1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
"use strict";
// An outcome of an OptimizationAttempt that is considered successful.
const SUCCESSFUL_OUTCOMES = [
"GenericSuccess",
"Inlined",
"DOM",
"Monomorphic",
"Polymorphic",
];
/**
* Model representing JIT optimization sites from the profiler
* for a frame (represented by a FrameNode). Requires optimization data from
* a profile, which is an array of RawOptimizationSites.
*
* When the ThreadNode for the profile iterates over the samples' frames, each
* frame's optimizations are accumulated in their respective FrameNodes. Each
* FrameNode may contain many different optimization sites. One sample may
* pick up optimization X on line Y in the frame, with the next sample
* containing optimization Z on line W in the same frame, as each frame is
* only function.
*
* An OptimizationSite contains a record of how many times the
* RawOptimizationSite was sampled, as well as the unique id based off of the
* original profiler array, and the RawOptimizationSite itself as a reference.
* @see devtools/client/performance/modules/logic/tree-model.js
*
* @struct RawOptimizationSite
* A structure describing a location in a script that was attempted to be optimized.
* Contains all the IonTypes observed, and the sequence of OptimizationAttempts that
* were attempted, and the line and column in the script. This is retrieved from the
* profiler after a recording, and our base data structure. Should always be referenced,
* and unmodified.
*
* Note that propertyName is an index into a string table, which needs to be
* provided in order for the raw optimization site to be inflated.
*
* @type {Array<IonType>} types
* @type {Array<OptimizationAttempt>} attempts
* @type {?number} propertyName
* @type {number} line
* @type {number} column
*
*
* @struct IonType
* IonMonkey attempts to classify each value in an optimization site by some type.
* Based off of the observed types for a value (like a variable that could be a
* string or an instance of an object), it determines what kind of type it should be
* classified as. Each IonType here contains an array of all ObservedTypes under `types`,
* the Ion type that IonMonkey decided this value should be (Int32, Object, etc.) as
* `mirType`, and the component of this optimization type that this value refers to --
* like a "getter" optimization, `a[b]`, has site `a` (the "Receiver") and `b`
* (the "Index").
*
* Generally the more ObservedTypes, the more deoptimized this OptimizationSite is.
* There could be no ObservedTypes, in which case `typeset` is undefined.
*
* @type {?Array<ObservedType>} typeset
* @type {string} site
* @type {string} mirType
*
*
* @struct ObservedType
* When IonMonkey attempts to determine what type a value is, it checks on each sample.
* The ObservedType can be thought of in more of JavaScripty-terms, rather than C++.
* The `keyedBy` property is a high level description of the type, like "primitive",
* "constructor", "function", "singleton", "alloc-site" (that one is a bit more weird).
* If the `keyedBy` type is a function or constructor, the ObservedType should have a
* `name` property, referring to the function or constructor name from the JS source.
* If IonMonkey can determine the origin of this type (like where the constructor is
* defined), the ObservedType will also have `location` and `line` properties, but
* `location` can sometimes be non-URL strings like "self-hosted" or a memory location
* like "102ca7880", or no location at all, and maybe `line` is 0 or undefined.
*
* @type {string} keyedBy
* @type {?string} name
* @type {?string} location
* @type {?string} line
*
*
* @struct OptimizationAttempt
* Each RawOptimizationSite contains an array of OptimizationAttempts. Generally,
* IonMonkey goes through a series of strategies for each kind of optimization, starting
* from most-niche and optimized, to the less-optimized, but more general strategies --
* for example, a getter opt may first try to optimize for the scenario of a getter on an
* `arguments` object -- that will fail most of the time, as most objects are not
* arguments objects, but it will attempt several strategies in order until it finds a
* strategy that works, or fails. Even in the best scenarios, some attempts will fail
* (like the arguments getter example), which is OK, as long as some attempt succeeds
* (with the earlier attempts preferred, as those are more optimized). In an
* OptimizationAttempt structure, we store just the `strategy` name and `outcome` name,
* both from enums in js/public/TrackedOptimizationInfo.h as TRACKED_STRATEGY_LIST and
* TRACKED_OUTCOME_LIST, respectively. An array of successful outcome strings are above
* in SUCCESSFUL_OUTCOMES.
*
* @see js/public/TrackedOptimizationInfo.h
*
* @type {string} strategy
* @type {string} outcome
*/
/*
* A wrapper around RawOptimizationSite to record sample count and ID (referring to the
* index of where this is in the initially seeded optimizations data), so we don't mutate
* the original data from the profiler. Provides methods to access the underlying
* optimization data easily, so understanding the semantics of JIT data isn't necessary.
*
* @constructor
*
* @param {Array<RawOptimizationSite>} optimizations
* @param {number} optsIndex
*
* @type {RawOptimizationSite} data
* @type {number} samples
* @type {number} id
*/
const OptimizationSite = function(id, opts) {
this.id = id;
this.data = opts;
this.samples = 1;
};
/**
* Constructor for JITOptimizations. A collection of OptimizationSites for a frame.
*
* @constructor
* @param {Array<RawOptimizationSite>} rawSites
* Array of raw optimization sites.
* @param {Array<string>} stringTable
* Array of strings from the profiler used to inflate
* JIT optimizations. Do not modify this!
*/
const JITOptimizations = function(rawSites, stringTable) {
// Build a histogram of optimization sites.
const sites = [];
for (const rawSite of rawSites) {
const existingSite = sites.find(site => site.data === rawSite);
if (existingSite) {
existingSite.samples++;
} else {
sites.push(new OptimizationSite(sites.length, rawSite));
}
}
// Inflate the optimization information.
for (const site of sites) {
const data = site.data;
const STRATEGY_SLOT = data.attempts.schema.strategy;
const OUTCOME_SLOT = data.attempts.schema.outcome;
const attempts = data.attempts.data.map(a => {
return {
id: site.id,
strategy: stringTable[a[STRATEGY_SLOT]],
outcome: stringTable[a[OUTCOME_SLOT]],
};
});
const types = data.types.map(t => {
const typeset = maybeTypeset(t.typeset, stringTable);
if (typeset) {
typeset.forEach(ts => {
ts.id = site.id;
});
}
return {
id: site.id,
typeset,
site: stringTable[t.site],
mirType: stringTable[t.mirType],
};
});
// Add IDs to to all children objects, so we can correllate sites when
// just looking at a specific type, attempt, etc..
attempts.id = types.id = site.id;
site.data = {
attempts,
types,
propertyName: maybeString(stringTable, data.propertyName),
line: data.line,
column: data.column,
};
}
this.optimizationSites = sites.sort((a, b) => b.samples - a.samples);
};
/**
* Make JITOptimizations iterable.
*/
JITOptimizations.prototype = {
[Symbol.iterator]: function*() {
yield* this.optimizationSites;
},
get length() {
return this.optimizationSites.length;
},
};
/**
* Takes an "outcome" string from an OptimizationAttempt and returns
* a boolean indicating whether or not its a successful outcome.
*
* @return {boolean}
*/
function isSuccessfulOutcome(outcome) {
return !!~SUCCESSFUL_OUTCOMES.indexOf(outcome);
}
/**
* Takes an OptimizationSite. Returns a boolean indicating if the passed
* in OptimizationSite has a "good" outcome at the end of its attempted strategies.
*
* @param {OptimizationSite} optimizationSite
* @return {boolean}
*/
function hasSuccessfulOutcome(optimizationSite) {
const attempts = optimizationSite.data.attempts;
const lastOutcome = attempts[attempts.length - 1].outcome;
return isSuccessfulOutcome(lastOutcome);
}
function maybeString(stringTable, index) {
return index ? stringTable[index] : undefined;
}
function maybeTypeset(typeset, stringTable) {
if (!typeset) {
return undefined;
}
return typeset.map(ty => {
return {
keyedBy: maybeString(stringTable, ty.keyedBy),
name: maybeString(stringTable, ty.name),
location: maybeString(stringTable, ty.location),
line: ty.line,
};
});
}
// Map of optimization implementation names to an enum.
const IMPLEMENTATION_MAP = {
interpreter: 0,
baseline: 1,
ion: 2,
};
const IMPLEMENTATION_NAMES = Object.keys(IMPLEMENTATION_MAP);
/**
* Takes data from a FrameNode and computes rendering positions for
* a stacked mountain graph, to visualize JIT optimization tiers over time.
*
* @param {FrameNode} frameNode
* The FrameNode who's optimizations we're iterating.
* @param {Array<number>} sampleTimes
* An array of every sample time within the range we're counting.
* From a ThreadNode's `sampleTimes` property.
* @param {number} bucketSize
* Size of each bucket in milliseconds.
* `duration / resolution = bucketSize` in OptimizationsGraph.
* @return {?Array<object>}
*/
function createTierGraphDataFromFrameNode(frameNode, sampleTimes, bucketSize) {
const tierData = frameNode.getTierData();
const stringTable = frameNode._stringTable;
const output = [];
let implEnum;
let tierDataIndex = 0;
let nextOptSample = tierData[tierDataIndex];
// Bucket data
let samplesInCurrentBucket = 0;
let currentBucketStartTime = sampleTimes[0];
let bucket = [];
// Store previous data point so we can have straight vertical lines
let previousValues;
// Iterate one after the samples, so we can finalize the last bucket
for (let i = 0; i <= sampleTimes.length; i++) {
const sampleTime = sampleTimes[i];
// If this sample is in the next bucket, or we're done
// checking sampleTimes and on the last iteration, finalize previous bucket
if (
sampleTime >= currentBucketStartTime + bucketSize ||
i >= sampleTimes.length
) {
const dataPoint = {};
dataPoint.values = [];
dataPoint.delta = currentBucketStartTime;
// Map the opt site counts as a normalized percentage (0-1)
// of its count in context of total samples this bucket
for (let j = 0; j < IMPLEMENTATION_NAMES.length; j++) {
dataPoint.values[j] = (bucket[j] || 0) / (samplesInCurrentBucket || 1);
}
// Push the values from the previous bucket to the same time
// as the current bucket so we get a straight vertical line.
if (previousValues) {
const data = Object.create(null);
data.values = previousValues;
data.delta = currentBucketStartTime;
output.push(data);
}
output.push(dataPoint);
// Set the new start time of this bucket and reset its count
currentBucketStartTime += bucketSize;
samplesInCurrentBucket = 0;
previousValues = dataPoint.values;
bucket = [];
}
// If this sample observed an optimization in this frame, record it
if (nextOptSample && nextOptSample.time === sampleTime) {
// If no implementation defined, it was the "interpreter".
implEnum =
IMPLEMENTATION_MAP[
stringTable[nextOptSample.implementation] || "interpreter"
];
bucket[implEnum] = (bucket[implEnum] || 0) + 1;
nextOptSample = tierData[++tierDataIndex];
}
samplesInCurrentBucket++;
}
return output;
}
exports.createTierGraphDataFromFrameNode = createTierGraphDataFromFrameNode;
exports.OptimizationSite = OptimizationSite;
exports.JITOptimizations = JITOptimizations;
exports.hasSuccessfulOutcome = hasSuccessfulOutcome;
exports.isSuccessfulOutcome = isSuccessfulOutcome;
exports.SUCCESSFUL_OUTCOMES = SUCCESSFUL_OUTCOMES;
|