp.Value() - rEDZONE_SIZE;
+# elif defined(GP_PLAT_mips64_linux)
+ uintptr_t rEDZONE_SIZE = 0;
+ uintptr_t start = startRegs.sp.Value() - rEDZONE_SIZE;
+# else
+# error "Unknown plat"
+# endif
+ uintptr_t end = reinterpret_cast<uintptr_t>(aRegisteredThread.StackTop());
+ uintptr_t ws = sizeof(void*);
+ start &= ~(ws - 1);
+ end &= ~(ws - 1);
+ uintptr_t nToCopy = 0;
+ if (start < end) {
+ nToCopy = end - start;
+ if (nToCopy > lul::N_STACK_BYTES) nToCopy = lul::N_STACK_BYTES;
+ }
+ MOZ_ASSERT(nToCopy <= lul::N_STACK_BYTES);
+ stackImg.mLen = nToCopy;
+ stackImg.mStartAvma = start;
+ if (nToCopy > 0) {
+ // If this is a vanilla memcpy(), ASAN makes the following complaint:
+ //
+ // ERROR: AddressSanitizer: stack-buffer-underflow ...
+ // ...
+ // HINT: this may be a false positive if your program uses some custom
+ // stack unwind mechanism or swapcontext
+ //
+ // This code is very much a custom stack unwind mechanism! So we use an
+ // alternative memcpy() implementation that is ignored by ASAN.
+# if defined(MOZ_HAVE_ASAN_BLACKLIST)
+ ASAN_memcpy(&stackImg.mContents[0], (void*)start, nToCopy);
+# else
+ memcpy(&stackImg.mContents[0], (void*)start, nToCopy);
+# endif
+ (void)VALGRIND_MAKE_MEM_DEFINED(&stackImg.mContents[0], nToCopy);
+ }
+ }
+
+ size_t framePointerFramesAcquired = 0;
+ lul::LUL* lul = CorePS::Lul(aLock);
+ lul->Unwind(reinterpret_cast<uintptr_t*>(aNativeStack.mPCs),
+ reinterpret_cast<uintptr_t*>(aNativeStack.mSPs),
+ &aNativeStack.mCount, &framePointerFramesAcquired,
+ MAX_NATIVE_FRAMES, &startRegs, &stackImg);
+
+ // Update stats in the LUL stats object. Unfortunately this requires
+ // three global memory operations.
+ lul->mStats.mContext += 1;
+ lul->mStats.mCFI += aNativeStack.mCount - 1 - framePointerFramesAcquired;
+ lul->mStats.mFP += framePointerFramesAcquired;
+}
+
+#endif
+
+#ifdef HAVE_NATIVE_UNWIND
+static void DoNativeBacktrace(PSLockRef aLock,
+ const RegisteredThread& aRegisteredThread,
+ const Registers& aRegs,
+ NativeStack& aNativeStack) {
+ // This method determines which stackwalker is used for periodic and
+ // synchronous samples. (Backtrace samples are treated differently, see
+ // profiler_suspend_and_sample_thread() for details). The only part of the
+ // ordering that matters is that LUL must precede FRAME_POINTER, because on
+ // Linux they can both be present.
+# if defined(USE_LUL_STACKWALK)
+ DoLULBacktrace(aLock, aRegisteredThread, aRegs, aNativeStack);
+# elif defined(USE_EHABI_STACKWALK)
+ DoEHABIBacktrace(aLock, aRegisteredThread, aRegs, aNativeStack);
+# elif defined(USE_FRAME_POINTER_STACK_WALK)
+ DoFramePointerBacktrace(aLock, aRegisteredThread, aRegs, aNativeStack);
+# elif defined(USE_MOZ_STACK_WALK)
+ DoMozStackWalkBacktrace(aLock, aRegisteredThread, aRegs, aNativeStack);
+# else
+# error "Invalid configuration"
+# endif
+}
+#endif
+
+// Writes some components shared by periodic and synchronous profiles to
+// ActivePS's ProfileBuffer. (This should only be called from DoSyncSample()
+// and DoPeriodicSample().)
+//
+// The grammar for entry sequences is in a comment above
+// ProfileBuffer::StreamSamplesToJSON.
+static inline void DoSharedSample(PSLockRef aLock, bool aIsSynchronous,
+ RegisteredThread& aRegisteredThread,
+ const Registers& aRegs, uint64_t aSamplePos,
+ ProfileBuffer& aBuffer) {
+ // WARNING: this function runs within the profiler's "critical section".
+
+ MOZ_ASSERT(!aBuffer.IsThreadSafe(),
+ "Mutexes cannot be used inside this critical section");
+
+ MOZ_RELEASE_ASSERT(ActivePS::Exists(aLock));
+
+ ProfileBufferCollector collector(aBuffer, aSamplePos);
+ NativeStack nativeStack;
+#if defined(HAVE_NATIVE_UNWIND)
+ if (ActivePS::FeatureStackWalk(aLock)) {
+ DoNativeBacktrace(aLock, aRegisteredThread, aRegs, nativeStack);
+
+ MergeStacks(ActivePS::Features(aLock), aIsSynchronous, aRegisteredThread,
+ aRegs, nativeStack, collector, CorePS::JsFrames(aLock));
+ } else
+#endif
+ {
+ MergeStacks(ActivePS::Features(aLock), aIsSynchronous, aRegisteredThread,
+ aRegs, nativeStack, collector, CorePS::JsFrames(aLock));
+
+ // We can't walk the whole native stack, but we can record the top frame.
+ if (ActivePS::FeatureLeaf(aLock)) {
+ aBuffer.AddEntry(ProfileBufferEntry::NativeLeafAddr((void*)aRegs.mPC));
+ }
+ }
+}
+
+// Writes the components of a synchronous sample to the given ProfileBuffer.
+static void DoSyncSample(PSLockRef aLock, RegisteredThread& aRegisteredThread,
+ const TimeStamp& aNow, const Registers& aRegs,
+ ProfileBuffer& aBuffer) {
+ // WARNING: this function runs within the profiler's "critical section".
+
+ uint64_t samplePos =
+ aBuffer.AddThreadIdEntry(aRegisteredThread.Info()->ThreadId());
+
+ TimeDuration delta = aNow - CorePS::ProcessStartTime();
+ aBuffer.AddEntry(ProfileBufferEntry::Time(delta.ToMilliseconds()));
+
+ DoSharedSample(aLock, /* aIsSynchronous = */ true, aRegisteredThread, aRegs,
+ samplePos, aBuffer);
+}
+
+// Writes the components of a periodic sample to ActivePS's ProfileBuffer.
+// The ThreadId entry is already written in the main ProfileBuffer, its location
+// is `aSamplePos`, we can write the rest to `aBuffer` (which may be different).
+static inline void DoPeriodicSample(PSLockRef aLock,
+ RegisteredThread& aRegisteredThread,
+ const Registers& aRegs, uint64_t aSamplePos,
+ ProfileBuffer& aBuffer) {
+ // WARNING: this function runs within the profiler's "critical section".
+
+ DoSharedSample(aLock, /* aIsSynchronous = */ false, aRegisteredThread, aRegs,
+ aSamplePos, aBuffer);
+}
+
+// END sampling/unwinding code
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+// BEGIN saving/streaming code
+
+const static uint64_t kJS_MAX_SAFE_UINTEGER = +9007199254740991ULL;
+
+static int64_t SafeJSInteger(uint64_t aValue) {
+ return aValue <= kJS_MAX_SAFE_UINTEGER ? int64_t(aValue) : -1;
+}
+
+static void AddSharedLibraryInfoToStream(JSONWriter& aWriter,
+ const SharedLibrary& aLib) {
+ aWriter.StartObjectElement();
+ aWriter.IntProperty("start", SafeJSInteger(aLib.GetStart()));
+ aWriter.IntProperty("end", SafeJSInteger(aLib.GetEnd()));
+ aWriter.IntProperty("offset", SafeJSInteger(aLib.GetOffset()));
+ aWriter.StringProperty("name", NS_ConvertUTF16toUTF8(aLib.GetModuleName()));
+ aWriter.StringProperty("path", NS_ConvertUTF16toUTF8(aLib.GetModulePath()));
+ aWriter.StringProperty("debugName",
+ NS_ConvertUTF16toUTF8(aLib.GetDebugName()));
+ aWriter.StringProperty("debugPath",
+ NS_ConvertUTF16toUTF8(aLib.GetDebugPath()));
+ aWriter.StringProperty("breakpadId", aLib.GetBreakpadId());
+ aWriter.StringProperty("arch", aLib.GetArch());
+ aWriter.EndObject();
+}
+
+void AppendSharedLibraries(JSONWriter& aWriter) {
+ SharedLibraryInfo info = SharedLibraryInfo::GetInfoForSelf();
+ info.SortByAddress();
+ for (size_t i = 0; i < info.GetSize(); i++) {
+ AddSharedLibraryInfoToStream(aWriter, info.GetEntry(i));
+ }
+}
+
+#ifdef MOZ_TASK_TRACER
+static void StreamNameAndThreadId(JSONWriter& aWriter, const char* aName,
+ int aThreadId) {
+ aWriter.StartObjectElement();
+ {
+ if (XRE_GetProcessType() == GeckoProcessType_Plugin) {
+ // TODO Add the proper plugin name
+ aWriter.StringProperty("name", "Plugin");
+ } else {
+ aWriter.StringProperty("name", aName);
+ }
+ aWriter.IntProperty("tid", aThreadId);
+ }
+ aWriter.EndObject();
+}
+#endif
+
+static void StreamTaskTracer(PSLockRef aLock, SpliceableJSONWriter& aWriter) {
+#ifdef MOZ_TASK_TRACER
+ MOZ_RELEASE_ASSERT(CorePS::Exists() && ActivePS::Exists(aLock));
+
+ aWriter.StartArrayProperty("data");
+ {
+ UniquePtr<Vector<nsCString>> data =
+ tasktracer::GetLoggedData(CorePS::ProcessStartTime());
+ for (const nsCString& dataString : *data) {
+ aWriter.StringElement(dataString.get());
+ }
+ }
+ aWriter.EndArray();
+
+ aWriter.StartArrayProperty("threads");
+ {
+ ActivePS::DiscardExpiredDeadProfiledThreads(aLock);
+ Vector<std::pair<RegisteredThread*, ProfiledThreadData*>> threads =
+ ActivePS::ProfiledThreads(aLock);
+ for (auto& thread : threads) {
+ RefPtr<ThreadInfo> info = thread.second->Info();
+ StreamNameAndThreadId(aWriter, info->Name(), info->ThreadId());
+ }
+ }
+ aWriter.EndArray();
+
+ aWriter.DoubleProperty("start",
+ static_cast<double>(tasktracer::GetStartTime()));
+#endif
+}
+
+static void StreamCategories(SpliceableJSONWriter& aWriter) {
+ // Same order as ProfilingCategory. Format:
+ // [
+ // {
+ // name: "Idle",
+ // color: "transparent",
+ // subcategories: ["Other"],
+ // },
+ // {
+ // name: "Other",
+ // color: "grey",
+ // subcategories: [
+ // "JSM loading",
+ // "Subprocess launching",
+ // "DLL loading"
+ // ]
+ // },
+ // ...
+ // ]
+
+#define CATEGORY_JSON_BEGIN_CATEGORY(name, labelAsString, color) \
+ aWriter.Start(); \
+ aWriter.StringProperty("name", labelAsString); \
+ aWriter.StringProperty("color", color); \
+ aWriter.StartArrayProperty("subcategories");
+#define CATEGORY_JSON_SUBCATEGORY(supercategory, name, labelAsString) \
+ aWriter.StringElement(labelAsString);
+#define CATEGORY_JSON_END_CATEGORY \
+ aWriter.EndArray(); \
+ aWriter.EndObject();
+
+ MOZ_PROFILING_CATEGORY_LIST(CATEGORY_JSON_BEGIN_CATEGORY,
+ CATEGORY_JSON_SUBCATEGORY,
+ CATEGORY_JSON_END_CATEGORY)
+
+#undef CATEGORY_JSON_BEGIN_CATEGORY
+#undef CATEGORY_JSON_SUBCATEGORY
+#undef CATEGORY_JSON_END_CATEGORY
+}
+
+static void StreamMarkerSchema(SpliceableJSONWriter& aWriter) {
+ // Get an array view with all registered marker-type-specific functions.
+ Span<const base_profiler_markers_detail::Streaming::MarkerTypeFunctions>
+ markerTypeFunctionsArray =
+ base_profiler_markers_detail::Streaming::MarkerTypeFunctionsArray();
+ // List of streamed marker names, this is used to spot duplicates.
+ std::set<std::string> names;
+ // Stream the display schema for each different one. (Duplications may come
+ // from the same code potentially living in different libraries.)
+ for (const auto& markerTypeFunctions : markerTypeFunctionsArray) {
+ auto name = markerTypeFunctions.mMarkerTypeNameFunction();
+ // std::set.insert(T&&) returns a pair, its `second` is true if the element
+ // was actually inserted (i.e., it was not there yet.)
+ const bool didInsert =
+ names.insert(std::string(name.data(), name.size())).second;
+ if (didInsert) {
+ markerTypeFunctions.mMarkerSchemaFunction().Stream(aWriter, name);
+ }
+ }
+}
+
+// Some meta information that is better recorded before streaming the profile.
+// This is *not* intended to be cached, as some values could change between
+// profiling sessions.
+struct PreRecordedMetaInformation {
+ bool mAsyncStacks;
+
+ // This struct should only live on the stack, so it's fine to use Auto
+ // strings.
+ nsAutoCString mHttpPlatform;
+ nsAutoCString mHttpOscpu;
+ nsAutoCString mHttpMisc;
+
+ nsAutoCString mRuntimeABI;
+ nsAutoCString mRuntimeToolkit;
+
+ nsAutoCString mAppInfoProduct;
+ nsAutoCString mAppInfoAppBuildID;
+ nsAutoCString mAppInfoSourceURL;
+
+ int32_t mProcessInfoCpuCount;
+ int32_t mProcessInfoCpuCores;
+};
+
+// This function should be called out of the profiler lock.
+// It gathers non-trivial data that doesn't require the profiler to stop, or for
+// which the request could theoretically deadlock if the profiler is locked.
+static PreRecordedMetaInformation PreRecordMetaInformation() {
+ gPSMutex.AssertCurrentThreadDoesNotOwn();
+
+ PreRecordedMetaInformation info = {}; // Aggregate-init all fields.
+
+ if (!NS_IsMainThread()) {
+ // Leave these properties out if we're not on the main thread.
+ // At the moment, the only case in which this function is called on a
+ // background thread is if we're in a content process and are going to
+ // send this profile to the parent process. In that case, the parent
+ // process profile's "meta" object already has the rest of the properties,
+ // and the parent process profile is dumped on that process's main thread.
+ return info;
+ }
+
+ info.mAsyncStacks = Preferences::GetBool("javascript.options.asyncstack");
+
+ nsresult res;
+
+ if (nsCOMPtr<nsIHttpProtocolHandler> http =
+ do_GetService(NS_NETWORK_PROTOCOL_CONTRACTID_PREFIX "http", &res);
+ !NS_FAILED(res) && http) {
+ Unused << http->GetPlatform(info.mHttpPlatform);
+ Unused << http->GetOscpu(info.mHttpOscpu);
+ Unused << http->GetMisc(info.mHttpMisc);
+ }
+
+ if (nsCOMPtr<nsIXULRuntime> runtime =
+ do_GetService("@mozilla.org/xre/runtime;1");
+ runtime) {
+ Unused << runtime->GetXPCOMABI(info.mRuntimeABI);
+ Unused << runtime->GetWidgetToolkit(info.mRuntimeToolkit);
+ }
+
+ if (nsCOMPtr<nsIXULAppInfo> appInfo =
+ do_GetService("@mozilla.org/xre/app-info;1");
+ appInfo) {
+ Unused << appInfo->GetName(info.mAppInfoProduct);
+ Unused << appInfo->GetAppBuildID(info.mAppInfoAppBuildID);
+ Unused << appInfo->GetSourceURL(info.mAppInfoSourceURL);
+ }
+
+ ProcessInfo processInfo = {}; // Aggregate-init all fields to false/zeroes.
+ if (NS_SUCCEEDED(CollectProcessInfo(processInfo))) {
+ info.mProcessInfoCpuCount = processInfo.cpuCount;
+ info.mProcessInfoCpuCores = processInfo.cpuCores;
+ }
+
+ return info;
+}
+
+// Implemented in platform-specific cpps, to add object properties describing
+// the units of CPU measurements in samples.
+static void StreamMetaPlatformSampleUnits(PSLockRef aLock,
+ SpliceableJSONWriter& aWriter);
+
+static void StreamMetaJSCustomObject(
+ PSLockRef aLock, SpliceableJSONWriter& aWriter, bool aIsShuttingDown,
+ const PreRecordedMetaInformation& aPreRecordedMetaInformation) {
+ MOZ_RELEASE_ASSERT(CorePS::Exists() && ActivePS::Exists(aLock));
+
+ aWriter.IntProperty("version", 22);
+
+ // The "startTime" field holds the number of milliseconds since midnight
+ // January 1, 1970 GMT. This grotty code computes (Now - (Now -
+ // ProcessStartTime)) to convert CorePS::ProcessStartTime() into that form.
+ TimeDuration delta = TimeStamp::NowUnfuzzed() - CorePS::ProcessStartTime();
+ aWriter.DoubleProperty(
+ "startTime",
+ static_cast<double>(PR_Now() / 1000.0 - delta.ToMilliseconds()));
+
+ // Write the shutdownTime field. Unlike startTime, shutdownTime is not an
+ // absolute time stamp: It's relative to startTime. This is consistent with
+ // all other (non-"startTime") times anywhere in the profile JSON.
+ if (aIsShuttingDown) {
+ aWriter.DoubleProperty("shutdownTime", profiler_time());
+ } else {
+ aWriter.NullProperty("shutdownTime");
+ }
+
+ aWriter.StartArrayProperty("categories");
+ StreamCategories(aWriter);
+ aWriter.EndArray();
+
+ aWriter.StartArrayProperty("markerSchema");
+ StreamMarkerSchema(aWriter);
+ aWriter.EndArray();
+
+ ActivePS::WriteActiveConfiguration(aLock, aWriter,
+ MakeStringSpan("configuration"));
+
+ if (!NS_IsMainThread()) {
+ // Leave the rest of the properties out if we're not on the main thread.
+ // At the moment, the only case in which this function is called on a
+ // background thread is if we're in a content process and are going to
+ // send this profile to the parent process. In that case, the parent
+ // process profile's "meta" object already has the rest of the properties,
+ // and the parent process profile is dumped on that process's main thread.
+ return;
+ }
+
+ aWriter.DoubleProperty("interval", ActivePS::Interval(aLock));
+ aWriter.IntProperty("stackwalk", ActivePS::FeatureStackWalk(aLock));
+
+#ifdef DEBUG
+ aWriter.IntProperty("debug", 1);
+#else
+ aWriter.IntProperty("debug", 0);
+#endif
+
+ aWriter.IntProperty("gcpoison", JS::IsGCPoisoning() ? 1 : 0);
+
+ aWriter.IntProperty("asyncstack", aPreRecordedMetaInformation.mAsyncStacks);
+
+ aWriter.IntProperty("processType", XRE_GetProcessType());
+
+ aWriter.StringProperty("updateChannel", MOZ_STRINGIFY(MOZ_UPDATE_CHANNEL));
+
+ if (!aPreRecordedMetaInformation.mHttpPlatform.IsEmpty()) {
+ aWriter.StringProperty("platform",
+ aPreRecordedMetaInformation.mHttpPlatform);
+ }
+ if (!aPreRecordedMetaInformation.mHttpOscpu.IsEmpty()) {
+ aWriter.StringProperty("oscpu", aPreRecordedMetaInformation.mHttpOscpu);
+ }
+ if (!aPreRecordedMetaInformation.mHttpMisc.IsEmpty()) {
+ aWriter.StringProperty("misc", aPreRecordedMetaInformation.mHttpMisc);
+ }
+
+ if (!aPreRecordedMetaInformation.mRuntimeABI.IsEmpty()) {
+ aWriter.StringProperty("abi", aPreRecordedMetaInformation.mRuntimeABI);
+ }
+ if (!aPreRecordedMetaInformation.mRuntimeToolkit.IsEmpty()) {
+ aWriter.StringProperty("toolkit",
+ aPreRecordedMetaInformation.mRuntimeToolkit);
+ }
+
+ if (!aPreRecordedMetaInformation.mAppInfoProduct.IsEmpty()) {
+ aWriter.StringProperty("product",
+ aPreRecordedMetaInformation.mAppInfoProduct);
+ }
+ if (!aPreRecordedMetaInformation.mAppInfoAppBuildID.IsEmpty()) {
+ aWriter.StringProperty("appBuildID",
+ aPreRecordedMetaInformation.mAppInfoAppBuildID);
+ }
+ if (!aPreRecordedMetaInformation.mAppInfoSourceURL.IsEmpty()) {
+ aWriter.StringProperty("sourceURL",
+ aPreRecordedMetaInformation.mAppInfoSourceURL);
+ }
+
+ if (aPreRecordedMetaInformation.mProcessInfoCpuCores > 0) {
+ aWriter.IntProperty("physicalCPUs",
+ aPreRecordedMetaInformation.mProcessInfoCpuCores);
+ }
+ if (aPreRecordedMetaInformation.mProcessInfoCpuCount > 0) {
+ aWriter.IntProperty("logicalCPUs",
+ aPreRecordedMetaInformation.mProcessInfoCpuCount);
+ }
+
+ aWriter.StartObjectProperty("sampleUnits");
+ {
+ aWriter.StringProperty("time", "ms");
+ aWriter.StringProperty("eventDelay", "ms");
+ StreamMetaPlatformSampleUnits(aLock, aWriter);
+ }
+ aWriter.EndObject();
+
+ // We should avoid collecting extension metadata for profiler while XPCOM is
+ // shutting down since it cannot create a new ExtensionPolicyService.
+ if (!gXPCOMShuttingDown) {
+ aWriter.StartObjectProperty("extensions");
+ {
+ {
+ JSONSchemaWriter schema(aWriter);
+ schema.WriteField("id");
+ schema.WriteField("name");
+ schema.WriteField("baseURL");
+ }
+
+ aWriter.StartArrayProperty("data");
+ {
+ nsTArray<RefPtr<WebExtensionPolicy>> exts;
+ ExtensionPolicyService::GetSingleton().GetAll(exts);
+
+ for (auto& ext : exts) {
+ aWriter.StartArrayElement(JSONWriter::SingleLineStyle);
+
+ nsAutoString id;
+ ext->GetId(id);
+ aWriter.StringElement(NS_ConvertUTF16toUTF8(id));
+
+ aWriter.StringElement(NS_ConvertUTF16toUTF8(ext->Name()));
+
+ auto url = ext->GetURL(u""_ns);
+ if (url.isOk()) {
+ aWriter.StringElement(NS_ConvertUTF16toUTF8(url.unwrap()));
+ }
+
+ aWriter.EndArray();
+ }
+ }
+ aWriter.EndArray();
+ }
+ aWriter.EndObject();
+ }
+}
+
+static void StreamPages(PSLockRef aLock, SpliceableJSONWriter& aWriter) {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+ ActivePS::DiscardExpiredPages(aLock);
+ for (const auto& page : ActivePS::ProfiledPages(aLock)) {
+ page->StreamJSON(aWriter);
+ }
+}
+
+#if defined(GP_OS_android)
+template <int N>
+static bool StartsWith(const nsACString& string, const char (&prefix)[N]) {
+ if (N - 1 > string.Length()) {
+ return false;
+ }
+ return memcmp(string.Data(), prefix, N - 1) == 0;
+}
+
+static JS::ProfilingCategoryPair InferJavaCategory(nsACString& aName) {
+ if (aName.EqualsLiteral("android.os.MessageQueue.nativePollOnce()")) {
+ return JS::ProfilingCategoryPair::IDLE;
+ }
+ if (aName.EqualsLiteral("java.lang.Object.wait()")) {
+ return JS::ProfilingCategoryPair::JAVA_BLOCKED;
+ }
+ if (StartsWith(aName, "android.") || StartsWith(aName, "com.android.")) {
+ return JS::ProfilingCategoryPair::JAVA_ANDROID;
+ }
+ if (StartsWith(aName, "mozilla.") || StartsWith(aName, "org.mozilla.")) {
+ return JS::ProfilingCategoryPair::JAVA_MOZILLA;
+ }
+ if (StartsWith(aName, "java.") || StartsWith(aName, "sun.") ||
+ StartsWith(aName, "com.sun.")) {
+ return JS::ProfilingCategoryPair::JAVA_LANGUAGE;
+ }
+ if (StartsWith(aName, "kotlin.") || StartsWith(aName, "kotlinx.")) {
+ return JS::ProfilingCategoryPair::JAVA_KOTLIN;
+ }
+ if (StartsWith(aName, "androidx.")) {
+ return JS::ProfilingCategoryPair::JAVA_ANDROIDX;
+ }
+ return JS::ProfilingCategoryPair::OTHER;
+}
+
+static void CollectJavaThreadProfileData(ProfileBuffer& aProfileBuffer) {
+ // locked_profiler_start uses sample count is 1000 for Java thread.
+ // This entry size is enough now, but we might have to estimate it
+ // if we can customize it
+
+ // Pass the samples
+ // FIXME(bug 1618560): We are currently only profiling the Android UI thread.
+ constexpr int threadId = 0;
+ int sampleId = 0;
+ while (true) {
+ // Gets the data from the Android UI thread only.
+ double sampleTime = java::GeckoJavaSampler::GetSampleTime(sampleId);
+ if (sampleTime == 0.0) {
+ break;
+ }
+
+ aProfileBuffer.AddThreadIdEntry(threadId);
+ aProfileBuffer.AddEntry(ProfileBufferEntry::Time(sampleTime));
+ int frameId = 0;
+ while (true) {
+ jni::String::LocalRef frameName =
+ java::GeckoJavaSampler::GetFrameName(sampleId, frameId++);
+ if (!frameName) {
+ break;
+ }
+ nsCString frameNameString = frameName->ToCString();
+
+ auto categoryPair = InferJavaCategory(frameNameString);
+ aProfileBuffer.CollectCodeLocation("", frameNameString.get(), 0, 0,
+ Nothing(), Nothing(),
+ Some(categoryPair));
+ }
+ sampleId++;
+ }
+
+ // Pass the markers now
+ while (true) {
+ // Gets the data from the Android UI thread only.
+ java::GeckoJavaSampler::Marker::LocalRef marker =
+ java::GeckoJavaSampler::PollNextMarker();
+ if (!marker) {
+ // All markers are transferred.
+ break;
+ }
+
+ // Get all the marker information from the Java thread using JNI.
+ nsCString markerName = marker->GetMarkerName()->ToCString();
+ jni::String::LocalRef text = marker->GetMarkerText();
+ TimeStamp startTime =
+ CorePS::ProcessStartTime() +
+ TimeDuration::FromMilliseconds(marker->GetStartTime());
+
+ double endTimeMs = marker->GetEndTime();
+ // A marker can be either a duration with start and end, or a point in time
+ // with only startTime. If endTime is 0, this means it's a point in time.
+ TimeStamp endTime = endTimeMs == 0
+ ? startTime
+ : CorePS::ProcessStartTime() +
+ TimeDuration::FromMilliseconds(endTimeMs);
+ MarkerTiming timing = endTimeMs == 0
+ ? MarkerTiming::InstantAt(startTime)
+ : MarkerTiming::Interval(startTime, endTime);
+
+ if (!text) {
+ // This marker doesn't have a text.
+ AddMarkerToBuffer(aProfileBuffer.UnderlyingChunkedBuffer(), markerName,
+ geckoprofiler::category::JAVA_ANDROID,
+ {MarkerThreadId(threadId), std::move(timing)});
+ } else {
+ // This marker has a text.
+ AddMarkerToBuffer(aProfileBuffer.UnderlyingChunkedBuffer(), markerName,
+ geckoprofiler::category::JAVA_ANDROID,
+ {MarkerThreadId(threadId), std::move(timing)},
+ geckoprofiler::markers::TextMarker{},
+ text->ToCString());
+ }
+ }
+}
+#endif
+
+UniquePtr<ProfilerCodeAddressService>
+profiler_code_address_service_for_presymbolication() {
+ static const bool preSymbolicate = []() {
+ const char* symbolicate = getenv("MOZ_PROFILER_SYMBOLICATE");
+ return symbolicate && symbolicate[0] != '\0';
+ }();
+ return preSymbolicate ? MakeUnique<ProfilerCodeAddressService>() : nullptr;
+}
+
+static void locked_profiler_stream_json_for_this_process(
+ PSLockRef aLock, SpliceableJSONWriter& aWriter, double aSinceTime,
+ const PreRecordedMetaInformation& aPreRecordedMetaInformation,
+ bool aIsShuttingDown, ProfilerCodeAddressService* aService) {
+ LOG("locked_profiler_stream_json_for_this_process");
+
+ MOZ_RELEASE_ASSERT(CorePS::Exists() && ActivePS::Exists(aLock));
+
+ AUTO_PROFILER_STATS(locked_profiler_stream_json_for_this_process);
+
+ const double collectionStartMs = profiler_time();
+
+ ProfileBuffer& buffer = ActivePS::Buffer(aLock);
+
+ // If there is a set "Window length", discard older data.
+ Maybe<double> durationS = ActivePS::Duration(aLock);
+ if (durationS.isSome()) {
+ const double durationStartMs = collectionStartMs - *durationS * 1000;
+ buffer.DiscardSamplesBeforeTime(durationStartMs);
+ }
+
+ // Put shared library info
+ aWriter.StartArrayProperty("libs");
+ AppendSharedLibraries(aWriter);
+ aWriter.EndArray();
+
+ // Put meta data
+ aWriter.StartObjectProperty("meta");
+ {
+ StreamMetaJSCustomObject(aLock, aWriter, aIsShuttingDown,
+ aPreRecordedMetaInformation);
+ }
+ aWriter.EndObject();
+
+ // Put page data
+ aWriter.StartArrayProperty("pages");
+ { StreamPages(aLock, aWriter); }
+ aWriter.EndArray();
+
+ buffer.StreamProfilerOverheadToJSON(aWriter, CorePS::ProcessStartTime(),
+ aSinceTime);
+ buffer.StreamCountersToJSON(aWriter, CorePS::ProcessStartTime(), aSinceTime);
+
+ // Data of TaskTracer doesn't belong in the circular buffer.
+ if (ActivePS::FeatureTaskTracer(aLock)) {
+ aWriter.StartObjectProperty("tasktracer");
+ StreamTaskTracer(aLock, aWriter);
+ aWriter.EndObject();
+ }
+
+ // Lists the samples for each thread profile
+ aWriter.StartArrayProperty("threads");
+ {
+ ActivePS::DiscardExpiredDeadProfiledThreads(aLock);
+ Vector<std::pair<RegisteredThread*, ProfiledThreadData*>> threads =
+ ActivePS::ProfiledThreads(aLock);
+ for (auto& thread : threads) {
+ RegisteredThread* registeredThread = thread.first;
+ JSContext* cx =
+ registeredThread ? registeredThread->GetJSContext() : nullptr;
+ ProfiledThreadData* profiledThreadData = thread.second;
+ profiledThreadData->StreamJSON(
+ buffer, cx, aWriter, CorePS::ProcessName(aLock),
+ CorePS::ETLDplus1(aLock), CorePS::ProcessStartTime(), aSinceTime,
+ ActivePS::FeatureJSTracer(aLock), aService);
+ }
+
+#if defined(GP_OS_android)
+ if (ActivePS::FeatureJava(aLock)) {
+ // We are allocating it chunk by chunk. So this will not allocate 64 MiB
+ // at once. This size should be more than enough for java threads.
+ // This buffer is being created for each process but Android has
+ // relatively less processes compared to desktop, so it's okay here.
+ mozilla::ProfileBufferChunkManagerWithLocalLimit chunkManager(
+ 64 * 1024 * 1024, 1024 * 1024);
+ ProfileChunkedBuffer bufferManager(
+ ProfileChunkedBuffer::ThreadSafety::WithoutMutex, chunkManager);
+ ProfileBuffer javaBuffer(bufferManager);
+ CollectJavaThreadProfileData(javaBuffer);
+
+ // Set the thread id of the Android UI thread to be 0.
+ // We are profiling the Android UI thread twice: Both from the C++ side
+ // (as a regular C++ profiled thread with the name "AndroidUI"), and from
+ // the Java side. The thread's actual ID is mozilla::jni::GetUIThreadId(),
+ // but since we're using that ID for the C++ side, we need to pick another
+ // tid that doesn't conflict with it for the Java side. So we just use 0.
+ // Once we add support for profiling of other java threads, we'll have to
+ // get their thread id and name via JNI.
+ RefPtr<ThreadInfo> threadInfo = new ThreadInfo(
+ "AndroidUI (JVM)", 0, false, CorePS::ProcessStartTime());
+ ProfiledThreadData profiledThreadData(threadInfo, nullptr);
+ profiledThreadData.StreamJSON(
+ javaBuffer, nullptr, aWriter, CorePS::ProcessName(aLock),
+ CorePS::ETLDplus1(aLock), CorePS::ProcessStartTime(), aSinceTime,
+ ActivePS::FeatureJSTracer(aLock), nullptr);
+ }
+#endif
+
+ UniquePtr<char[]> baseProfileThreads =
+ ActivePS::MoveBaseProfileThreads(aLock);
+ if (baseProfileThreads) {
+ aWriter.Splice(MakeStringSpan(baseProfileThreads.get()));
+ }
+ }
+ aWriter.EndArray();
+
+ if (ActivePS::FeatureJSTracer(aLock)) {
+ aWriter.StartArrayProperty("jsTracerDictionary");
+ {
+ JS::AutoTraceLoggerLockGuard lockGuard;
+ // Collect Event Dictionary
+ JS::TraceLoggerDictionaryBuffer collectionBuffer(lockGuard);
+ while (collectionBuffer.NextChunk()) {
+ aWriter.StringElement(
+ MakeStringSpan(collectionBuffer.internalBuffer()));
+ }
+ }
+ aWriter.EndArray();
+ }
+
+ aWriter.StartArrayProperty("pausedRanges");
+ { buffer.StreamPausedRangesToJSON(aWriter, aSinceTime); }
+ aWriter.EndArray();
+
+ const double collectionEndMs = profiler_time();
+
+ // Record timestamps for the collection into the buffer, so that consumers
+ // know why we didn't collect any samples for its duration.
+ // We put these entries into the buffer after we've collected the profile,
+ // so they'll be visible for the *next* profile collection (if they haven't
+ // been overwritten due to buffer wraparound by then).
+ buffer.AddEntry(ProfileBufferEntry::CollectionStart(collectionStartMs));
+ buffer.AddEntry(ProfileBufferEntry::CollectionEnd(collectionEndMs));
+}
+
+bool profiler_stream_json_for_this_process(
+ SpliceableJSONWriter& aWriter, double aSinceTime, bool aIsShuttingDown,
+ ProfilerCodeAddressService* aService) {
+ LOG("profiler_stream_json_for_this_process");
+
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ const auto preRecordedMetaInformation = PreRecordMetaInformation();
+
+ PSAutoLock lock(gPSMutex);
+
+ if (!ActivePS::Exists(lock)) {
+ return false;
+ }
+
+ locked_profiler_stream_json_for_this_process(lock, aWriter, aSinceTime,
+ preRecordedMetaInformation,
+ aIsShuttingDown, aService);
+ return true;
+}
+
+// END saving/streaming code
+////////////////////////////////////////////////////////////////////////
+
+static char FeatureCategory(uint32_t aFeature) {
+ if (aFeature & DefaultFeatures()) {
+ if (aFeature & AvailableFeatures()) {
+ return 'D';
+ }
+ return 'd';
+ }
+
+ if (aFeature & StartupExtraDefaultFeatures()) {
+ if (aFeature & AvailableFeatures()) {
+ return 'S';
+ }
+ return 's';
+ }
+
+ if (aFeature & AvailableFeatures()) {
+ return '-';
+ }
+ return 'x';
+}
+
+// Doesn't exist if aExitCode is 0
+static void PrintUsageThenExit(int aExitCode) {
+ MOZ_RELEASE_ASSERT(NS_IsMainThread());
+
+ printf(
+ "\n"
+ "Profiler environment variable usage:\n"
+ "\n"
+ " MOZ_PROFILER_HELP\n"
+ " If set to any value, prints this message.\n"
+ " Use MOZ_BASE_PROFILER_HELP for BaseProfiler help.\n"
+ "\n"
+ " MOZ_LOG\n"
+ " Enables logging. The levels of logging available are\n"
+ " 'prof:3' (least verbose), 'prof:4', 'prof:5' (most verbose).\n"
+ "\n"
+ " MOZ_PROFILER_STARTUP\n"
+ " If set to any value other than '' or '0'/'N'/'n', starts the\n"
+ " profiler immediately on start-up.\n"
+ " Useful if you want profile code that runs very early.\n"
+ "\n"
+ " MOZ_PROFILER_STARTUP_ENTRIES=<%u..%u>\n"
+ " If MOZ_PROFILER_STARTUP is set, specifies the number of entries per\n"
+ " process in the profiler's circular buffer when the profiler is first\n"
+ " started.\n"
+ " If unset, the platform default is used:\n"
+ " %u entries per process, or %u when MOZ_PROFILER_STARTUP is set.\n"
+ " (%u bytes per entry -> %u or %u total bytes per process)\n"
+ "\n"
+ " MOZ_PROFILER_STARTUP_DURATION=<1..>\n"
+ " If MOZ_PROFILER_STARTUP is set, specifies the maximum life time of\n"
+ " entries in the the profiler's circular buffer when the profiler is\n"
+ " first started, in seconds.\n"
+ " If unset, the life time of the entries will only be restricted by\n"
+ " MOZ_PROFILER_STARTUP_ENTRIES (or its default value), and no\n"
+ " additional time duration restriction will be applied.\n"
+ "\n"
+ " MOZ_PROFILER_STARTUP_INTERVAL=<1..%d>\n"
+ " If MOZ_PROFILER_STARTUP is set, specifies the sample interval,\n"
+ " measured in milliseconds, when the profiler is first started.\n"
+ " If unset, the platform default is used.\n"
+ "\n"
+ " MOZ_PROFILER_STARTUP_FEATURES_BITFIELD=<Number>\n"
+ " If MOZ_PROFILER_STARTUP is set, specifies the profiling features, as\n"
+ " the integer value of the features bitfield.\n"
+ " If unset, the value from MOZ_PROFILER_STARTUP_FEATURES is used.\n"
+ "\n"
+ " MOZ_PROFILER_STARTUP_FEATURES=<Features>\n"
+ " If MOZ_PROFILER_STARTUP is set, specifies the profiling features, as\n"
+ " a comma-separated list of strings.\n"
+ " Ignored if MOZ_PROFILER_STARTUP_FEATURES_BITFIELD is set.\n"
+ " If unset, the platform default is used.\n"
+ "\n"
+ " Features: (x=unavailable, D/d=default/unavailable,\n"
+ " S/s=MOZ_PROFILER_STARTUP extra default/unavailable)\n",
+ unsigned(ActivePS::scMinimumBufferEntries),
+ unsigned(ActivePS::scMaximumBufferEntries),
+ unsigned(PROFILER_DEFAULT_ENTRIES.Value()),
+ unsigned(PROFILER_DEFAULT_STARTUP_ENTRIES.Value()),
+ unsigned(scBytesPerEntry),
+ unsigned(PROFILER_DEFAULT_ENTRIES.Value() * scBytesPerEntry),
+ unsigned(PROFILER_DEFAULT_STARTUP_ENTRIES.Value() * scBytesPerEntry),
+ PROFILER_MAX_INTERVAL);
+
+#define PRINT_FEATURE(n_, str_, Name_, desc_) \
+ printf(" %c %7u: \"%s\" (%s)\n", FeatureCategory(ProfilerFeature::Name_), \
+ ProfilerFeature::Name_, str_, desc_);
+
+ PROFILER_FOR_EACH_FEATURE(PRINT_FEATURE)
+
+#undef PRINT_FEATURE
+
+ printf(
+ " - \"default\" (All above D+S defaults)\n"
+ "\n"
+ " MOZ_PROFILER_STARTUP_FILTERS=<Filters>\n"
+ " If MOZ_PROFILER_STARTUP is set, specifies the thread filters, as a\n"
+ " comma-separated list of strings. A given thread will be sampled if\n"
+ " any of the filters is a case-insensitive substring of the thread\n"
+ " name. If unset, a default is used.\n"
+ "\n"
+ " MOZ_PROFILER_SHUTDOWN\n"
+ " If set, the profiler saves a profile to the named file on shutdown.\n"
+ "\n"
+ " MOZ_PROFILER_SYMBOLICATE\n"
+ " If set, the profiler will pre-symbolicate profiles.\n"
+ " *Note* This will add a significant pause when gathering data, and\n"
+ " is intended mainly for local development.\n"
+ "\n"
+ " MOZ_PROFILER_LUL_TEST\n"
+ " If set to any value, runs LUL unit tests at startup.\n"
+ "\n"
+ " This platform %s native unwinding.\n"
+ "\n",
+#if defined(HAVE_NATIVE_UNWIND)
+ "supports"
+#else
+ "does not support"
+#endif
+ );
+
+ if (aExitCode != 0) {
+ exit(aExitCode);
+ }
+}
+
+////////////////////////////////////////////////////////////////////////
+// BEGIN Sampler
+
+#if defined(GP_OS_linux) || defined(GP_OS_android)
+struct SigHandlerCoordinator;
+#endif
+
+// Sampler performs setup and teardown of the state required to sample with the
+// profiler. Sampler may exist when ActivePS is not present.
+//
+// SuspendAndSampleAndResumeThread must only be called from a single thread,
+// and must not sample the thread it is being called from. A separate Sampler
+// instance must be used for each thread which wants to capture samples.
+
+// WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
+//
+// With the exception of SamplerThread, all Sampler objects must be Disable-d
+// before releasing the lock which was used to create them. This avoids races
+// on linux with the SIGPROF signal handler.
+
+class Sampler {
+ public:
+ // Sets up the profiler such that it can begin sampling.
+ explicit Sampler(PSLockRef aLock);
+
+ // Disable the sampler, restoring it to its previous state. This must be
+ // called once, and only once, before the Sampler is destroyed.
+ void Disable(PSLockRef aLock);
+
+ // This method suspends and resumes the samplee thread. It calls the passed-in
+ // function-like object aProcessRegs (passing it a populated |const
+ // Registers&| arg) while the samplee thread is suspended. Note that
+ // the aProcessRegs function must be very careful not to do anything that
+ // requires a lock, since we may have interrupted the thread at any point.
+ // As an example, you can't call TimeStamp::Now() since on windows it
+ // takes a lock on the performance counter.
+ //
+ // Func must be a function-like object of type `void()`.
+ template <typename Func>
+ void SuspendAndSampleAndResumeThread(
+ PSLockRef aLock, const RegisteredThread& aRegisteredThread,
+ const TimeStamp& aNow, const Func& aProcessRegs);
+
+ private:
+#if defined(GP_OS_linux) || defined(GP_OS_android) || defined(GP_OS_freebsd)
+ // Used to restore the SIGPROF handler when ours is removed.
+ struct sigaction mOldSigprofHandler;
+
+ // This process' ID. Needed as an argument for tgkill in
+ // SuspendAndSampleAndResumeThread.
+ int mMyPid;
+
+ // The sampler thread's ID. Used to assert that it is not sampling itself,
+ // which would lead to deadlock.
+ int mSamplerTid;
+
+ public:
+ // This is the one-and-only variable used to communicate between the sampler
+ // thread and the samplee thread's signal handler. It's static because the
+ // samplee thread's signal handler is static.
+ static struct SigHandlerCoordinator* sSigHandlerCoordinator;
+#endif
+};
+
+// END Sampler
+////////////////////////////////////////////////////////////////////////
+
+// Platform-specific function that retrieves per-thread CPU measurements.
+static RunningTimes GetThreadRunningTimesDiff(
+ PSLockRef aLock, const RegisteredThread& aRegisteredThread);
+
+// Template function to be used by `GetThreadRunningTimesDiff()` (unless some
+// platform has a better way to achieve this).
+// It help perform CPU measurements and tie them to a timestamp, such that the
+// measurements and timestamp are very close together.
+// This is necessary, because the relative CPU usage is computed by dividing
+// consecutive CPU measurements by their timestamp difference; if there was an
+// unexpected big gap, it could skew this computation and produce impossible
+// spikes that would hide the rest of the data. See bug 1685938 for more info.
+// Note that this may call the measurement function more than once; it is
+// assumed to normally be fast.
+// This was verified experimentally, but there is currently no regression
+// testing for it; see follow-up bug 1687402.
+template <typename GetCPURunningTimesFunction>
+RunningTimes GetRunningTimesWithTightTimestamp(
+ GetCPURunningTimesFunction&& aGetCPURunningTimesFunction) {
+ // Once per process, compute a threshold over which running times and their
+ // timestamp is considered too far apart.
+ static const TimeDuration scMaxRunningTimesReadDuration = [&]() {
+ // Run the main CPU measurements + timestamp a number of times and capture
+ // their durations.
+ constexpr int loops = 128;
+ TimeDuration durations[loops];
+ RunningTimes runningTimes;
+ TimeStamp before = TimeStamp::NowUnfuzzed();
+ for (int i = 0; i < loops; ++i) {
+ AUTO_PROFILER_STATS(GetRunningTimes_MaxRunningTimesReadDuration);
+ aGetCPURunningTimesFunction(runningTimes);
+ const TimeStamp after = TimeStamp::NowUnfuzzed();
+ durations[i] = after - before;
+ before = after;
+ }
+ // Move median duration to the middle.
+ std::nth_element(&durations[0], &durations[loops / 2], &durations[loops]);
+ // Use median*8 as cut-off point.
+ // Typical durations should be around a microsecond, the cut-off should then
+ // be around 10 microseconds, well below the expected minimum inter-sample
+ // interval (observed as a few milliseconds), so overall this should keep
+ // cpu/interval spikes
+ return durations[loops / 2] * 8;
+ }();
+
+ // Record CPU measurements between two timestamps.
+ RunningTimes runningTimes;
+ TimeStamp before = TimeStamp::NowUnfuzzed();
+ aGetCPURunningTimesFunction(runningTimes);
+ TimeStamp after = TimeStamp::NowUnfuzzed();
+ // In most cases, the above should be quick enough. But if not, repeat:
+ while (MOZ_UNLIKELY(after - before > scMaxRunningTimesReadDuration)) {
+ AUTO_PROFILER_STATS(GetRunningTimes_REDO);
+ before = after;
+ aGetCPURunningTimesFunction(runningTimes);
+ after = TimeStamp::NowUnfuzzed();
+ }
+ // Finally, record the closest timestamp just after the final measurement was
+ // done. This must stay *after* the CPU measurements.
+ runningTimes.SetPostMeasurementTimeStamp(after);
+
+ return runningTimes;
+}
+
+////////////////////////////////////////////////////////////////////////
+// BEGIN SamplerThread
+
+// The sampler thread controls sampling and runs whenever the profiler is
+// active. It periodically runs through all registered threads, finds those
+// that should be sampled, then pauses and samples them.
+
+class SamplerThread {
+ public:
+ // Creates a sampler thread, but doesn't start it.
+ SamplerThread(PSLockRef aLock, uint32_t aActivityGeneration,
+ double aIntervalMilliseconds);
+ ~SamplerThread();
+
+ // This runs on (is!) the sampler thread.
+ void Run();
+
+ // This runs on the main thread.
+ void Stop(PSLockRef aLock);
+
+ void AppendPostSamplingCallback(PSLockRef, PostSamplingCallback&& aCallback) {
+ // We are under lock, so it's safe to just modify the list pointer.
+ // Also this means the sampler has not started its run yet, so any callback
+ // added now will be invoked at the end of the next loop; this guarantees
+ // that the callback will be invoked after at least one full sampling loop.
+ mPostSamplingCallbackList = MakeUnique<PostSamplingCallbackListItem>(
+ std::move(mPostSamplingCallbackList), std::move(aCallback));
+ }
+
+ private:
+ // Item containing a post-sampling callback, and a tail-list of more items.
+ // Using a linked list means no need to move items when adding more, and
+ // "stealing" the whole list is one pointer move.
+ struct PostSamplingCallbackListItem {
+ UniquePtr<PostSamplingCallbackListItem> mPrev;
+ PostSamplingCallback mCallback;
+
+ PostSamplingCallbackListItem(UniquePtr<PostSamplingCallbackListItem> aPrev,
+ PostSamplingCallback&& aCallback)
+ : mPrev(std::move(aPrev)), mCallback(std::move(aCallback)) {}
+ };
+
+ [[nodiscard]] UniquePtr<PostSamplingCallbackListItem>
+ TakePostSamplingCallbacks(PSLockRef) {
+ return std::move(mPostSamplingCallbackList);
+ }
+
+ static void InvokePostSamplingCallbacks(
+ UniquePtr<PostSamplingCallbackListItem> aCallbacks,
+ SamplingState aSamplingState) {
+ if (!aCallbacks) {
+ return;
+ }
+ // We want to drill down to the last element in this list, which is the
+ // oldest one, so that we invoke them in FIFO order.
+ // We don't expect many callbacks, so it's safe to recurse. Note that we're
+ // moving-from the UniquePtr, so the tail will implicitly get destroyed.
+ InvokePostSamplingCallbacks(std::move(aCallbacks->mPrev), aSamplingState);
+ // We are going to destroy this item, so we can safely move-from the
+ // callback before calling it (in case it has an rvalue-ref-qualified call
+ // operator).
+ std::move(aCallbacks->mCallback)(aSamplingState);
+ // It may be tempting for a future maintainer to change aCallbacks into an
+ // rvalue reference; this will remind them not to do that!
+ static_assert(
+ std::is_same_v<decltype(aCallbacks),
+ UniquePtr<PostSamplingCallbackListItem>>,
+ "We need to capture the list by-value, to implicitly destroy it");
+ }
+
+ // This suspends the calling thread for the given number of microseconds.
+ // Best effort timing.
+ void SleepMicro(uint32_t aMicroseconds);
+
+ // The sampler used to suspend and sample threads.
+ Sampler mSampler;
+
+ // The activity generation, for detecting when the sampler thread must stop.
+ const uint32_t mActivityGeneration;
+
+ // The interval between samples, measured in microseconds.
+ const int mIntervalMicroseconds;
+
+ // The OS-specific handle for the sampler thread.
+#if defined(GP_OS_windows)
+ HANDLE mThread;
+#elif defined(GP_OS_darwin) || defined(GP_OS_linux) || \
+ defined(GP_OS_android) || defined(GP_OS_freebsd)
+ pthread_t mThread;
+#endif
+
+ // Post-sampling callbacks are kept in a simple linked list, which will be
+ // stolen by the sampler thread at the end of its next run.
+ UniquePtr<PostSamplingCallbackListItem> mPostSamplingCallbackList;
+
+ SamplerThread(const SamplerThread&) = delete;
+ void operator=(const SamplerThread&) = delete;
+};
+
+// [[nodiscard]] static
+bool ActivePS::AppendPostSamplingCallback(PSLockRef aLock,
+ PostSamplingCallback&& aCallback) {
+ if (!sInstance || !sInstance->mSamplerThread) {
+ return false;
+ }
+ sInstance->mSamplerThread->AppendPostSamplingCallback(aLock,
+ std::move(aCallback));
+ return true;
+}
+
+// This function is required because we need to create a SamplerThread within
+// ActivePS's constructor, but SamplerThread is defined after ActivePS. It
+// could probably be removed by moving some code around.
+static SamplerThread* NewSamplerThread(PSLockRef aLock, uint32_t aGeneration,
+ double aInterval) {
+ return new SamplerThread(aLock, aGeneration, aInterval);
+}
+
+// This function is the sampler thread. This implementation is used for all
+// targets.
+void SamplerThread::Run() {
+ PR_SetCurrentThreadName("SamplerThread");
+
+ // Features won't change during this SamplerThread's lifetime, so we can read
+ // them once and store them locally.
+ const uint32_t features = []() -> uint32_t {
+ PSAutoLock lock(gPSMutex);
+ if (!ActivePS::Exists(lock)) {
+ // If there is no active profiler, it doesn't matter what we return,
+ // because this thread will exit before any feature is used.
+ return 0;
+ }
+ return ActivePS::Features(lock);
+ }();
+
+ // Not *no*-stack-sampling means we do want stack sampling.
+ const bool stackSampling = !ProfilerFeature::HasNoStackSampling(features);
+
+ const bool cpuUtilization = ProfilerFeature::HasCPUUtilization(features);
+
+ // Use local ProfileBuffer and underlying buffer to capture the stack.
+ // (This is to avoid touching the CorePS::CoreBuffer lock while a thread is
+ // suspended, because that thread could be working with the CorePS::CoreBuffer
+ // as well.)
+ mozilla::ProfileBufferChunkManagerSingle localChunkManager(
+ ProfileBufferChunkManager::scExpectedMaximumStackSize);
+ ProfileChunkedBuffer localBuffer(
+ ProfileChunkedBuffer::ThreadSafety::WithoutMutex, localChunkManager);
+ ProfileBuffer localProfileBuffer(localBuffer);
+
+ // Will be kept between collections, to know what each collection does.
+ auto previousState = localBuffer.GetState();
+
+ // This will be set inside the loop, from inside the lock scope, to capture
+ // all callbacks added before that, but none after the lock is released.
+ UniquePtr<PostSamplingCallbackListItem> postSamplingCallbacks;
+ // This will be set inside the loop, before invoking callbacks outside.
+ SamplingState samplingState{};
+
+ const TimeDuration sampleInterval =
+ TimeDuration::FromMicroseconds(mIntervalMicroseconds);
+ const uint32_t minimumIntervalSleepUs =
+ static_cast<uint32_t>(mIntervalMicroseconds / 4);
+
+ // This is the scheduled time at which each sampling loop should start.
+ // It will determine the ideal next sampling start by adding the expected
+ // interval, unless when sampling runs late -- See end of while() loop.
+ TimeStamp scheduledSampleStart = TimeStamp::NowUnfuzzed();
+
+ while (true) {
+ const TimeStamp sampleStart = TimeStamp::NowUnfuzzed();
+
+ // This scope is for |lock|. It ends before we sleep below.
+ {
+ // There should be no local callbacks left from a previous loop.
+ MOZ_ASSERT(!postSamplingCallbacks);
+
+ PSAutoLock lock(gPSMutex);
+ TimeStamp lockAcquired = TimeStamp::NowUnfuzzed();
+
+ // Move all the post-sampling callbacks locally, so that new ones cannot
+ // sneak in between the end of the lock scope and the invocation after it.
+ postSamplingCallbacks = TakePostSamplingCallbacks(lock);
+
+ if (!ActivePS::Exists(lock)) {
+ // Exit the `while` loop, including the lock scope, before invoking
+ // callbacks and returning.
+ samplingState = SamplingState::JustStopped;
+ break;
+ }
+
+ // At this point profiler_stop() might have been called, and
+ // profiler_start() might have been called on another thread. If this
+ // happens the generation won't match.
+ if (ActivePS::Generation(lock) != mActivityGeneration) {
+ samplingState = SamplingState::JustStopped;
+ // Exit the `while` loop, including the lock scope, before invoking
+ // callbacks and returning.
+ break;
+ }
+
+ ActivePS::ClearExpiredExitProfiles(lock);
+
+ TimeStamp expiredMarkersCleaned = TimeStamp::NowUnfuzzed();
+
+ if (!ActivePS::IsSamplingPaused(lock)) {
+ double sampleStartDeltaMs =
+ (sampleStart - CorePS::ProcessStartTime()).ToMilliseconds();
+ ProfileBuffer& buffer = ActivePS::Buffer(lock);
+
+ // handle per-process generic counters
+ const Vector<BaseProfilerCount*>& counters = CorePS::Counters(lock);
+ for (auto& counter : counters) {
+ // create Buffer entries for each counter
+ buffer.AddEntry(ProfileBufferEntry::CounterId(counter));
+ buffer.AddEntry(ProfileBufferEntry::Time(sampleStartDeltaMs));
+ // XXX support keyed maps of counts
+ // In the future, we'll support keyed counters - for example, counters
+ // with a key which is a thread ID. For "simple" counters we'll just
+ // use a key of 0.
+ int64_t count;
+ uint64_t number;
+ counter->Sample(count, number);
+ buffer.AddEntry(ProfileBufferEntry::CounterKey(0));
+ buffer.AddEntry(ProfileBufferEntry::Count(count));
+ if (number) {
+ buffer.AddEntry(ProfileBufferEntry::Number(number));
+ }
+ }
+ TimeStamp countersSampled = TimeStamp::NowUnfuzzed();
+
+ if (stackSampling || cpuUtilization) {
+ samplingState = SamplingState::SamplingCompleted;
+
+ const Vector<LiveProfiledThreadData>& liveThreads =
+ ActivePS::LiveProfiledThreads(lock);
+
+ for (auto& thread : liveThreads) {
+ RegisteredThread* registeredThread = thread.mRegisteredThread;
+ ProfiledThreadData* profiledThreadData =
+ thread.mProfiledThreadData.get();
+ RefPtr<ThreadInfo> info = registeredThread->Info();
+
+ const RunningTimes runningTimesDiff = [&]() {
+ if (!cpuUtilization) {
+ // If we don't need CPU measurements, we only need a timestamp.
+ return RunningTimes(TimeStamp::NowUnfuzzed());
+ }
+ return GetThreadRunningTimesDiff(lock, *registeredThread);
+ }();
+
+ const TimeStamp& now = runningTimesDiff.PostMeasurementTimeStamp();
+ double threadSampleDeltaMs =
+ (now - CorePS::ProcessStartTime()).ToMilliseconds();
+
+ // If the thread is asleep and has been sampled before in the same
+ // sleep episode, find and copy the previous sample, as that's
+ // cheaper than taking a new sample.
+ // However we're using current running times (instead of copying the
+ // old ones) because some work could have happened.
+ if (registeredThread->RacyRegisteredThread()
+ .CanDuplicateLastSampleDueToSleep()) {
+ const bool dup_ok = ActivePS::Buffer(lock).DuplicateLastSample(
+ info->ThreadId(), threadSampleDeltaMs,
+ profiledThreadData->LastSample(), runningTimesDiff);
+ if (dup_ok) {
+ continue;
+ }
+ }
+
+ AUTO_PROFILER_STATS(gecko_SamplerThread_Run_DoPeriodicSample);
+
+ // Add the thread ID now, so we know its position in the main
+ // buffer, which is used by some JS data.
+ // (DoPeriodicSample only knows about the temporary local buffer.)
+ uint64_t samplePos =
+ buffer.AddThreadIdEntry(registeredThread->Info()->ThreadId());
+ profiledThreadData->LastSample() = Some(samplePos);
+
+ // Also add the time, so it's always there after the thread ID, as
+ // expected by the parser. (Other stack data is optional.)
+ buffer.AddEntry(ProfileBufferEntry::TimeBeforeCompactStack(
+ threadSampleDeltaMs));
+
+ Maybe<double> unresponsiveDuration_ms;
+
+ // If we have RunningTimes data, store it before the CompactStack.
+ // Note: It is not stored inside the CompactStack so that it doesn't
+ // get incorrectly duplicated when the thread is sleeping.
+ if (!runningTimesDiff.IsEmpty()) {
+ CorePS::CoreBuffer().PutObjects(
+ ProfileBufferEntry::Kind::RunningTimes, runningTimesDiff);
+ }
+
+ if (stackSampling) {
+ // Suspend the thread and collect its stack data in the local
+ // buffer.
+ mSampler.SuspendAndSampleAndResumeThread(
+ lock, *registeredThread, now,
+ [&](const Registers& aRegs, const TimeStamp& aNow) {
+ DoPeriodicSample(lock, *registeredThread, aRegs, samplePos,
+ localProfileBuffer);
+
+ // For "eventDelay", we want the input delay - but if
+ // there are no events in the input queue (or even if there
+ // are), we're interested in how long the delay *would* be
+ // for an input event now, which would be the time to finish
+ // the current event + the delay caused by any events
+ // already in the input queue (plus any High priority
+ // events). Events at lower priorities (in a
+ // PrioritizedEventQueue) than Input count for input delay
+ // only for the duration that they're running, since when
+ // they finish, any queued input event would run.
+ //
+ // Unless we record the time state of all events and queue
+ // states at all times, this is hard to precisely calculate,
+ // but we can approximate it well in post-processing with
+ // RunningEventDelay and RunningEventStart.
+ //
+ // RunningEventDelay is the time duration the event was
+ // queued before starting execution. RunningEventStart is
+ // the time the event started. (Note: since we care about
+ // Input event delays on MainThread, for
+ // PrioritizedEventQueues we return 0 for RunningEventDelay
+ // if the currently running event has a lower priority than
+ // Input (since Input events won't queue behind them).
+ //
+ // To directly measure this we would need to record the time
+ // at which the newest event currently in each queue at time
+ // X (the sample time) finishes running. This of course
+ // would require looking into the future, or recording all
+ // this state and then post-processing it later. If we were
+ // to trace every event start and end we could do this, but
+ // it would have significant overhead to do so (and buffer
+ // usage). From a recording of RunningEventDelays and
+ // RunningEventStarts we can infer the actual delay:
+ //
+ // clang-format off
+ // Event queue: <tail> D : C : B : A <head>
+ // Time inserted (ms): 40 : 20 : 10 : 0
+ // Run Time (ms): 30 : 100 : 40 : 30
+ //
+ // 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
+ // [A||||||||||||]
+ // ----------[B|||||||||||||||||]
+ // -------------------------[C|||||||||||||||||||||||||||||||||||||||||||||||]
+ // -----------------------------------------------------------------[D|||||||||...]
+ //
+ // Calculate the delay of a new event added at time t: (run every sample)
+ // TimeSinceRunningEventBlockedInputEvents = RunningEventDelay + (now - RunningEventStart);
+ // effective_submission = now - TimeSinceRunningEventBlockedInputEvents;
+ // delta = (now - last_sample_time);
+ // last_sample_time = now;
+ // for (t=effective_submission to now) {
+ // delay[t] += delta;
+ // }
+ //
+ // Can be reduced in overhead by:
+ // TimeSinceRunningEventBlockedInputEvents = RunningEventDelay + (now - RunningEventStart);
+ // effective_submission = now - TimeSinceRunningEventBlockedInputEvents;
+ // if (effective_submission != last_submission) {
+ // delta = (now - last_submision);
+ // // this loop should be made to match each sample point in the range
+ // // intead of assuming 1ms sampling as this pseudocode does
+ // for (t=last_submission to effective_submission-1) {
+ // delay[t] += delta;
+ // delta -= 1; // assumes 1ms; adjust as needed to match for()
+ // }
+ // last_submission = effective_submission;
+ // }
+ //
+ // Time Head of queue Running Event RunningEventDelay Delay of Effective Started Calc (submission->now add 10ms) Final
+ // hypothetical Submission Running @ result
+ // event E
+ // 0 Empty A 0 30 0 0 @0=10 30
+ // 10 B A 0 60 0 0 @0=20, @10=10 60
+ // 20 B A 0 150 0 0 @0=30, @10=20, @20=10 150
+ // 30 C B 20 140 10 30 @10=20, @20=10, @30=0 140
+ // 40 C B 20 160 @10=30, @20=20... 160
+ // 50 C B 20 150 150
+ // 60 C B 20 140 @10=50, @20=40... 140
+ // 70 D C 50 130 20 70 @20=50, @30=40... 130
+ // ...
+ // 160 D C 50 40 @20=140, @30=130... 40
+ // 170 <empty> D 140 30 40 @40=140, @50=130... (rounding) 30
+ // 180 <empty> D 140 20 40 @40=150 20
+ // 190 <empty> D 140 10 40 @40=160 10
+ // 200 <empty> <empty> 0 0 NA 0
+ //
+ // Function Delay(t) = the time between t and the time at which a hypothetical
+ // event e would start executing, if e was enqueued at time t.
+ //
+ // Delay(-1) = 0 // Before A was enqueued. No wait time, can start running
+ // // instantly.
+ // Delay(0) = 30 // The hypothetical event e got enqueued just after A got
+ // // enqueued. It can start running at 30, when A is done.
+ // Delay(5) = 25
+ // Delay(10) = 60 // Can start running at 70, after both A and B are done.
+ // Delay(19) = 51
+ // Delay(20) = 150 // Can start running at 170, after A, B & C.
+ // Delay(25) = 145
+ // Delay(30) = 170 // Can start running at 200, after A, B, C & D.
+ // Delay(120) = 80
+ // Delay(200) = 0 // (assuming nothing was enqueued after D)
+ //
+ // For every event that gets enqueued, the Delay time will go up by the
+ // event's running time at the time at which the event is enqueued.
+ // The Delay function will be a sawtooth of the following shape:
+ //
+ // |\ |...
+ // | \ |
+ // |\ | \ |
+ // | \ | \ |
+ // |\ | \ | \ |
+ // |\ | \| \| \ |
+ // | \| \ |
+ // _| \____|
+ //
+ //
+ // A more complex example with a PrioritizedEventQueue:
+ //
+ // Event queue: <tail> D : C : B : A <head>
+ // Time inserted (ms): 40 : 20 : 10 : 0
+ // Run Time (ms): 30 : 100 : 40 : 30
+ // Priority: Input: Norm: Norm: Norm
+ //
+ // 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
+ // [A||||||||||||]
+ // ----------[B|||||||||||||||||]
+ // ----------------------------------------[C|||||||||||||||||||||||||||||||||||||||||||||||]
+ // ---------------[D||||||||||||]
+ //
+ //
+ // Time Head of queue Running Event RunningEventDelay Delay of Effective Started Calc (submission->now add 10ms) Final
+ // hypothetical Submission Running @ result
+ // event
+ // 0 Empty A 0 30 0 0 @0=10 30
+ // 10 B A 0 20 0 0 @0=20, @10=10 20
+ // 20 B A 0 10 0 0 @0=30, @10=20, @20=10 10
+ // 30 C B 0 40 30 30 @30=10 40
+ // 40 C B 0 60 30 @40=10, @30=20 60
+ // 50 C B 0 50 30 @50=10, @40=20, @30=30 50
+ // 60 C B 0 40 30 @60=10, @50=20, @40=30, @30=40 40
+ // 70 C D 30 30 40 70 @60=20, @50=30, @40=40 30
+ // 80 C D 30 20 40 70 ...@50=40, @40=50 20
+ // 90 C D 30 10 40 70 ...@60=40, @50=50, @40=60 10
+ // 100 <empty> C 0 100 100 100 @100=10 100
+ // 110 <empty> C 0 90 100 100 @110=10, @100=20 90
+
+ //
+ // For PrioritizedEventQueue, the definition of the Delay(t) function is adjusted: the hypothetical event e has Input priority.
+ // Delay(-1) = 0 // Before A was enqueued. No wait time, can start running
+ // // instantly.
+ // Delay(0) = 30 // The hypothetical input event e got enqueued just after A got
+ // // enqueued. It can start running at 30, when A is done.
+ // Delay(5) = 25
+ // Delay(10) = 20
+ // Delay(25) = 5 // B has been queued, but e does not need to wait for B because e has Input priority and B does not.
+ // // So e can start running at 30, when A is done.
+ // Delay(30) = 40 // Can start running at 70, after B is done.
+ // Delay(40) = 60 // Can start at 100, after B and D are done (D is Input Priority)
+ // Delay(80) = 20
+ // Delay(100) = 100 // Wait for C to finish
+
+ // clang-format on
+ //
+ // Alternatively we could insert (recycled instead of
+ // allocated/freed) input events at every sample period
+ // (1ms...), and use them to back-calculate the delay. This
+ // might also be somewhat expensive, and would require
+ // guessing at the maximum delay, which would likely be in
+ // the seconds, and so you'd need 1000's of pre-allocated
+ // events per queue per thread - so there would be a memory
+ // impact as well.
+
+ TimeDuration currentEventDelay;
+ TimeDuration currentEventRunning;
+ registeredThread->GetRunningEventDelay(
+ aNow, currentEventDelay, currentEventRunning);
+
+ // Note: eventDelay is a different definition of
+ // responsiveness than the 16ms event injection.
+
+ // Don't suppress 0's for now; that can be a future
+ // optimization. We probably want one zero to be stored
+ // before we start suppressing, which would be more
+ // complex.
+ unresponsiveDuration_ms =
+ Some(currentEventDelay.ToMilliseconds() +
+ currentEventRunning.ToMilliseconds());
+ });
+
+ // If we got eventDelay data, store it before the CompactStack.
+ // Note: It is not stored inside the CompactStack so that it
+ // doesn't get incorrectly duplicated when the thread is sleeping.
+ if (unresponsiveDuration_ms.isSome()) {
+ CorePS::CoreBuffer().PutObjects(
+ ProfileBufferEntry::Kind::UnresponsiveDurationMs,
+ *unresponsiveDuration_ms);
+ }
+ }
+
+ // There *must* be a CompactStack after a TimeBeforeCompactStack;
+ // but note that other entries may have been concurrently inserted
+ // between the TimeBeforeCompactStack above and now. If the captured
+ // sample from `DoPeriodicSample` is complete, copy it into the
+ // global buffer, otherwise add an empty one to satisfy the parser
+ // that expects one.
+ auto state = localBuffer.GetState();
+ if (NS_WARN_IF(state.mFailedPutBytes !=
+ previousState.mFailedPutBytes)) {
+ LOG("Stack sample too big for local storage, failed to store %u "
+ "bytes",
+ unsigned(state.mFailedPutBytes -
+ previousState.mFailedPutBytes));
+ // There *must* be a CompactStack after a TimeBeforeCompactStack,
+ // even an empty one.
+ CorePS::CoreBuffer().PutObjects(
+ ProfileBufferEntry::Kind::CompactStack,
+ UniquePtr<ProfileChunkedBuffer>(nullptr));
+ } else if (state.mRangeEnd - previousState.mRangeEnd >=
+ *CorePS::CoreBuffer().BufferLength()) {
+ LOG("Stack sample too big for profiler storage, needed %u bytes",
+ unsigned(state.mRangeEnd - previousState.mRangeEnd));
+ // There *must* be a CompactStack after a TimeBeforeCompactStack,
+ // even an empty one.
+ CorePS::CoreBuffer().PutObjects(
+ ProfileBufferEntry::Kind::CompactStack,
+ UniquePtr<ProfileChunkedBuffer>(nullptr));
+ } else {
+ CorePS::CoreBuffer().PutObjects(
+ ProfileBufferEntry::Kind::CompactStack, localBuffer);
+ }
+
+ // Clean up for the next run.
+ localBuffer.Clear();
+ previousState = localBuffer.GetState();
+ }
+ } else {
+ samplingState = SamplingState::NoStackSamplingCompleted;
+ }
+
+#if defined(USE_LUL_STACKWALK)
+ // The LUL unwind object accumulates frame statistics. Periodically we
+ // should poke it to give it a chance to print those statistics. This
+ // involves doing I/O (fprintf, __android_log_print, etc.) and so
+ // can't safely be done from the critical section inside
+ // SuspendAndSampleAndResumeThread, which is why it is done here.
+ CorePS::Lul(lock)->MaybeShowStats();
+#endif
+ TimeStamp threadsSampled = TimeStamp::NowUnfuzzed();
+
+ {
+ AUTO_PROFILER_STATS(Sampler_FulfillChunkRequests);
+ ActivePS::FulfillChunkRequests(lock);
+ }
+
+ buffer.CollectOverheadStats(sampleStartDeltaMs,
+ lockAcquired - sampleStart,
+ expiredMarkersCleaned - lockAcquired,
+ countersSampled - expiredMarkersCleaned,
+ threadsSampled - countersSampled);
+ } else {
+ samplingState = SamplingState::SamplingPaused;
+ }
+ }
+ // gPSMutex is not held after this point.
+
+ // Invoke end-of-sampling callbacks outside of the locked scope.
+ InvokePostSamplingCallbacks(std::move(postSamplingCallbacks),
+ samplingState);
+
+ ProfilerChild::ProcessPendingUpdate();
+
+ // We expect the next sampling loop to start `sampleInterval` after this
+ // loop here was scheduled to start.
+ scheduledSampleStart += sampleInterval;
+
+ // Try to sleep until we reach that next scheduled time.
+ const TimeStamp beforeSleep = TimeStamp::NowUnfuzzed();
+ if (scheduledSampleStart >= beforeSleep) {
+ // There is still time before the next scheduled sample time.
+ const uint32_t sleepTimeUs = static_cast<uint32_t>(
+ (scheduledSampleStart - beforeSleep).ToMicroseconds());
+ if (sleepTimeUs >= minimumIntervalSleepUs) {
+ SleepMicro(sleepTimeUs);
+ } else {
+ // If we're too close to that time, sleep the minimum amount of time.
+ // Note that the next scheduled start is not shifted, so at the end of
+ // the next loop, sleep may again be adjusted to get closer to schedule.
+ SleepMicro(minimumIntervalSleepUs);
+ }
+ } else {
+ // This sampling loop ended after the next sampling should have started!
+ // There is little point to try and keep up to schedule now, it would
+ // require more work, while it's likely we're late because the system is
+ // already busy. Try and restart a normal schedule from now.
+ scheduledSampleStart = beforeSleep + sampleInterval;
+ SleepMicro(static_cast<uint32_t>(sampleInterval.ToMicroseconds()));
+ }
+ }
+
+ // End of `while` loop. We can only be here from a `break` inside the loop.
+ InvokePostSamplingCallbacks(std::move(postSamplingCallbacks), samplingState);
+}
+
+// We #include these files directly because it means those files can use
+// declarations from this file trivially. These provide target-specific
+// implementations of all SamplerThread methods except Run().
+#if defined(GP_OS_windows)
+# include "platform-win32.cpp"
+#elif defined(GP_OS_darwin)
+# include "platform-macos.cpp"
+#elif defined(GP_OS_linux) || defined(GP_OS_android) || defined(GP_OS_freebsd)
+# include "platform-linux-android.cpp"
+#else
+# error "bad platform"
+#endif
+
+UniquePlatformData AllocPlatformData(int aThreadId) {
+ return UniquePlatformData(new PlatformData(aThreadId));
+}
+
+void PlatformDataDestructor::operator()(PlatformData* aData) { delete aData; }
+
+// END SamplerThread
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+// BEGIN externally visible functions
+
+MOZ_DEFINE_MALLOC_SIZE_OF(GeckoProfilerMallocSizeOf)
+
+NS_IMETHODIMP
+GeckoProfilerReporter::CollectReports(nsIHandleReportCallback* aHandleReport,
+ nsISupports* aData, bool aAnonymize) {
+ MOZ_RELEASE_ASSERT(NS_IsMainThread());
+
+ size_t profSize = 0;
+ size_t lulSize = 0;
+
+ {
+ PSAutoLock lock(gPSMutex);
+
+ if (CorePS::Exists()) {
+ CorePS::AddSizeOf(lock, GeckoProfilerMallocSizeOf, profSize, lulSize);
+ }
+
+ if (ActivePS::Exists(lock)) {
+ profSize += ActivePS::SizeOf(lock, GeckoProfilerMallocSizeOf);
+ }
+ }
+
+ MOZ_COLLECT_REPORT(
+ "explicit/profiler/profiler-state", KIND_HEAP, UNITS_BYTES, profSize,
+ "Memory used by the Gecko Profiler's global state (excluding memory used "
+ "by LUL).");
+
+#if defined(USE_LUL_STACKWALK)
+ MOZ_COLLECT_REPORT(
+ "explicit/profiler/lul", KIND_HEAP, UNITS_BYTES, lulSize,
+ "Memory used by LUL, a stack unwinder used by the Gecko Profiler.");
+#endif
+
+ return NS_OK;
+}
+
+NS_IMPL_ISUPPORTS(GeckoProfilerReporter, nsIMemoryReporter)
+
+static uint32_t ParseFeature(const char* aFeature, bool aIsStartup) {
+ if (strcmp(aFeature, "default") == 0) {
+ return (aIsStartup ? (DefaultFeatures() | StartupExtraDefaultFeatures())
+ : DefaultFeatures()) &
+ AvailableFeatures();
+ }
+
+#define PARSE_FEATURE_BIT(n_, str_, Name_, desc_) \
+ if (strcmp(aFeature, str_) == 0) { \
+ return ProfilerFeature::Name_; \
+ }
+
+ PROFILER_FOR_EACH_FEATURE(PARSE_FEATURE_BIT)
+
+#undef PARSE_FEATURE_BIT
+
+ printf("\nUnrecognized feature \"%s\".\n\n", aFeature);
+ // Since we may have an old feature we don't implement anymore, don't exit
+ PrintUsageThenExit(0);
+ return 0;
+}
+
+uint32_t ParseFeaturesFromStringArray(const char** aFeatures,
+ uint32_t aFeatureCount,
+ bool aIsStartup /* = false */) {
+ uint32_t features = 0;
+ for (size_t i = 0; i < aFeatureCount; i++) {
+ features |= ParseFeature(aFeatures[i], aIsStartup);
+ }
+ return features;
+}
+
+static bool IsRegisteredThreadInRegisteredThreadsList(
+ PSLockRef aLock, RegisteredThread* aThread) {
+ const auto& registeredThreads = CorePS::RegisteredThreads(aLock);
+ for (const auto& registeredThread : registeredThreads) {
+ if (registeredThread.get() == aThread) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static ProfilingStack* locked_register_thread(PSLockRef aLock,
+ const char* aName,
+ void* aStackTop) {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ VTUNE_REGISTER_THREAD(aName);
+
+ if (!TLSRegisteredThread::IsTLSInited()) {
+ return nullptr;
+ }
+
+ RefPtr<ThreadInfo> info =
+ new ThreadInfo(aName, profiler_current_thread_id(), NS_IsMainThread());
+ UniquePtr<RegisteredThread> registeredThread = MakeUnique<RegisteredThread>(
+ info, NS_GetCurrentThreadNoCreate(), aStackTop);
+
+ TLSRegisteredThread::SetRegisteredThreadAndAutoProfilerLabelProfilingStack(
+ aLock, registeredThread.get());
+
+ if (ActivePS::Exists(aLock) && ActivePS::ShouldProfileThread(aLock, info)) {
+ registeredThread->RacyRegisteredThread().SetIsBeingProfiled(true);
+ nsCOMPtr<nsIEventTarget> eventTarget = registeredThread->GetEventTarget();
+ ProfiledThreadData* profiledThreadData = ActivePS::AddLiveProfiledThread(
+ aLock, registeredThread.get(),
+ MakeUnique<ProfiledThreadData>(info, eventTarget));
+
+ if (ActivePS::FeatureJS(aLock)) {
+ // This StartJSSampling() call is on-thread, so we can poll manually to
+ // start JS sampling immediately.
+ registeredThread->StartJSSampling(ActivePS::JSFlags(aLock));
+ registeredThread->PollJSSampling();
+ if (registeredThread->GetJSContext()) {
+ profiledThreadData->NotifyReceivedJSContext(
+ ActivePS::Buffer(aLock).BufferRangeEnd());
+ }
+ }
+ }
+
+ MOZ_RELEASE_ASSERT(TLSRegisteredThread::RegisteredThread(aLock),
+ "TLS should be set when registering thread");
+ MOZ_RELEASE_ASSERT(
+ registeredThread == TLSRegisteredThread::RegisteredThread(aLock),
+ "TLS should be set as expected when registering thread");
+
+ ProfilingStack* profilingStack =
+ &registeredThread->RacyRegisteredThread().ProfilingStack();
+
+ CorePS::AppendRegisteredThread(aLock, std::move(registeredThread));
+
+ return profilingStack;
+}
+
+static void NotifyObservers(const char* aTopic,
+ nsISupports* aSubject = nullptr) {
+ if (!NS_IsMainThread()) {
+ // Dispatch a task to the main thread that notifies observers.
+ // If NotifyObservers is called both on and off the main thread within a
+ // short time, the order of the notifications can be different from the
+ // order of the calls to NotifyObservers.
+ // Getting the order 100% right isn't that important at the moment, because
+ // these notifications are only observed in the parent process, where the
+ // profiler_* functions are currently only called on the main thread.
+ nsCOMPtr<nsISupports> subject = aSubject;
+ NS_DispatchToMainThread(NS_NewRunnableFunction(
+ "NotifyObservers", [=] { NotifyObservers(aTopic, subject); }));
+ return;
+ }
+
+ if (nsCOMPtr<nsIObserverService> os = services::GetObserverService()) {
+ os->NotifyObservers(aSubject, aTopic, nullptr);
+ }
+}
+
+static void NotifyProfilerStarted(const PowerOfTwo32& aCapacity,
+ const Maybe<double>& aDuration,
+ double aInterval, uint32_t aFeatures,
+ const char** aFilters, uint32_t aFilterCount,
+ uint64_t aActiveBrowsingContextID) {
+ nsTArray<nsCString> filtersArray;
+ for (size_t i = 0; i < aFilterCount; ++i) {
+ filtersArray.AppendElement(aFilters[i]);
+ }
+
+ nsCOMPtr<nsIProfilerStartParams> params = new nsProfilerStartParams(
+ aCapacity.Value(), aDuration, aInterval, aFeatures,
+ std::move(filtersArray), aActiveBrowsingContextID);
+
+ ProfilerParent::ProfilerStarted(params);
+ NotifyObservers("profiler-started", params);
+}
+
+static void locked_profiler_start(PSLockRef aLock, PowerOfTwo32 aCapacity,
+ double aInterval, uint32_t aFeatures,
+ const char** aFilters, uint32_t aFilterCount,
+ uint64_t aActiveBrowsingContextID,
+ const Maybe<double>& aDuration);
+
+// This basically duplicates AutoProfilerLabel's constructor.
+static void* MozGlueLabelEnter(const char* aLabel, const char* aDynamicString,
+ void* aSp) {
+ ProfilingStackOwner* profilingStackOwner =
+ AutoProfilerLabel::ProfilingStackOwnerTLS::Get();
+ if (profilingStackOwner) {
+ profilingStackOwner->ProfilingStack().pushLabelFrame(
+ aLabel, aDynamicString, aSp, JS::ProfilingCategoryPair::OTHER);
+ }
+ return profilingStackOwner;
+}
+
+// This basically duplicates AutoProfilerLabel's destructor.
+static void MozGlueLabelExit(void* aProfilingStackOwner) {
+ if (aProfilingStackOwner) {
+ reinterpret_cast<ProfilingStackOwner*>(aProfilingStackOwner)
+ ->ProfilingStack()
+ .pop();
+ }
+}
+
+static Vector<const char*> SplitAtCommas(const char* aString,
+ UniquePtr<char[]>& aStorage) {
+ size_t len = strlen(aString);
+ aStorage = MakeUnique<char[]>(len + 1);
+ PodCopy(aStorage.get(), aString, len + 1);
+
+ // Iterate over all characters in aStorage and split at commas, by
+ // overwriting commas with the null char.
+ Vector<const char*> array;
+ size_t currentElementStart = 0;
+ for (size_t i = 0; i <= len; i++) {
+ if (aStorage[i] == ',') {
+ aStorage[i] = '\0';
+ }
+ if (aStorage[i] == '\0') {
+ MOZ_RELEASE_ASSERT(array.append(&aStorage[currentElementStart]));
+ currentElementStart = i + 1;
+ }
+ }
+ return array;
+}
+
+void profiler_init_threadmanager() {
+ LOG("profiler_init_threadmanager");
+
+ PSAutoLock lock(gPSMutex);
+ RegisteredThread* registeredThread =
+ TLSRegisteredThread::RegisteredThread(lock);
+ if (registeredThread && !registeredThread->GetEventTarget()) {
+ registeredThread->ResetMainThread(NS_GetCurrentThreadNoCreate());
+ }
+}
+
+void profiler_init(void* aStackTop) {
+ LOG("profiler_init");
+
+ scProfilerMainThreadId = profiler_current_thread_id();
+
+ VTUNE_INIT();
+
+ MOZ_RELEASE_ASSERT(!CorePS::Exists());
+
+ if (getenv("MOZ_PROFILER_HELP")) {
+ PrintUsageThenExit(1); // terminates execution
+ }
+
+ // This must be before any TLS access (e.g.: Thread registration, labels...).
+ TLSRegisteredThread::Init();
+
+ SharedLibraryInfo::Initialize();
+
+ uint32_t features = DefaultFeatures() & AvailableFeatures();
+
+ UniquePtr<char[]> filterStorage;
+
+ Vector<const char*> filters;
+ MOZ_RELEASE_ASSERT(filters.append("GeckoMain"));
+ MOZ_RELEASE_ASSERT(filters.append("Compositor"));
+ MOZ_RELEASE_ASSERT(filters.append("Renderer"));
+ MOZ_RELEASE_ASSERT(filters.append("DOM Worker"));
+
+ PowerOfTwo32 capacity = PROFILER_DEFAULT_ENTRIES;
+ Maybe<double> duration = Nothing();
+ double interval = PROFILER_DEFAULT_INTERVAL;
+
+ {
+ PSAutoLock lock(gPSMutex);
+
+ // We've passed the possible failure point. Instantiate CorePS, which
+ // indicates that the profiler has initialized successfully.
+ CorePS::Create(lock);
+
+ // profiler_init implicitly registers this thread as main thread.
+ Unused << locked_register_thread(lock, kMainThreadName, aStackTop);
+
+ // Platform-specific initialization.
+ PlatformInit(lock);
+
+#ifdef MOZ_TASK_TRACER
+ tasktracer::InitTaskTracer();
+#endif
+
+#if defined(GP_OS_android)
+ if (jni::IsAvailable()) {
+ GeckoJavaSampler::Init();
+ }
+#endif
+
+ // (Linux-only) We could create CorePS::mLul and read unwind info into it
+ // at this point. That would match the lifetime implied by destruction of
+ // it in profiler_shutdown() just below. However, that gives a big delay on
+ // startup, even if no profiling is actually to be done. So, instead, it is
+ // created on demand at the first call to PlatformStart().
+
+ const char* startupEnv = getenv("MOZ_PROFILER_STARTUP");
+ if (!startupEnv || startupEnv[0] == '\0' ||
+ ((startupEnv[0] == '0' || startupEnv[0] == 'N' ||
+ startupEnv[0] == 'n') &&
+ startupEnv[1] == '\0')) {
+ return;
+ }
+
+ LOG("- MOZ_PROFILER_STARTUP is set");
+
+ // Startup default capacity may be different.
+ capacity = PROFILER_DEFAULT_STARTUP_ENTRIES;
+
+ const char* startupCapacity = getenv("MOZ_PROFILER_STARTUP_ENTRIES");
+ if (startupCapacity && startupCapacity[0] != '\0') {
+ errno = 0;
+ long capacityLong = strtol(startupCapacity, nullptr, 10);
+ // `long` could be 32 or 64 bits, so we force a 64-bit comparison with
+ // the maximum 32-bit signed number (as more than that is clamped down to
+ // 2^31 anyway).
+ if (errno == 0 && capacityLong > 0 &&
+ static_cast<uint64_t>(capacityLong) <=
+ static_cast<uint64_t>(INT32_MAX)) {
+ capacity = PowerOfTwo32(ActivePS::ClampToAllowedEntries(
+ static_cast<uint32_t>(capacityLong)));
+ LOG("- MOZ_PROFILER_STARTUP_ENTRIES = %u", unsigned(capacity.Value()));
+ } else {
+ LOG("- MOZ_PROFILER_STARTUP_ENTRIES not a valid integer: %s",
+ startupCapacity);
+ PrintUsageThenExit(1);
+ }
+ }
+
+ const char* startupDuration = getenv("MOZ_PROFILER_STARTUP_DURATION");
+ if (startupDuration && startupDuration[0] != '\0') {
+ errno = 0;
+ double durationVal = PR_strtod(startupDuration, nullptr);
+ if (errno == 0 && durationVal >= 0.0) {
+ if (durationVal > 0.0) {
+ duration = Some(durationVal);
+ }
+ LOG("- MOZ_PROFILER_STARTUP_DURATION = %f", durationVal);
+ } else {
+ LOG("- MOZ_PROFILER_STARTUP_DURATION not a valid float: %s",
+ startupDuration);
+ PrintUsageThenExit(1);
+ }
+ }
+
+ const char* startupInterval = getenv("MOZ_PROFILER_STARTUP_INTERVAL");
+ if (startupInterval && startupInterval[0] != '\0') {
+ errno = 0;
+ interval = PR_strtod(startupInterval, nullptr);
+ if (errno == 0 && interval > 0.0 && interval <= PROFILER_MAX_INTERVAL) {
+ LOG("- MOZ_PROFILER_STARTUP_INTERVAL = %f", interval);
+ } else {
+ LOG("- MOZ_PROFILER_STARTUP_INTERVAL not a valid float: %s",
+ startupInterval);
+ PrintUsageThenExit(1);
+ }
+ }
+
+ features |= StartupExtraDefaultFeatures() & AvailableFeatures();
+
+ const char* startupFeaturesBitfield =
+ getenv("MOZ_PROFILER_STARTUP_FEATURES_BITFIELD");
+ if (startupFeaturesBitfield && startupFeaturesBitfield[0] != '\0') {
+ errno = 0;
+ features = strtol(startupFeaturesBitfield, nullptr, 10);
+ if (errno == 0 && features != 0) {
+ LOG("- MOZ_PROFILER_STARTUP_FEATURES_BITFIELD = %d", features);
+ } else {
+ LOG("- MOZ_PROFILER_STARTUP_FEATURES_BITFIELD not a valid integer: %s",
+ startupFeaturesBitfield);
+ PrintUsageThenExit(1);
+ }
+ } else {
+ const char* startupFeatures = getenv("MOZ_PROFILER_STARTUP_FEATURES");
+ if (startupFeatures && startupFeatures[0] != '\0') {
+ // Interpret startupFeatures as a list of feature strings, separated by
+ // commas.
+ UniquePtr<char[]> featureStringStorage;
+ Vector<const char*> featureStringArray =
+ SplitAtCommas(startupFeatures, featureStringStorage);
+ features = ParseFeaturesFromStringArray(featureStringArray.begin(),
+ featureStringArray.length(),
+ /* aIsStartup */ true);
+ LOG("- MOZ_PROFILER_STARTUP_FEATURES = %d", features);
+ }
+ }
+
+ const char* startupFilters = getenv("MOZ_PROFILER_STARTUP_FILTERS");
+ if (startupFilters && startupFilters[0] != '\0') {
+ filters = SplitAtCommas(startupFilters, filterStorage);
+ LOG("- MOZ_PROFILER_STARTUP_FILTERS = %s", startupFilters);
+ }
+
+ locked_profiler_start(lock, capacity, interval, features, filters.begin(),
+ filters.length(), 0, duration);
+ }
+
+#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
+ // Start counting memory allocations (outside of lock because this may call
+ // profiler_add_sampled_counter which would attempt to take the lock.)
+ mozilla::profiler::install_memory_hooks();
+#endif
+
+ // We do this with gPSMutex unlocked. The comment in profiler_stop() explains
+ // why.
+ NotifyProfilerStarted(capacity, duration, interval, features, filters.begin(),
+ filters.length(), 0);
+}
+
+static void locked_profiler_save_profile_to_file(
+ PSLockRef aLock, const char* aFilename,
+ const PreRecordedMetaInformation& aPreRecordedMetaInformation,
+ bool aIsShuttingDown);
+
+static SamplerThread* locked_profiler_stop(PSLockRef aLock);
+
+void profiler_shutdown(IsFastShutdown aIsFastShutdown) {
+ LOG("profiler_shutdown");
+
+ VTUNE_SHUTDOWN();
+
+ MOZ_RELEASE_ASSERT(NS_IsMainThread());
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ const auto preRecordedMetaInformation = PreRecordMetaInformation();
+
+ ProfilerParent::ProfilerWillStopIfStarted();
+
+ // If the profiler is active we must get a handle to the SamplerThread before
+ // ActivePS is destroyed, in order to delete it.
+ SamplerThread* samplerThread = nullptr;
+ {
+ PSAutoLock lock(gPSMutex);
+
+ // Save the profile on shutdown if requested.
+ if (ActivePS::Exists(lock)) {
+ const char* filename = getenv("MOZ_PROFILER_SHUTDOWN");
+ if (filename) {
+ locked_profiler_save_profile_to_file(lock, filename,
+ preRecordedMetaInformation,
+ /* aIsShuttingDown */ true);
+ }
+ if (aIsFastShutdown == IsFastShutdown::Yes) {
+ return;
+ }
+
+ samplerThread = locked_profiler_stop(lock);
+ } else if (aIsFastShutdown == IsFastShutdown::Yes) {
+ return;
+ }
+
+ CorePS::Destroy(lock);
+
+ // We just destroyed CorePS and the ThreadInfos it contains, so we can
+ // clear this thread's TLSRegisteredThread.
+ TLSRegisteredThread::ResetRegisteredThread(lock);
+ // We can also clear the AutoProfilerLabel's ProfilingStack because the
+ // main thread should not use labels after profiler_shutdown.
+ TLSRegisteredThread::ResetAutoProfilerLabelProfilingStack(lock);
+
+#ifdef MOZ_TASK_TRACER
+ tasktracer::ShutdownTaskTracer();
+#endif
+ }
+
+ // We do these operations with gPSMutex unlocked. The comments in
+ // profiler_stop() explain why.
+ if (samplerThread) {
+ ProfilerParent::ProfilerStopped();
+ NotifyObservers("profiler-stopped");
+ delete samplerThread;
+ }
+}
+
+static bool WriteProfileToJSONWriter(SpliceableChunkedJSONWriter& aWriter,
+ double aSinceTime, bool aIsShuttingDown,
+ ProfilerCodeAddressService* aService) {
+ LOG("WriteProfileToJSONWriter");
+
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ aWriter.Start();
+ {
+ if (!profiler_stream_json_for_this_process(aWriter, aSinceTime,
+ aIsShuttingDown, aService)) {
+ return false;
+ }
+
+ // Don't include profiles from other processes because this is a
+ // synchronous function.
+ aWriter.StartArrayProperty("processes");
+ aWriter.EndArray();
+ }
+ aWriter.End();
+ return true;
+}
+
+void profiler_set_process_name(const nsACString& aProcessName,
+ const nsACString* aETLDplus1) {
+ LOG("profiler_set_process_name(\"%s\", \"%s\")", aProcessName.Data(),
+ aETLDplus1 ? aETLDplus1->Data() : "<none>");
+ PSAutoLock lock(gPSMutex);
+ CorePS::SetProcessName(lock, aProcessName);
+ if (aETLDplus1) {
+ CorePS::SetETLDplus1(lock, *aETLDplus1);
+ }
+}
+
+UniquePtr<char[]> profiler_get_profile(double aSinceTime,
+ bool aIsShuttingDown) {
+ LOG("profiler_get_profile");
+
+ UniquePtr<ProfilerCodeAddressService> service =
+ profiler_code_address_service_for_presymbolication();
+
+ SpliceableChunkedJSONWriter b;
+ if (!WriteProfileToJSONWriter(b, aSinceTime, aIsShuttingDown,
+ service.get())) {
+ return nullptr;
+ }
+ return b.ChunkedWriteFunc().CopyData();
+}
+
+void profiler_get_profile_json_into_lazily_allocated_buffer(
+ const std::function<char*(size_t)>& aAllocator, double aSinceTime,
+ bool aIsShuttingDown) {
+ LOG("profiler_get_profile_json_into_lazily_allocated_buffer");
+
+ UniquePtr<ProfilerCodeAddressService> service =
+ profiler_code_address_service_for_presymbolication();
+
+ SpliceableChunkedJSONWriter b;
+ if (!WriteProfileToJSONWriter(b, aSinceTime, aIsShuttingDown,
+ service.get())) {
+ return;
+ }
+
+ b.ChunkedWriteFunc().CopyDataIntoLazilyAllocatedBuffer(aAllocator);
+}
+
+void profiler_get_start_params(int* aCapacity, Maybe<double>* aDuration,
+ double* aInterval, uint32_t* aFeatures,
+ Vector<const char*>* aFilters,
+ uint64_t* aActiveBrowsingContextID) {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ if (NS_WARN_IF(!aCapacity) || NS_WARN_IF(!aDuration) ||
+ NS_WARN_IF(!aInterval) || NS_WARN_IF(!aFeatures) ||
+ NS_WARN_IF(!aFilters)) {
+ return;
+ }
+
+ PSAutoLock lock(gPSMutex);
+
+ if (!ActivePS::Exists(lock)) {
+ *aCapacity = 0;
+ *aDuration = Nothing();
+ *aInterval = 0;
+ *aFeatures = 0;
+ *aActiveBrowsingContextID = 0;
+ aFilters->clear();
+ return;
+ }
+
+ *aCapacity = ActivePS::Capacity(lock).Value();
+ *aDuration = ActivePS::Duration(lock);
+ *aInterval = ActivePS::Interval(lock);
+ *aFeatures = ActivePS::Features(lock);
+ *aActiveBrowsingContextID = ActivePS::ActiveBrowsingContextID(lock);
+
+ const Vector<std::string>& filters = ActivePS::Filters(lock);
+ MOZ_ALWAYS_TRUE(aFilters->resize(filters.length()));
+ for (uint32_t i = 0; i < filters.length(); ++i) {
+ (*aFilters)[i] = filters[i].c_str();
+ }
+}
+
+ProfileBufferControlledChunkManager* profiler_get_controlled_chunk_manager() {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+ PSAutoLock lock(gPSMutex);
+ if (NS_WARN_IF(!ActivePS::Exists(lock))) {
+ return nullptr;
+ }
+ return &ActivePS::ControlledChunkManager(lock);
+}
+
+namespace mozilla {
+
+void GetProfilerEnvVarsForChildProcess(
+ std::function<void(const char* key, const char* value)>&& aSetEnv) {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ PSAutoLock lock(gPSMutex);
+
+ if (!ActivePS::Exists(lock)) {
+ aSetEnv("MOZ_PROFILER_STARTUP", "");
+ return;
+ }
+
+ aSetEnv("MOZ_PROFILER_STARTUP", "1");
+
+ // Hidden option to stop Base Profiler, mostly due to Talos intermittents,
+ // see https://bugzilla.mozilla.org/show_bug.cgi?id=1638851#c3
+ // TODO: Investigate root cause and remove this in bugs 1648324 and 1648325.
+ if (getenv("MOZ_PROFILER_STARTUP_NO_BASE")) {
+ aSetEnv("MOZ_PROFILER_STARTUP_NO_BASE", "1");
+ }
+
+ auto capacityString =
+ Smprintf("%u", unsigned(ActivePS::Capacity(lock).Value()));
+ aSetEnv("MOZ_PROFILER_STARTUP_ENTRIES", capacityString.get());
+
+ // Use AppendFloat instead of Smprintf with %f because the decimal
+ // separator used by %f is locale-dependent. But the string we produce needs
+ // to be parseable by strtod, which only accepts the period character as a
+ // decimal separator. AppendFloat always uses the period character.
+ nsCString intervalString;
+ intervalString.AppendFloat(ActivePS::Interval(lock));
+ aSetEnv("MOZ_PROFILER_STARTUP_INTERVAL", intervalString.get());
+
+ auto featuresString = Smprintf("%d", ActivePS::Features(lock));
+ aSetEnv("MOZ_PROFILER_STARTUP_FEATURES_BITFIELD", featuresString.get());
+
+ std::string filtersString;
+ const Vector<std::string>& filters = ActivePS::Filters(lock);
+ for (uint32_t i = 0; i < filters.length(); ++i) {
+ if (i != 0) {
+ filtersString += ",";
+ }
+ filtersString += filters[i];
+ }
+ aSetEnv("MOZ_PROFILER_STARTUP_FILTERS", filtersString.c_str());
+}
+
+} // namespace mozilla
+
+void profiler_received_exit_profile(const nsCString& aExitProfile) {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+ PSAutoLock lock(gPSMutex);
+ if (!ActivePS::Exists(lock)) {
+ return;
+ }
+ ActivePS::AddExitProfile(lock, aExitProfile);
+}
+
+Vector<nsCString> profiler_move_exit_profiles() {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+ PSAutoLock lock(gPSMutex);
+ Vector<nsCString> profiles;
+ if (ActivePS::Exists(lock)) {
+ profiles = ActivePS::MoveExitProfiles(lock);
+ }
+ return profiles;
+}
+
+static void locked_profiler_save_profile_to_file(
+ PSLockRef aLock, const char* aFilename,
+ const PreRecordedMetaInformation& aPreRecordedMetaInformation,
+ bool aIsShuttingDown = false) {
+ LOG("locked_profiler_save_profile_to_file(%s)", aFilename);
+
+ MOZ_RELEASE_ASSERT(CorePS::Exists() && ActivePS::Exists(aLock));
+
+ std::ofstream stream;
+ stream.open(aFilename);
+ if (stream.is_open()) {
+ SpliceableJSONWriter w(MakeUnique<OStreamJSONWriteFunc>(stream));
+ w.Start();
+ {
+ locked_profiler_stream_json_for_this_process(aLock, w, /* sinceTime */ 0,
+ aPreRecordedMetaInformation,
+ aIsShuttingDown, nullptr);
+
+ w.StartArrayProperty("processes");
+ Vector<nsCString> exitProfiles = ActivePS::MoveExitProfiles(aLock);
+ for (auto& exitProfile : exitProfiles) {
+ if (!exitProfile.IsEmpty()) {
+ w.Splice(exitProfile);
+ }
+ }
+ w.EndArray();
+ }
+ w.End();
+
+ stream.close();
+ }
+}
+
+void profiler_save_profile_to_file(const char* aFilename) {
+ LOG("profiler_save_profile_to_file(%s)", aFilename);
+
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ const auto preRecordedMetaInformation = PreRecordMetaInformation();
+
+ PSAutoLock lock(gPSMutex);
+
+ if (!ActivePS::Exists(lock)) {
+ return;
+ }
+
+ locked_profiler_save_profile_to_file(lock, aFilename,
+ preRecordedMetaInformation);
+}
+
+uint32_t profiler_get_available_features() {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+ return AvailableFeatures();
+}
+
+Maybe<ProfilerBufferInfo> profiler_get_buffer_info() {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ PSAutoLock lock(gPSMutex);
+
+ if (!ActivePS::Exists(lock)) {
+ return Nothing();
+ }
+
+ return Some(ActivePS::Buffer(lock).GetProfilerBufferInfo());
+}
+
+static void PollJSSamplingForCurrentThread() {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ PSAutoLock lock(gPSMutex);
+
+ RegisteredThread* registeredThread =
+ TLSRegisteredThread::RegisteredThread(lock);
+ if (!registeredThread) {
+ return;
+ }
+
+ registeredThread->PollJSSampling();
+}
+
+// When the profiler is started on a background thread, we can't synchronously
+// call PollJSSampling on the main thread's ThreadInfo. And the next regular
+// call to PollJSSampling on the main thread would only happen once the main
+// thread triggers a JS interrupt callback.
+// This means that all the JS execution between profiler_start() and the first
+// JS interrupt would happen with JS sampling disabled, and we wouldn't get any
+// JS function information for that period of time.
+// So in order to start JS sampling as soon as possible, we dispatch a runnable
+// to the main thread which manually calls PollJSSamplingForCurrentThread().
+// In some cases this runnable will lose the race with the next JS interrupt.
+// That's fine; PollJSSamplingForCurrentThread() is immune to redundant calls.
+static void TriggerPollJSSamplingOnMainThread() {
+ nsCOMPtr<nsIThread> mainThread;
+ nsresult rv = NS_GetMainThread(getter_AddRefs(mainThread));
+ if (NS_SUCCEEDED(rv) && mainThread) {
+ nsCOMPtr<nsIRunnable> task =
+ NS_NewRunnableFunction("TriggerPollJSSamplingOnMainThread",
+ []() { PollJSSamplingForCurrentThread(); });
+ SchedulerGroup::Dispatch(TaskCategory::Other, task.forget());
+ }
+}
+
+static bool HasMinimumLength(const char* aString, size_t aMinimumLength) {
+ if (!aString) {
+ return false;
+ }
+ for (size_t i = 0; i < aMinimumLength; ++i) {
+ if (aString[i] == '\0') {
+ return false;
+ }
+ }
+ return true;
+}
+
+static void locked_profiler_start(PSLockRef aLock, PowerOfTwo32 aCapacity,
+ double aInterval, uint32_t aFeatures,
+ const char** aFilters, uint32_t aFilterCount,
+ uint64_t aActiveBrowsingContextID,
+ const Maybe<double>& aDuration) {
+ if (LOG_TEST) {
+ LOG("locked_profiler_start");
+ LOG("- capacity = %u", unsigned(aCapacity.Value()));
+ LOG("- duration = %.2f", aDuration ? *aDuration : -1);
+ LOG("- interval = %.2f", aInterval);
+ LOG("- browsing context ID = %" PRIu64, aActiveBrowsingContextID);
+
+#define LOG_FEATURE(n_, str_, Name_, desc_) \
+ if (ProfilerFeature::Has##Name_(aFeatures)) { \
+ LOG("- feature = %s", str_); \
+ }
+
+ PROFILER_FOR_EACH_FEATURE(LOG_FEATURE)
+
+#undef LOG_FEATURE
+
+ for (uint32_t i = 0; i < aFilterCount; i++) {
+ LOG("- threads = %s", aFilters[i]);
+ }
+ }
+
+ MOZ_RELEASE_ASSERT(CorePS::Exists() && !ActivePS::Exists(aLock));
+
+ UniquePtr<char[]> baseprofile;
+ if (baseprofiler::profiler_is_active()) {
+ // Note that we still hold the lock, so the sampler cannot run yet and
+ // interact negatively with the still-active BaseProfiler sampler.
+ // Assume that Base Profiler is active because of MOZ_PROFILER_STARTUP.
+ // Capture the Base Profiler startup profile threads (if any).
+ baseprofile = baseprofiler::profiler_get_profile(
+ /* aSinceTime */ 0, /* aIsShuttingDown */ false,
+ /* aOnlyThreads */ true);
+
+ // Now stop Base Profiler (BP), as further recording will be ignored anyway,
+ // and so that it won't clash with Gecko Profiler (GP) sampling starting
+ // after the lock is dropped.
+ // On Linux this is especially important to do before creating the GP
+ // sampler, because the BP sampler may send a signal (to stop threads to be
+ // sampled), which the GP would intercept before its own initialization is
+ // complete and ready to handle such signals.
+ // Note that even though `profiler_stop()` doesn't immediately destroy and
+ // join the sampler thread, it safely deactivates it in such a way that the
+ // thread will soon exit without doing any actual work.
+ // TODO: Allow non-sampling profiling to continue.
+ // TODO: Re-start BP after GP shutdown, to capture post-XPCOM shutdown.
+ baseprofiler::profiler_stop();
+ }
+
+#if defined(GP_PLAT_amd64_windows)
+ InitializeWin64ProfilerHooks();
+#endif
+
+ // Fall back to the default values if the passed-in values are unreasonable.
+ // We want to be able to store at least one full stack.
+ PowerOfTwo32 capacity =
+ (aCapacity.Value() >=
+ ProfileBufferChunkManager::scExpectedMaximumStackSize / scBytesPerEntry)
+ ? aCapacity
+ : PROFILER_DEFAULT_ENTRIES;
+ Maybe<double> duration = aDuration;
+
+ if (aDuration && *aDuration <= 0) {
+ duration = Nothing();
+ }
+
+ double interval = aInterval > 0 ? aInterval : PROFILER_DEFAULT_INTERVAL;
+
+ ActivePS::Create(aLock, capacity, interval, aFeatures, aFilters, aFilterCount,
+ aActiveBrowsingContextID, duration);
+
+ // ActivePS::Create can only succeed or crash.
+ MOZ_ASSERT(ActivePS::Exists(aLock));
+
+ // An "empty" profile string may in fact contain 1 character (a newline), so
+ // we want at least 2 characters to register a profile.
+ if (HasMinimumLength(baseprofile.get(), 2)) {
+ // The BaseProfiler startup profile will be stored as a separate "process"
+ // in the Gecko Profiler profile, and shown as a new track under the
+ // corresponding Gecko Profiler thread.
+ ActivePS::AddBaseProfileThreads(aLock, std::move(baseprofile));
+ }
+
+ // Set up profiling for each registered thread, if appropriate.
+#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
+ bool isMainThreadBeingProfiled = false;
+#endif
+ int tid = profiler_current_thread_id();
+ const Vector<UniquePtr<RegisteredThread>>& registeredThreads =
+ CorePS::RegisteredThreads(aLock);
+ for (auto& registeredThread : registeredThreads) {
+ RefPtr<ThreadInfo> info = registeredThread->Info();
+
+ if (ActivePS::ShouldProfileThread(aLock, info)) {
+ registeredThread->RacyRegisteredThread().SetIsBeingProfiled(true);
+ nsCOMPtr<nsIEventTarget> eventTarget = registeredThread->GetEventTarget();
+ ProfiledThreadData* profiledThreadData = ActivePS::AddLiveProfiledThread(
+ aLock, registeredThread.get(),
+ MakeUnique<ProfiledThreadData>(info, eventTarget));
+ if (ActivePS::FeatureJS(aLock)) {
+ registeredThread->StartJSSampling(ActivePS::JSFlags(aLock));
+ if (info->ThreadId() == tid) {
+ // We can manually poll the current thread so it starts sampling
+ // immediately.
+ registeredThread->PollJSSampling();
+ } else if (info->IsMainThread()) {
+ // Dispatch a runnable to the main thread to call PollJSSampling(),
+ // so that we don't have wait for the next JS interrupt callback in
+ // order to start profiling JS.
+ TriggerPollJSSamplingOnMainThread();
+ }
+ }
+#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
+ if (info->IsMainThread()) {
+ isMainThreadBeingProfiled = true;
+ }
+#endif
+ registeredThread->RacyRegisteredThread().ReinitializeOnResume();
+ if (registeredThread->GetJSContext()) {
+ profiledThreadData->NotifyReceivedJSContext(0);
+ }
+ }
+ }
+
+ // Setup support for pushing/popping labels in mozglue.
+ RegisterProfilerLabelEnterExit(MozGlueLabelEnter, MozGlueLabelExit);
+
+#ifdef MOZ_TASK_TRACER
+ if (ActivePS::FeatureTaskTracer(aLock)) {
+ tasktracer::StartLogging();
+ }
+#endif
+
+#if defined(GP_OS_android)
+ if (ActivePS::FeatureJava(aLock)) {
+ int javaInterval = interval;
+ // Java sampling doesn't accurately keep up with the sampling rate that is
+ // lower than 1ms.
+ if (javaInterval < 1) {
+ javaInterval = 1;
+ }
+ // Send the interval-relative entry count, but we have 100000 hard cap in
+ // the java code, it can't be more than that.
+ java::GeckoJavaSampler::Start(
+ javaInterval, std::round((double)(capacity.Value()) * interval /
+ (double)(javaInterval)));
+ }
+#endif
+
+#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
+ if (ActivePS::FeatureNativeAllocations(aLock)) {
+ if (isMainThreadBeingProfiled) {
+ mozilla::profiler::enable_native_allocations();
+ } else {
+ NS_WARNING(
+ "The nativeallocations feature is turned on, but the main thread is "
+ "not being profiled. The allocations are only stored on the main "
+ "thread.");
+ }
+ }
+#endif
+
+ if (ProfilerFeature::HasAudioCallbackTracing(aFeatures)) {
+ StartAudioCallbackTracing();
+ }
+
+ // At the very end, set up RacyFeatures.
+ RacyFeatures::SetActive(ActivePS::Features(aLock));
+}
+
+void profiler_start(PowerOfTwo32 aCapacity, double aInterval,
+ uint32_t aFeatures, const char** aFilters,
+ uint32_t aFilterCount, uint64_t aActiveBrowsingContextID,
+ const Maybe<double>& aDuration) {
+ LOG("profiler_start");
+
+ ProfilerParent::ProfilerWillStopIfStarted();
+
+ SamplerThread* samplerThread = nullptr;
+ {
+ PSAutoLock lock(gPSMutex);
+
+ // Initialize if necessary.
+ if (!CorePS::Exists()) {
+ profiler_init(nullptr);
+ }
+
+ // Reset the current state if the profiler is running.
+ if (ActivePS::Exists(lock)) {
+ samplerThread = locked_profiler_stop(lock);
+ }
+
+ locked_profiler_start(lock, aCapacity, aInterval, aFeatures, aFilters,
+ aFilterCount, aActiveBrowsingContextID, aDuration);
+ }
+
+#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
+ // Start counting memory allocations (outside of lock because this may call
+ // profiler_add_sampled_counter which would attempt to take the lock.)
+ mozilla::profiler::install_memory_hooks();
+#endif
+
+ // We do these operations with gPSMutex unlocked. The comments in
+ // profiler_stop() explain why.
+ if (samplerThread) {
+ ProfilerParent::ProfilerStopped();
+ NotifyObservers("profiler-stopped");
+ delete samplerThread;
+ }
+ NotifyProfilerStarted(aCapacity, aDuration, aInterval, aFeatures, aFilters,
+ aFilterCount, aActiveBrowsingContextID);
+}
+
+void profiler_ensure_started(PowerOfTwo32 aCapacity, double aInterval,
+ uint32_t aFeatures, const char** aFilters,
+ uint32_t aFilterCount,
+ uint64_t aActiveBrowsingContextID,
+ const Maybe<double>& aDuration) {
+ LOG("profiler_ensure_started");
+
+ ProfilerParent::ProfilerWillStopIfStarted();
+
+ bool startedProfiler = false;
+ SamplerThread* samplerThread = nullptr;
+ {
+ PSAutoLock lock(gPSMutex);
+
+ // Initialize if necessary.
+ if (!CorePS::Exists()) {
+ profiler_init(nullptr);
+ }
+
+ if (ActivePS::Exists(lock)) {
+ // The profiler is active.
+ if (!ActivePS::Equals(lock, aCapacity, aDuration, aInterval, aFeatures,
+ aFilters, aFilterCount, aActiveBrowsingContextID)) {
+ // Stop and restart with different settings.
+ samplerThread = locked_profiler_stop(lock);
+ locked_profiler_start(lock, aCapacity, aInterval, aFeatures, aFilters,
+ aFilterCount, aActiveBrowsingContextID,
+ aDuration);
+ startedProfiler = true;
+ }
+ } else {
+ // The profiler is stopped.
+ locked_profiler_start(lock, aCapacity, aInterval, aFeatures, aFilters,
+ aFilterCount, aActiveBrowsingContextID, aDuration);
+ startedProfiler = true;
+ }
+ }
+
+ // We do these operations with gPSMutex unlocked. The comments in
+ // profiler_stop() explain why.
+ if (samplerThread) {
+ ProfilerParent::ProfilerStopped();
+ NotifyObservers("profiler-stopped");
+ delete samplerThread;
+ }
+
+ if (startedProfiler) {
+ NotifyProfilerStarted(aCapacity, aDuration, aInterval, aFeatures, aFilters,
+ aFilterCount, aActiveBrowsingContextID);
+ }
+}
+
+[[nodiscard]] static SamplerThread* locked_profiler_stop(PSLockRef aLock) {
+ LOG("locked_profiler_stop");
+
+ MOZ_RELEASE_ASSERT(CorePS::Exists() && ActivePS::Exists(aLock));
+
+ // At the very start, clear RacyFeatures.
+ RacyFeatures::SetInactive();
+
+ if (ActivePS::FeatureAudioCallbackTracing(aLock)) {
+ StopAudioCallbackTracing();
+ }
+
+#if defined(GP_OS_android)
+ if (ActivePS::FeatureJava(aLock)) {
+ java::GeckoJavaSampler::Stop();
+ }
+#endif
+
+#ifdef MOZ_TASK_TRACER
+ if (ActivePS::FeatureTaskTracer(aLock)) {
+ tasktracer::StopLogging();
+ }
+#endif
+
+ // Remove support for pushing/popping labels in mozglue.
+ RegisterProfilerLabelEnterExit(nullptr, nullptr);
+
+ // Stop sampling live threads.
+ int tid = profiler_current_thread_id();
+ const Vector<LiveProfiledThreadData>& liveProfiledThreads =
+ ActivePS::LiveProfiledThreads(aLock);
+ for (auto& thread : liveProfiledThreads) {
+ RegisteredThread* registeredThread = thread.mRegisteredThread;
+ registeredThread->RacyRegisteredThread().SetIsBeingProfiled(false);
+ if (ActivePS::FeatureJS(aLock)) {
+ registeredThread->StopJSSampling();
+ RefPtr<ThreadInfo> info = registeredThread->Info();
+ if (info->ThreadId() == tid) {
+ // We can manually poll the current thread so it stops profiling
+ // immediately.
+ registeredThread->PollJSSampling();
+ } else if (info->IsMainThread()) {
+ // Dispatch a runnable to the main thread to call PollJSSampling(),
+ // so that we don't have wait for the next JS interrupt callback in
+ // order to start profiling JS.
+ TriggerPollJSSamplingOnMainThread();
+ }
+ }
+ }
+
+#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
+ if (ActivePS::FeatureNativeAllocations(aLock)) {
+ mozilla::profiler::disable_native_allocations();
+ }
+#endif
+
+ // The Stop() call doesn't actually stop Run(); that happens in this
+ // function's caller when the sampler thread is destroyed. Stop() just gives
+ // the SamplerThread a chance to do some cleanup with gPSMutex locked.
+ SamplerThread* samplerThread = ActivePS::Destroy(aLock);
+ samplerThread->Stop(aLock);
+
+ return samplerThread;
+}
+
+void profiler_stop() {
+ LOG("profiler_stop");
+
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ ProfilerParent::ProfilerWillStopIfStarted();
+
+#if defined(MOZ_REPLACE_MALLOC) && defined(MOZ_PROFILER_MEMORY)
+ // Remove the hooks early, as native allocations (if they are on) can be
+ // quite expensive.
+ mozilla::profiler::remove_memory_hooks();
+#endif
+
+ SamplerThread* samplerThread;
+ {
+ PSAutoLock lock(gPSMutex);
+
+ if (!ActivePS::Exists(lock)) {
+ return;
+ }
+
+ samplerThread = locked_profiler_stop(lock);
+ }
+
+ // We notify observers with gPSMutex unlocked. Otherwise we might get a
+ // deadlock, if code run by these functions calls a profiler function that
+ // locks gPSMutex, for example when it wants to insert a marker.
+ // (This has been seen in practise in bug 1346356, when we were still firing
+ // these notifications synchronously.)
+ ProfilerParent::ProfilerStopped();
+ NotifyObservers("profiler-stopped");
+
+ // We delete with gPSMutex unlocked. Otherwise we would get a deadlock: we
+ // would be waiting here with gPSMutex locked for SamplerThread::Run() to
+ // return so the join operation within the destructor can complete, but Run()
+ // needs to lock gPSMutex to return.
+ //
+ // Because this call occurs with gPSMutex unlocked, it -- including the final
+ // iteration of Run()'s loop -- must be able detect deactivation and return
+ // in a way that's safe with respect to other gPSMutex-locking operations
+ // that may have occurred in the meantime.
+ delete samplerThread;
+}
+
+bool profiler_is_paused() {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ PSAutoLock lock(gPSMutex);
+
+ if (!ActivePS::Exists(lock)) {
+ return false;
+ }
+
+ return ActivePS::IsPaused(lock);
+}
+
+/* [[nodiscard]] */ bool profiler_callback_after_sampling(
+ PostSamplingCallback&& aCallback) {
+ LOG("profiler_callback_after_sampling");
+
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ PSAutoLock lock(gPSMutex);
+
+ return ActivePS::AppendPostSamplingCallback(lock, std::move(aCallback));
+}
+
+void profiler_pause() {
+ LOG("profiler_pause");
+
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ {
+ PSAutoLock lock(gPSMutex);
+
+ if (!ActivePS::Exists(lock)) {
+ return;
+ }
+
+#if defined(GP_OS_android)
+ if (ActivePS::FeatureJava(lock) && !ActivePS::IsSamplingPaused(lock)) {
+ // Not paused yet, so this is the first pause, let Java know.
+ // TODO: Distinguish Pause and PauseSampling in Java.
+ java::GeckoJavaSampler::PauseSampling();
+ }
+#endif
+
+ RacyFeatures::SetPaused();
+ ActivePS::SetIsPaused(lock, true);
+ ActivePS::Buffer(lock).AddEntry(ProfileBufferEntry::Pause(profiler_time()));
+ }
+
+ // gPSMutex must be unlocked when we notify, to avoid potential deadlocks.
+ ProfilerParent::ProfilerPaused();
+ NotifyObservers("profiler-paused");
+}
+
+void profiler_resume() {
+ LOG("profiler_resume");
+
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ {
+ PSAutoLock lock(gPSMutex);
+
+ if (!ActivePS::Exists(lock)) {
+ return;
+ }
+
+ ActivePS::Buffer(lock).AddEntry(
+ ProfileBufferEntry::Resume(profiler_time()));
+ ActivePS::SetIsPaused(lock, false);
+ RacyFeatures::SetUnpaused();
+
+#if defined(GP_OS_android)
+ if (ActivePS::FeatureJava(lock) && !ActivePS::IsSamplingPaused(lock)) {
+ // Not paused anymore, so this is the last unpause, let Java know.
+ // TODO: Distinguish Unpause and UnpauseSampling in Java.
+ java::GeckoJavaSampler::UnpauseSampling();
+ }
+#endif
+ }
+
+ // gPSMutex must be unlocked when we notify, to avoid potential deadlocks.
+ ProfilerParent::ProfilerResumed();
+ NotifyObservers("profiler-resumed");
+}
+
+bool profiler_is_sampling_paused() {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ PSAutoLock lock(gPSMutex);
+
+ if (!ActivePS::Exists(lock)) {
+ return false;
+ }
+
+ return ActivePS::IsSamplingPaused(lock);
+}
+
+void profiler_pause_sampling() {
+ LOG("profiler_pause_sampling");
+
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ {
+ PSAutoLock lock(gPSMutex);
+
+ if (!ActivePS::Exists(lock)) {
+ return;
+ }
+
+#if defined(GP_OS_android)
+ if (ActivePS::FeatureJava(lock) && !ActivePS::IsSamplingPaused(lock)) {
+ // Not paused yet, so this is the first pause, let Java know.
+ // TODO: Distinguish Pause and PauseSampling in Java.
+ java::GeckoJavaSampler::PauseSampling();
+ }
+#endif
+
+ RacyFeatures::SetSamplingPaused();
+ ActivePS::SetIsSamplingPaused(lock, true);
+ ActivePS::Buffer(lock).AddEntry(
+ ProfileBufferEntry::PauseSampling(profiler_time()));
+ }
+
+ // gPSMutex must be unlocked when we notify, to avoid potential deadlocks.
+ ProfilerParent::ProfilerPausedSampling();
+ NotifyObservers("profiler-paused-sampling");
+}
+
+void profiler_resume_sampling() {
+ LOG("profiler_resume_sampling");
+
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ {
+ PSAutoLock lock(gPSMutex);
+
+ if (!ActivePS::Exists(lock)) {
+ return;
+ }
+
+ ActivePS::Buffer(lock).AddEntry(
+ ProfileBufferEntry::ResumeSampling(profiler_time()));
+ ActivePS::SetIsSamplingPaused(lock, false);
+ RacyFeatures::SetSamplingUnpaused();
+
+#if defined(GP_OS_android)
+ if (ActivePS::FeatureJava(lock) && !ActivePS::IsSamplingPaused(lock)) {
+ // Not paused anymore, so this is the last unpause, let Java know.
+ // TODO: Distinguish Unpause and UnpauseSampling in Java.
+ java::GeckoJavaSampler::UnpauseSampling();
+ }
+#endif
+ }
+
+ // gPSMutex must be unlocked when we notify, to avoid potential deadlocks.
+ ProfilerParent::ProfilerResumedSampling();
+ NotifyObservers("profiler-resumed-sampling");
+}
+
+bool profiler_feature_active(uint32_t aFeature) {
+ // This function runs both on and off the main thread.
+
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ // This function is hot enough that we use RacyFeatures, not ActivePS.
+ return RacyFeatures::IsActiveWithFeature(aFeature);
+}
+
+void profiler_write_active_configuration(JSONWriter& aWriter) {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+ PSAutoLock lock(gPSMutex);
+ ActivePS::WriteActiveConfiguration(lock, aWriter);
+}
+
+void profiler_add_sampled_counter(BaseProfilerCount* aCounter) {
+ DEBUG_LOG("profiler_add_sampled_counter(%s)", aCounter->mLabel);
+ PSAutoLock lock(gPSMutex);
+ CorePS::AppendCounter(lock, aCounter);
+}
+
+void profiler_remove_sampled_counter(BaseProfilerCount* aCounter) {
+ DEBUG_LOG("profiler_remove_sampled_counter(%s)", aCounter->mLabel);
+ PSAutoLock lock(gPSMutex);
+ // Note: we don't enforce a final sample, though we could do so if the
+ // profiler was active
+ CorePS::RemoveCounter(lock, aCounter);
+}
+
+ProfilingStack* profiler_register_thread(const char* aName,
+ void* aGuessStackTop) {
+ DEBUG_LOG("profiler_register_thread(%s)", aName);
+
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ // Make sure we have a nsThread wrapper for the current thread, and that NSPR
+ // knows its name.
+ (void)NS_GetCurrentThread();
+ NS_SetCurrentThreadName(aName);
+
+ if (!TLSRegisteredThread::IsTLSInited()) {
+ return nullptr;
+ }
+
+ PSAutoLock lock(gPSMutex);
+
+ if (RegisteredThread* thread = TLSRegisteredThread::RegisteredThread(lock)) {
+ MOZ_RELEASE_ASSERT(IsRegisteredThreadInRegisteredThreadsList(lock, thread),
+ "Thread being re-registered is not in registered thread "
+ "list even though its TLS is non-null");
+ MOZ_RELEASE_ASSERT(
+ thread->Info()->ThreadId() == profiler_current_thread_id(),
+ "Thread being re-registered has changed its TID");
+ LOG("profiler_register_thread(%s) - thread %d already registered as %s",
+ aName, profiler_current_thread_id(), thread->Info()->Name());
+ // TODO: Use new name. This is currently not possible because the
+ // RegisteredThread's ThreadInfo cannot be changed.
+ // In the meantime, we record a marker that could be used in the frontend.
+ nsCString text("Thread ");
+ text.AppendInt(profiler_current_thread_id());
+ text.AppendLiteral(" \"");
+ text.AppendASCII(thread->Info()->Name());
+ text.AppendLiteral("\" attempted to re-register as \"");
+ text.AppendASCII(aName);
+ text.AppendLiteral("\"");
+ PROFILER_MARKER_TEXT("profiler_register_thread again", OTHER_Profiling,
+ MarkerThreadId::MainThread(), text);
+
+ return &thread->RacyRegisteredThread().ProfilingStack();
+ }
+
+ void* stackTop = GetStackTop(aGuessStackTop);
+ return locked_register_thread(lock, aName, stackTop);
+}
+
+void profiler_unregister_thread() {
+ PSAutoLock lock(gPSMutex);
+
+ if (!TLSRegisteredThread::IsTLSInited()) {
+ return;
+ }
+
+ if (!CorePS::Exists()) {
+ // This function can be called after the main thread has already shut down.
+ // We want to reset the AutoProfilerLabel's ProfilingStack pointer (if
+ // needed), because a thread could stay registered after the profiler has
+ // shut down.
+ TLSRegisteredThread::ResetAutoProfilerLabelProfilingStack(lock);
+ return;
+ }
+
+ // We don't call RegisteredThread::StopJSSampling() here; there's no point
+ // doing that for a JS thread that is in the process of disappearing.
+
+ if (RegisteredThread* registeredThread =
+ TLSRegisteredThread::RegisteredThread(lock)) {
+ MOZ_RELEASE_ASSERT(
+ IsRegisteredThreadInRegisteredThreadsList(lock, registeredThread),
+ "Thread being unregistered is not in registered thread list even "
+ "though its TLS is non-null");
+ MOZ_RELEASE_ASSERT(
+ registeredThread->Info()->ThreadId() == profiler_current_thread_id(),
+ "Thread being unregistered has changed its TID");
+ RefPtr<ThreadInfo> info = registeredThread->Info();
+
+ DEBUG_LOG("profiler_unregister_thread: %s", info->Name());
+
+ if (ActivePS::Exists(lock)) {
+ ActivePS::UnregisterThread(lock, registeredThread);
+ }
+
+ // Clear the pointer to the RegisteredThread object that we're about to
+ // destroy, as well as the AutoProfilerLabel's ProfilingStack because the
+ // thread is unregistering itself and won't need the ProfilingStack anymore.
+ TLSRegisteredThread::ResetRegisteredThread(lock);
+ TLSRegisteredThread::ResetAutoProfilerLabelProfilingStack(lock);
+
+ // Remove the thread from the list of registered threads. This deletes the
+ // registeredThread object.
+ CorePS::RemoveRegisteredThread(lock, registeredThread);
+
+ MOZ_RELEASE_ASSERT(
+ !IsRegisteredThreadInRegisteredThreadsList(lock, registeredThread),
+ "After unregistering, thread should no longer be in the registered "
+ "thread list");
+ MOZ_RELEASE_ASSERT(
+ !TLSRegisteredThread::RegisteredThread(lock),
+ "TLS should have been reset after un-registering thread");
+ } else {
+ // There are two ways TLSRegisteredThread::RegisteredThread() might be
+ // empty.
+ //
+ // - TLSRegisteredThread::Init() failed in locked_register_thread().
+ //
+ // - We've already called profiler_unregister_thread() for this thread.
+ // (Whether or not it should, this does happen in practice.)
+ LOG("profiler_unregister_thread() - thread %d already unregistered",
+ profiler_current_thread_id());
+ // We cannot record a marker on this thread because it was already
+ // unregistered. Send it to the main thread (unless this *is* already the
+ // main thread, which has been unregistered); this may be useful to catch
+ // mismatched register/unregister pairs in Firefox.
+ if (int tid = profiler_current_thread_id();
+ tid != profiler_main_thread_id()) {
+ nsCString threadIdString;
+ threadIdString.AppendInt(tid);
+ PROFILER_MARKER_TEXT("profiler_unregister_thread again", OTHER_Profiling,
+ MarkerThreadId::MainThread(), threadIdString);
+ }
+ }
+}
+
+void profiler_register_page(uint64_t aBrowsingContextID,
+ uint64_t aInnerWindowID, const nsCString& aUrl,
+ uint64_t aEmbedderInnerWindowID) {
+ DEBUG_LOG("profiler_register_page(%" PRIu64 ", %" PRIu64 ", %s, %" PRIu64 ")",
+ aBrowsingContextID, aInnerWindowID, aUrl.get(),
+ aEmbedderInnerWindowID);
+
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ PSAutoLock lock(gPSMutex);
+
+ // When a Browsing context is first loaded, the first url loaded in it will be
+ // about:blank. Because of that, this call keeps the first non-about:blank
+ // registration of window and discards the previous one.
+ RefPtr<PageInformation> pageInfo = new PageInformation(
+ aBrowsingContextID, aInnerWindowID, aUrl, aEmbedderInnerWindowID);
+ CorePS::AppendRegisteredPage(lock, std::move(pageInfo));
+
+ // After appending the given page to CorePS, look for the expired
+ // pages and remove them if there are any.
+ if (ActivePS::Exists(lock)) {
+ ActivePS::DiscardExpiredPages(lock);
+ }
+}
+
+void profiler_unregister_page(uint64_t aRegisteredInnerWindowID) {
+ PSAutoLock lock(gPSMutex);
+
+ if (!CorePS::Exists()) {
+ // This function can be called after the main thread has already shut down.
+ return;
+ }
+
+ // During unregistration, if the profiler is active, we have to keep the
+ // page information since there may be some markers associated with the given
+ // page. But if profiler is not active. we have no reason to keep the
+ // page information here because there can't be any marker associated with it.
+ if (ActivePS::Exists(lock)) {
+ ActivePS::UnregisterPage(lock, aRegisteredInnerWindowID);
+ } else {
+ CorePS::RemoveRegisteredPage(lock, aRegisteredInnerWindowID);
+ }
+}
+
+void profiler_clear_all_pages() {
+ {
+ PSAutoLock lock(gPSMutex);
+
+ if (!CorePS::Exists()) {
+ // This function can be called after the main thread has already shut
+ // down.
+ return;
+ }
+
+ CorePS::ClearRegisteredPages(lock);
+ if (ActivePS::Exists(lock)) {
+ ActivePS::ClearUnregisteredPages(lock);
+ }
+ }
+
+ // gPSMutex must be unlocked when we notify, to avoid potential deadlocks.
+ ProfilerParent::ClearAllPages();
+}
+
+Maybe<uint64_t> profiler_get_inner_window_id_from_docshell(
+ nsIDocShell* aDocshell) {
+ Maybe<uint64_t> innerWindowID = Nothing();
+ if (aDocshell) {
+ auto outerWindow = aDocshell->GetWindow();
+ if (outerWindow) {
+ auto innerWindow = outerWindow->GetCurrentInnerWindow();
+ if (innerWindow) {
+ innerWindowID = Some(innerWindow->WindowID());
+ }
+ }
+ }
+ return innerWindowID;
+}
+
+void profiler_thread_sleep() {
+ // This function runs both on and off the main thread.
+
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ RacyRegisteredThread* racyRegisteredThread =
+ TLSRegisteredThread::RacyRegisteredThread();
+ if (!racyRegisteredThread) {
+ return;
+ }
+
+ racyRegisteredThread->SetSleeping();
+}
+
+void profiler_thread_wake() {
+ // This function runs both on and off the main thread.
+
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ RacyRegisteredThread* racyRegisteredThread =
+ TLSRegisteredThread::RacyRegisteredThread();
+ if (!racyRegisteredThread) {
+ return;
+ }
+
+ racyRegisteredThread->SetAwake();
+}
+
+bool mozilla::profiler::detail::IsThreadBeingProfiled() {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ const RacyRegisteredThread* racyRegisteredThread =
+ TLSRegisteredThread::RacyRegisteredThread();
+ return racyRegisteredThread && racyRegisteredThread->IsBeingProfiled();
+}
+
+bool mozilla::profiler::detail::IsThreadRegistered() {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ const RacyRegisteredThread* racyRegisteredThread =
+ TLSRegisteredThread::RacyRegisteredThread();
+ // The simple presence of this TLS pointer is proof that the thread is
+ // registered.
+ return !!racyRegisteredThread;
+}
+
+bool profiler_thread_is_sleeping() {
+ MOZ_RELEASE_ASSERT(NS_IsMainThread());
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ RacyRegisteredThread* racyRegisteredThread =
+ TLSRegisteredThread::RacyRegisteredThread();
+ if (!racyRegisteredThread) {
+ return false;
+ }
+ return racyRegisteredThread->IsSleeping();
+}
+
+void profiler_js_interrupt_callback() {
+ // This function runs on JS threads being sampled.
+ PollJSSamplingForCurrentThread();
+}
+
+double profiler_time() {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ TimeDuration delta = TimeStamp::NowUnfuzzed() - CorePS::ProcessStartTime();
+ return delta.ToMilliseconds();
+}
+
+bool profiler_capture_backtrace_into(ProfileChunkedBuffer& aChunkedBuffer) {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ PSAutoLock lock(gPSMutex);
+
+ if (!ActivePS::Exists(lock)) {
+ return false;
+ }
+
+ RegisteredThread* registeredThread =
+ TLSRegisteredThread::RegisteredThread(lock);
+ if (!registeredThread) {
+ // If this was called from a non-registered thread, return false and do no
+ // more work. This can happen from a memory hook. Before the allocation
+ // tracking there was a MOZ_ASSERT() here checking for the existence of a
+ // registeredThread.
+ return false;
+ }
+
+ ProfileBuffer profileBuffer(aChunkedBuffer);
+
+ Registers regs;
+#if defined(HAVE_NATIVE_UNWIND)
+ regs.SyncPopulate();
+#else
+ regs.Clear();
+#endif
+
+ DoSyncSample(lock, *registeredThread, TimeStamp::NowUnfuzzed(), regs,
+ profileBuffer);
+
+ return true;
+}
+
+UniquePtr<ProfileChunkedBuffer> profiler_capture_backtrace() {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ // Quick is-active check before allocating a buffer.
+ if (!profiler_is_active()) {
+ return nullptr;
+ }
+
+ auto buffer = MakeUnique<ProfileChunkedBuffer>(
+ ProfileChunkedBuffer::ThreadSafety::WithoutMutex,
+ MakeUnique<ProfileBufferChunkManagerSingle>(
+ ProfileBufferChunkManager::scExpectedMaximumStackSize));
+
+ if (!profiler_capture_backtrace_into(*buffer)) {
+ return nullptr;
+ }
+
+ return buffer;
+}
+
+UniqueProfilerBacktrace profiler_get_backtrace() {
+ UniquePtr<ProfileChunkedBuffer> buffer = profiler_capture_backtrace();
+
+ if (!buffer) {
+ return nullptr;
+ }
+
+ return UniqueProfilerBacktrace(
+ new ProfilerBacktrace("SyncProfile", std::move(buffer)));
+}
+
+void ProfilerBacktraceDestructor::operator()(ProfilerBacktrace* aBacktrace) {
+ delete aBacktrace;
+}
+
+// This is a simplified version of profiler_add_marker that can be easily passed
+// into the JS engine.
+void profiler_add_js_marker(const char* aMarkerName, const char* aMarkerText) {
+ PROFILER_MARKER_TEXT(
+ ProfilerString8View::WrapNullTerminatedString(aMarkerName), JS, {},
+ ProfilerString8View::WrapNullTerminatedString(aMarkerText));
+}
+
+void profiler_add_js_allocation_marker(JS::RecordAllocationInfo&& info) {
+ if (!profiler_can_accept_markers()) {
+ return;
+ }
+
+ struct JsAllocationMarker {
+ static constexpr mozilla::Span<const char> MarkerTypeName() {
+ return mozilla::MakeStringSpan("JS allocation");
+ }
+ static void StreamJSONMarkerData(
+ mozilla::baseprofiler::SpliceableJSONWriter& aWriter,
+ const mozilla::ProfilerString16View& aTypeName,
+ const mozilla::ProfilerString8View& aClassName,
+ const mozilla::ProfilerString16View& aDescriptiveTypeName,
+ const mozilla::ProfilerString8View& aCoarseType, uint64_t aSize,
+ bool aInNursery) {
+ if (aClassName.Length() != 0) {
+ aWriter.StringProperty("className", aClassName);
+ }
+ if (aTypeName.Length() != 0) {
+ aWriter.StringProperty(
+ "typeName",
+ NS_ConvertUTF16toUTF8(aTypeName.Data(), aTypeName.Length()));
+ }
+ if (aDescriptiveTypeName.Length() != 0) {
+ aWriter.StringProperty(
+ "descriptiveTypeName",
+ NS_ConvertUTF16toUTF8(aDescriptiveTypeName.Data(),
+ aDescriptiveTypeName.Length()));
+ }
+ aWriter.StringProperty("coarseType", aCoarseType);
+ aWriter.IntProperty("size", aSize);
+ aWriter.BoolProperty("inNursery", aInNursery);
+ }
+ static mozilla::MarkerSchema MarkerTypeDisplay() {
+ return mozilla::MarkerSchema::SpecialFrontendLocation{};
+ }
+ };
+
+ profiler_add_marker(
+ "JS allocation", geckoprofiler::category::JS, MarkerStack::Capture(),
+ JsAllocationMarker{},
+ ProfilerString16View::WrapNullTerminatedString(info.typeName),
+ ProfilerString8View::WrapNullTerminatedString(info.className),
+ ProfilerString16View::WrapNullTerminatedString(info.descriptiveTypeName),
+ ProfilerString8View::WrapNullTerminatedString(info.coarseType), info.size,
+ info.inNursery);
+}
+
+bool profiler_is_locked_on_current_thread() {
+ // This function is used to help users avoid calling `profiler_...` functions
+ // when the profiler may already have a lock in place, which would prevent a
+ // 2nd recursive lock (resulting in a crash or a never-ending wait), or a
+ // deadlock between any two mutexes. So we must return `true` for any of:
+ // - The main profiler mutex, used by most functions, and/or
+ // - The buffer mutex, used directly in some functions without locking the
+ // main mutex, e.g., marker-related functions.
+ // - The ProfilerParent or ProfilerChild mutex, used to store and process
+ // buffer chunk updates.
+ return gPSMutex.IsLockedOnCurrentThread() ||
+ CorePS::CoreBuffer().IsThreadSafeAndLockedOnCurrentThread() ||
+ ProfilerParent::IsLockedOnCurrentThread() ||
+ ProfilerChild::IsLockedOnCurrentThread();
+}
+
+static constexpr net::TimingStruct scEmptyNetTimingStruct;
+
+void profiler_add_network_marker(
+ nsIURI* aURI, const nsACString& aRequestMethod, int32_t aPriority,
+ uint64_t aChannelId, NetworkLoadType aType, mozilla::TimeStamp aStart,
+ mozilla::TimeStamp aEnd, int64_t aCount,
+ mozilla::net::CacheDisposition aCacheDisposition, uint64_t aInnerWindowID,
+ const mozilla::net::TimingStruct* aTimings, nsIURI* aRedirectURI,
+ UniquePtr<ProfileChunkedBuffer> aSource,
+ const Maybe<nsDependentCString>& aContentType) {
+ if (!profiler_can_accept_markers()) {
+ return;
+ }
+
+ nsAutoCStringN<2048> name;
+ name.AppendASCII("Load ");
+ // top 32 bits are process id of the load
+ name.AppendInt(aChannelId & 0xFFFFFFFFu);
+
+ // These can do allocations/frees/etc; avoid if not active
+ nsAutoCStringN<2048> spec;
+ if (aURI) {
+ aURI->GetAsciiSpec(spec);
+ name.AppendASCII(": ");
+ name.Append(spec);
+ }
+
+ nsAutoCString redirect_spec;
+ if (aRedirectURI) {
+ aRedirectURI->GetAsciiSpec(redirect_spec);
+ }
+
+ struct NetworkMarker {
+ static constexpr Span<const char> MarkerTypeName() {
+ return MakeStringSpan("Network");
+ }
+ static void StreamJSONMarkerData(
+ baseprofiler::SpliceableJSONWriter& aWriter, mozilla::TimeStamp aStart,
+ mozilla::TimeStamp aEnd, int64_t aID, const ProfilerString8View& aURI,
+ const ProfilerString8View& aRequestMethod, NetworkLoadType aType,
+ int32_t aPri, int64_t aCount, net::CacheDisposition aCacheDisposition,
+ const net::TimingStruct& aTimings,
+ const ProfilerString8View& aRedirectURI,
+ const ProfilerString8View& aContentType) {
+ // This payload still streams a startTime and endTime property because it
+ // made the migration to MarkerTiming on the front-end easier.
+ aWriter.TimeProperty("startTime", aStart);
+ aWriter.TimeProperty("endTime", aEnd);
+
+ aWriter.IntProperty("id", aID);
+ aWriter.StringProperty("status", GetNetworkState(aType));
+ if (Span<const char> cacheString = GetCacheState(aCacheDisposition);
+ !cacheString.IsEmpty()) {
+ aWriter.StringProperty("cache", cacheString);
+ }
+ aWriter.IntProperty("pri", aPri);
+ if (aCount > 0) {
+ aWriter.IntProperty("count", aCount);
+ }
+ if (aURI.Length() != 0) {
+ aWriter.StringProperty("URI", aURI);
+ }
+ if (aRedirectURI.Length() != 0) {
+ aWriter.StringProperty("RedirectURI", aRedirectURI);
+ }
+ aWriter.StringProperty("requestMethod", aRequestMethod);
+
+ if (aContentType.Length() != 0) {
+ aWriter.StringProperty("contentType", aContentType);
+ } else {
+ aWriter.NullProperty("contentType");
+ }
+
+ if (aType != NetworkLoadType::LOAD_START) {
+ aWriter.TimeProperty("domainLookupStart", aTimings.domainLookupStart);
+ aWriter.TimeProperty("domainLookupEnd", aTimings.domainLookupEnd);
+ aWriter.TimeProperty("connectStart", aTimings.connectStart);
+ aWriter.TimeProperty("tcpConnectEnd", aTimings.tcpConnectEnd);
+ aWriter.TimeProperty("secureConnectionStart",
+ aTimings.secureConnectionStart);
+ aWriter.TimeProperty("connectEnd", aTimings.connectEnd);
+ aWriter.TimeProperty("requestStart", aTimings.requestStart);
+ aWriter.TimeProperty("responseStart", aTimings.responseStart);
+ aWriter.TimeProperty("responseEnd", aTimings.responseEnd);
+ }
+ }
+ static MarkerSchema MarkerTypeDisplay() {
+ return MarkerSchema::SpecialFrontendLocation{};
+ }
+
+ private:
+ static Span<const char> GetNetworkState(NetworkLoadType aType) {
+ switch (aType) {
+ case NetworkLoadType::LOAD_START:
+ return MakeStringSpan("STATUS_START");
+ case NetworkLoadType::LOAD_STOP:
+ return MakeStringSpan("STATUS_STOP");
+ case NetworkLoadType::LOAD_REDIRECT:
+ return MakeStringSpan("STATUS_REDIRECT");
+ default:
+ MOZ_ASSERT(false, "Unexpected NetworkLoadType enum value.");
+ return MakeStringSpan("");
+ }
+ }
+
+ static Span<const char> GetCacheState(
+ net::CacheDisposition aCacheDisposition) {
+ switch (aCacheDisposition) {
+ case net::kCacheUnresolved:
+ return MakeStringSpan("Unresolved");
+ case net::kCacheHit:
+ return MakeStringSpan("Hit");
+ case net::kCacheHitViaReval:
+ return MakeStringSpan("HitViaReval");
+ case net::kCacheMissedViaReval:
+ return MakeStringSpan("MissedViaReval");
+ case net::kCacheMissed:
+ return MakeStringSpan("Missed");
+ case net::kCacheUnknown:
+ return MakeStringSpan("");
+ default:
+ MOZ_ASSERT(false, "Unexpected CacheDisposition enum value.");
+ return MakeStringSpan("");
+ }
+ }
+ };
+
+ profiler_add_marker(
+ name, geckoprofiler::category::NETWORK,
+ {MarkerTiming::Interval(aStart, aEnd),
+ MarkerStack::TakeBacktrace(std::move(aSource)),
+ MarkerInnerWindowId(aInnerWindowID)},
+ NetworkMarker{}, aStart, aEnd, static_cast<int64_t>(aChannelId), spec,
+ aRequestMethod, aType, aPriority, aCount, aCacheDisposition,
+ aTimings ? *aTimings : scEmptyNetTimingStruct, redirect_spec,
+ aContentType ? ProfilerString8View(*aContentType)
+ : ProfilerString8View());
+}
+
+bool profiler_add_native_allocation_marker(int64_t aSize,
+ uintptr_t aMemoryAddress) {
+ if (!profiler_can_accept_markers()) {
+ return false;
+ }
+
+ // Because native allocations may be intercepted anywhere, blocking while
+ // locking the profiler mutex here could end up causing a deadlock if another
+ // mutex is taken, which the profiler may indirectly need elsewhere.
+ // See bug 1642726 for such a scenario.
+ // So instead we bail out if the mutex is already locked. Native allocations
+ // are statistically sampled anyway, so missing a few because of this is
+ // acceptable.
+ if (gPSMutex.IsLockedOnCurrentThread()) {
+ return false;
+ }
+
+ struct NativeAllocationMarker {
+ static constexpr mozilla::Span<const char> MarkerTypeName() {
+ return mozilla::MakeStringSpan("Native allocation");
+ }
+ static void StreamJSONMarkerData(
+ mozilla::baseprofiler::SpliceableJSONWriter& aWriter, int64_t aSize,
+ uintptr_t aMemoryAddress, int aThreadId) {
+ aWriter.IntProperty("size", aSize);
+ aWriter.IntProperty("memoryAddress",
+ static_cast<int64_t>(aMemoryAddress));
+ aWriter.IntProperty("threadId", aThreadId);
+ }
+ static mozilla::MarkerSchema MarkerTypeDisplay() {
+ return mozilla::MarkerSchema::SpecialFrontendLocation{};
+ }
+ };
+
+ profiler_add_marker("Native allocation", geckoprofiler::category::OTHER,
+ {MarkerThreadId::MainThread(), MarkerStack::Capture()},
+ NativeAllocationMarker{}, aSize, aMemoryAddress,
+ profiler_current_thread_id());
+ return true;
+}
+
+void profiler_set_js_context(JSContext* aCx) {
+ MOZ_ASSERT(aCx);
+
+ PSAutoLock lock(gPSMutex);
+
+ RegisteredThread* registeredThread =
+ TLSRegisteredThread::RegisteredThread(lock);
+ if (!registeredThread) {
+ return;
+ }
+
+ registeredThread->SetJSContext(aCx);
+
+ // This call is on-thread, so we can call PollJSSampling() to start JS
+ // sampling immediately.
+ registeredThread->PollJSSampling();
+
+ if (ActivePS::Exists(lock)) {
+ ProfiledThreadData* profiledThreadData =
+ ActivePS::GetProfiledThreadData(lock, registeredThread);
+ if (profiledThreadData) {
+ profiledThreadData->NotifyReceivedJSContext(
+ ActivePS::Buffer(lock).BufferRangeEnd());
+ }
+ }
+}
+
+void profiler_clear_js_context() {
+ MOZ_RELEASE_ASSERT(CorePS::Exists());
+
+ PSAutoLock lock(gPSMutex);
+
+ RegisteredThread* registeredThread =
+ TLSRegisteredThread::RegisteredThread(lock);
+ if (!registeredThread) {
+ return;
+ }
+
+ JSContext* cx = registeredThread->GetJSContext();
+ if (!cx) {
+ return;
+ }
+
+ if (ActivePS::Exists(lock) && ActivePS::FeatureJS(lock)) {
+ ProfiledThreadData* profiledThreadData =
+ ActivePS::GetProfiledThreadData(lock, registeredThread);
+ if (profiledThreadData) {
+ profiledThreadData->NotifyAboutToLoseJSContext(
+ cx, CorePS::ProcessStartTime(), ActivePS::Buffer(lock));
+
+ // Notify the JS context that profiling for this context has stopped.
+ // Do this by calling StopJSSampling and PollJSSampling before
+ // nulling out the JSContext.
+ registeredThread->StopJSSampling();
+ registeredThread->PollJSSampling();
+
+ registeredThread->ClearJSContext();
+
+ // Tell the thread that we'd like to have JS sampling on this
+ // thread again, once it gets a new JSContext (if ever).
+ registeredThread->StartJSSampling(ActivePS::JSFlags(lock));
+ return;
+ }
+ }
+
+ registeredThread->ClearJSContext();
+}
+
+// NOTE: aCollector's methods will be called while the target thread is paused.
+// Doing things in those methods like allocating -- which may try to claim
+// locks -- is a surefire way to deadlock.
+void profiler_suspend_and_sample_thread(int aThreadId, uint32_t aFeatures,
+ ProfilerStackCollector& aCollector,
+ bool aSampleNative /* = true */) {
+ // Lock the profiler mutex
+ PSAutoLock lock(gPSMutex);
+
+ const Vector<UniquePtr<RegisteredThread>>& registeredThreads =
+ CorePS::RegisteredThreads(lock);
+ for (auto& thread : registeredThreads) {
+ RefPtr<ThreadInfo> info = thread->Info();
+ RegisteredThread& registeredThread = *thread.get();
+
+ if (info->ThreadId() == aThreadId) {
+ if (info->IsMainThread()) {
+ aCollector.SetIsMainThread();
+ }
+
+ // Allocate the space for the native stack
+ NativeStack nativeStack;
+
+ // Suspend, sample, and then resume the target thread.
+ Sampler sampler(lock);
+ TimeStamp now = TimeStamp::Now();
+ sampler.SuspendAndSampleAndResumeThread(
+ lock, registeredThread, now,
+ [&](const Registers& aRegs, const TimeStamp& aNow) {
+ // The target thread is now suspended. Collect a native backtrace,
+ // and call the callback.
+ bool isSynchronous = false;
+#if defined(HAVE_FASTINIT_NATIVE_UNWIND)
+ if (aSampleNative) {
+ // We can only use FramePointerStackWalk or MozStackWalk from
+ // suspend_and_sample_thread as other stackwalking methods may not be
+ // initialized.
+# if defined(USE_FRAME_POINTER_STACK_WALK)
+ DoFramePointerBacktrace(lock, registeredThread, aRegs,
+ nativeStack);
+# elif defined(USE_MOZ_STACK_WALK)
+ DoMozStackWalkBacktrace(lock, registeredThread, aRegs,
+ nativeStack);
+# else
+# error "Invalid configuration"
+# endif
+
+ MergeStacks(aFeatures, isSynchronous, registeredThread, aRegs,
+ nativeStack, aCollector, CorePS::JsFrames(lock));
+ } else
+#endif
+ {
+ MergeStacks(aFeatures, isSynchronous, registeredThread, aRegs,
+ nativeStack, aCollector, CorePS::JsFrames(lock));
+
+ if (ProfilerFeature::HasLeaf(aFeatures)) {
+ aCollector.CollectNativeLeafAddr((void*)aRegs.mPC);
+ }
+ }
+ });
+
+ // NOTE: Make sure to disable the sampler before it is destroyed, in case
+ // the profiler is running at the same time.
+ sampler.Disable(lock);
+ break;
+ }
+ }
+}
+
+// END externally visible functions
+////////////////////////////////////////////////////////////////////////