1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "2D.h"
#include "PathAnalysis.h"
#include "PathHelpers.h"
namespace mozilla {
namespace gfx {
static double CubicRoot(double aValue) {
if (aValue < 0.0) {
return -CubicRoot(-aValue);
} else {
return pow(aValue, 1.0 / 3.0);
}
}
struct PointD : public BasePoint<double, PointD> {
typedef BasePoint<double, PointD> Super;
PointD() : Super() {}
PointD(double aX, double aY) : Super(aX, aY) {}
MOZ_IMPLICIT PointD(const Point& aPoint) : Super(aPoint.x, aPoint.y) {}
Point ToPoint() const {
return Point(static_cast<Float>(x), static_cast<Float>(y));
}
};
struct BezierControlPoints {
BezierControlPoints() = default;
BezierControlPoints(const PointD& aCP1, const PointD& aCP2,
const PointD& aCP3, const PointD& aCP4)
: mCP1(aCP1), mCP2(aCP2), mCP3(aCP3), mCP4(aCP4) {}
PointD mCP1, mCP2, mCP3, mCP4;
};
void FlattenBezier(const BezierControlPoints& aPoints, PathSink* aSink,
double aTolerance);
Path::Path() = default;
Path::~Path() = default;
Float Path::ComputeLength() {
EnsureFlattenedPath();
return mFlattenedPath->ComputeLength();
}
Point Path::ComputePointAtLength(Float aLength, Point* aTangent) {
EnsureFlattenedPath();
return mFlattenedPath->ComputePointAtLength(aLength, aTangent);
}
void Path::EnsureFlattenedPath() {
if (!mFlattenedPath) {
mFlattenedPath = new FlattenedPath();
StreamToSink(mFlattenedPath);
}
}
// This is the maximum deviation we allow (with an additional ~20% margin of
// error) of the approximation from the actual Bezier curve.
const Float kFlatteningTolerance = 0.0001f;
void FlattenedPath::MoveTo(const Point& aPoint) {
MOZ_ASSERT(!mCalculatedLength);
FlatPathOp op;
op.mType = FlatPathOp::OP_MOVETO;
op.mPoint = aPoint;
mPathOps.push_back(op);
mBeginPoint = aPoint;
}
void FlattenedPath::LineTo(const Point& aPoint) {
MOZ_ASSERT(!mCalculatedLength);
FlatPathOp op;
op.mType = FlatPathOp::OP_LINETO;
op.mPoint = aPoint;
mPathOps.push_back(op);
}
void FlattenedPath::BezierTo(const Point& aCP1, const Point& aCP2,
const Point& aCP3) {
MOZ_ASSERT(!mCalculatedLength);
FlattenBezier(BezierControlPoints(CurrentPoint(), aCP1, aCP2, aCP3), this,
kFlatteningTolerance);
}
void FlattenedPath::QuadraticBezierTo(const Point& aCP1, const Point& aCP2) {
MOZ_ASSERT(!mCalculatedLength);
// We need to elevate the degree of this quadratic B�zier to cubic, so we're
// going to add an intermediate control point, and recompute control point 1.
// The first and last control points remain the same.
// This formula can be found on http://fontforge.sourceforge.net/bezier.html
Point CP0 = CurrentPoint();
Point CP1 = (CP0 + aCP1 * 2.0) / 3.0;
Point CP2 = (aCP2 + aCP1 * 2.0) / 3.0;
Point CP3 = aCP2;
BezierTo(CP1, CP2, CP3);
}
void FlattenedPath::Close() {
MOZ_ASSERT(!mCalculatedLength);
LineTo(mBeginPoint);
}
void FlattenedPath::Arc(const Point& aOrigin, float aRadius, float aStartAngle,
float aEndAngle, bool aAntiClockwise) {
ArcToBezier(this, aOrigin, Size(aRadius, aRadius), aStartAngle, aEndAngle,
aAntiClockwise);
}
Float FlattenedPath::ComputeLength() {
if (!mCalculatedLength) {
Point currentPoint;
for (uint32_t i = 0; i < mPathOps.size(); i++) {
if (mPathOps[i].mType == FlatPathOp::OP_MOVETO) {
currentPoint = mPathOps[i].mPoint;
} else {
mCachedLength += Distance(currentPoint, mPathOps[i].mPoint);
currentPoint = mPathOps[i].mPoint;
}
}
mCalculatedLength = true;
}
return mCachedLength;
}
Point FlattenedPath::ComputePointAtLength(Float aLength, Point* aTangent) {
// We track the last point that -wasn't- in the same place as the current
// point so if we pass the edge of the path with a bunch of zero length
// paths we still get the correct tangent vector.
Point lastPointSinceMove;
Point currentPoint;
for (uint32_t i = 0; i < mPathOps.size(); i++) {
if (mPathOps[i].mType == FlatPathOp::OP_MOVETO) {
if (Distance(currentPoint, mPathOps[i].mPoint)) {
lastPointSinceMove = currentPoint;
}
currentPoint = mPathOps[i].mPoint;
} else {
Float segmentLength = Distance(currentPoint, mPathOps[i].mPoint);
if (segmentLength) {
lastPointSinceMove = currentPoint;
if (segmentLength > aLength) {
Point currentVector = mPathOps[i].mPoint - currentPoint;
Point tangent = currentVector / segmentLength;
if (aTangent) {
*aTangent = tangent;
}
return currentPoint + tangent * aLength;
}
}
aLength -= segmentLength;
currentPoint = mPathOps[i].mPoint;
}
}
Point currentVector = currentPoint - lastPointSinceMove;
if (aTangent) {
if (hypotf(currentVector.x, currentVector.y)) {
*aTangent = currentVector / hypotf(currentVector.x, currentVector.y);
} else {
*aTangent = Point();
}
}
return currentPoint;
}
// This function explicitly permits aControlPoints to refer to the same object
// as either of the other arguments.
static void SplitBezier(const BezierControlPoints& aControlPoints,
BezierControlPoints* aFirstSegmentControlPoints,
BezierControlPoints* aSecondSegmentControlPoints,
double t) {
MOZ_ASSERT(aSecondSegmentControlPoints);
*aSecondSegmentControlPoints = aControlPoints;
PointD cp1a =
aControlPoints.mCP1 + (aControlPoints.mCP2 - aControlPoints.mCP1) * t;
PointD cp2a =
aControlPoints.mCP2 + (aControlPoints.mCP3 - aControlPoints.mCP2) * t;
PointD cp1aa = cp1a + (cp2a - cp1a) * t;
PointD cp3a =
aControlPoints.mCP3 + (aControlPoints.mCP4 - aControlPoints.mCP3) * t;
PointD cp2aa = cp2a + (cp3a - cp2a) * t;
PointD cp1aaa = cp1aa + (cp2aa - cp1aa) * t;
aSecondSegmentControlPoints->mCP4 = aControlPoints.mCP4;
if (aFirstSegmentControlPoints) {
aFirstSegmentControlPoints->mCP1 = aControlPoints.mCP1;
aFirstSegmentControlPoints->mCP2 = cp1a;
aFirstSegmentControlPoints->mCP3 = cp1aa;
aFirstSegmentControlPoints->mCP4 = cp1aaa;
}
aSecondSegmentControlPoints->mCP1 = cp1aaa;
aSecondSegmentControlPoints->mCP2 = cp2aa;
aSecondSegmentControlPoints->mCP3 = cp3a;
}
static void FlattenBezierCurveSegment(const BezierControlPoints& aControlPoints,
PathSink* aSink, double aTolerance) {
/* The algorithm implemented here is based on:
* http://cis.usouthal.edu/~hain/general/Publications/Bezier/Bezier%20Offset%20Curves.pdf
*
* The basic premise is that for a small t the third order term in the
* equation of a cubic bezier curve is insignificantly small. This can
* then be approximated by a quadratic equation for which the maximum
* difference from a linear approximation can be much more easily determined.
*/
BezierControlPoints currentCP = aControlPoints;
double t = 0;
double currentTolerance = aTolerance;
while (t < 1.0) {
PointD cp21 = currentCP.mCP2 - currentCP.mCP1;
PointD cp31 = currentCP.mCP3 - currentCP.mCP1;
/* To remove divisions and check for divide-by-zero, this is optimized from:
* Float s3 = (cp31.x * cp21.y - cp31.y * cp21.x) / hypotf(cp21.x, cp21.y);
* t = 2 * Float(sqrt(aTolerance / (3. * std::abs(s3))));
*/
double cp21x31 = cp31.x * cp21.y - cp31.y * cp21.x;
double h = hypot(cp21.x, cp21.y);
if (cp21x31 * h == 0) {
break;
}
double s3inv = h / cp21x31;
t = 2 * sqrt(currentTolerance * std::abs(s3inv) / 3.);
currentTolerance *= 1 + aTolerance;
// Increase tolerance every iteration to prevent this loop from executing
// too many times. This approximates the length of large curves more
// roughly. In practice, aTolerance is the constant kFlatteningTolerance
// which has value 0.0001. With this value, it takes 6,932 splits to double
// currentTolerance (to 0.0002) and 23,028 splits to increase
// currentTolerance by an order of magnitude (to 0.001).
if (t >= 1.0) {
break;
}
SplitBezier(currentCP, nullptr, ¤tCP, t);
aSink->LineTo(currentCP.mCP1.ToPoint());
}
aSink->LineTo(currentCP.mCP4.ToPoint());
}
static inline void FindInflectionApproximationRange(
BezierControlPoints aControlPoints, double* aMin, double* aMax, double aT,
double aTolerance) {
SplitBezier(aControlPoints, nullptr, &aControlPoints, aT);
PointD cp21 = aControlPoints.mCP2 - aControlPoints.mCP1;
PointD cp41 = aControlPoints.mCP4 - aControlPoints.mCP1;
if (cp21.x == 0. && cp21.y == 0.) {
cp21 = aControlPoints.mCP3 - aControlPoints.mCP1;
}
if (cp21.x == 0. && cp21.y == 0.) {
// In this case s3 becomes lim[n->0] (cp41.x * n) / n - (cp41.y * n) / n =
// cp41.x - cp41.y.
double s3 = cp41.x - cp41.y;
// Use the absolute value so that Min and Max will correspond with the
// minimum and maximum of the range.
if (s3 == 0) {
*aMin = -1.0;
*aMax = 2.0;
} else {
double r = CubicRoot(std::abs(aTolerance / s3));
*aMin = aT - r;
*aMax = aT + r;
}
return;
}
double s3 = (cp41.x * cp21.y - cp41.y * cp21.x) / hypot(cp21.x, cp21.y);
if (s3 == 0) {
// This means within the precision we have it can be approximated
// infinitely by a linear segment. Deal with this by specifying the
// approximation range as extending beyond the entire curve.
*aMin = -1.0;
*aMax = 2.0;
return;
}
double tf = CubicRoot(std::abs(aTolerance / s3));
*aMin = aT - tf * (1 - aT);
*aMax = aT + tf * (1 - aT);
}
/* Find the inflection points of a bezier curve. Will return false if the
* curve is degenerate in such a way that it is best approximated by a straight
* line.
*
* The below algorithm was written by Jeff Muizelaar <jmuizelaar@mozilla.com>,
* explanation follows:
*
* The lower inflection point is returned in aT1, the higher one in aT2. In the
* case of a single inflection point this will be in aT1.
*
* The method is inspired by the algorithm in "analysis of in?ection points for
* planar cubic bezier curve"
*
* Here are some differences between this algorithm and versions discussed
* elsewhere in the literature:
*
* zhang et. al compute a0, d0 and e0 incrementally using the follow formula:
*
* Point a0 = CP2 - CP1
* Point a1 = CP3 - CP2
* Point a2 = CP4 - CP1
*
* Point d0 = a1 - a0
* Point d1 = a2 - a1
* Point e0 = d1 - d0
*
* this avoids any multiplications and may or may not be faster than the
* approach take below.
*
* "fast, precise flattening of cubic bezier path and ofset curves" by hain et.
* al
* Point a = CP1 + 3 * CP2 - 3 * CP3 + CP4
* Point b = 3 * CP1 - 6 * CP2 + 3 * CP3
* Point c = -3 * CP1 + 3 * CP2
* Point d = CP1
* the a, b, c, d can be expressed in terms of a0, d0 and e0 defined above as:
* c = 3 * a0
* b = 3 * d0
* a = e0
*
*
* a = 3a = a.y * b.x - a.x * b.y
* b = 3b = a.y * c.x - a.x * c.y
* c = 9c = b.y * c.x - b.x * c.y
*
* The additional multiples of 3 cancel each other out as show below:
*
* x = (-b + sqrt(b * b - 4 * a * c)) / (2 * a)
* x = (-3 * b + sqrt(3 * b * 3 * b - 4 * a * 3 * 9 * c / 3)) / (2 * 3 * a)
* x = 3 * (-b + sqrt(b * b - 4 * a * c)) / (2 * 3 * a)
* x = (-b + sqrt(b * b - 4 * a * c)) / (2 * a)
*
* I haven't looked into whether the formulation of the quadratic formula in
* hain has any numerical advantages over the one used below.
*/
static inline void FindInflectionPoints(
const BezierControlPoints& aControlPoints, double* aT1, double* aT2,
uint32_t* aCount) {
// Find inflection points.
// See www.faculty.idc.ac.il/arik/quality/appendixa.html for an explanation
// of this approach.
PointD A = aControlPoints.mCP2 - aControlPoints.mCP1;
PointD B =
aControlPoints.mCP3 - (aControlPoints.mCP2 * 2) + aControlPoints.mCP1;
PointD C = aControlPoints.mCP4 - (aControlPoints.mCP3 * 3) +
(aControlPoints.mCP2 * 3) - aControlPoints.mCP1;
double a = B.x * C.y - B.y * C.x;
double b = A.x * C.y - A.y * C.x;
double c = A.x * B.y - A.y * B.x;
if (a == 0) {
// Not a quadratic equation.
if (b == 0) {
// Instead of a linear acceleration change we have a constant
// acceleration change. This means the equation has no solution
// and there are no inflection points, unless the constant is 0.
// In that case the curve is a straight line, essentially that means
// the easiest way to deal with is is by saying there's an inflection
// point at t == 0. The inflection point approximation range found will
// automatically extend into infinity.
if (c == 0) {
*aCount = 1;
*aT1 = 0;
return;
}
*aCount = 0;
return;
}
*aT1 = -c / b;
*aCount = 1;
return;
} else {
double discriminant = b * b - 4 * a * c;
if (discriminant < 0) {
// No inflection points.
*aCount = 0;
} else if (discriminant == 0) {
*aCount = 1;
*aT1 = -b / (2 * a);
} else {
/* Use the following formula for computing the roots:
*
* q = -1/2 * (b + sign(b) * sqrt(b^2 - 4ac))
* t1 = q / a
* t2 = c / q
*/
double q = sqrt(discriminant);
if (b < 0) {
q = b - q;
} else {
q = b + q;
}
q *= -1. / 2;
*aT1 = q / a;
*aT2 = c / q;
if (*aT1 > *aT2) {
std::swap(*aT1, *aT2);
}
*aCount = 2;
}
}
}
void FlattenBezier(const BezierControlPoints& aControlPoints, PathSink* aSink,
double aTolerance) {
double t1;
double t2;
uint32_t count;
FindInflectionPoints(aControlPoints, &t1, &t2, &count);
// Check that at least one of the inflection points is inside [0..1]
if (count == 0 ||
((t1 < 0.0 || t1 >= 1.0) && (count == 1 || (t2 < 0.0 || t2 >= 1.0)))) {
FlattenBezierCurveSegment(aControlPoints, aSink, aTolerance);
return;
}
double t1min = t1, t1max = t1, t2min = t2, t2max = t2;
BezierControlPoints remainingCP = aControlPoints;
// For both inflection points, calulate the range where they can be linearly
// approximated if they are positioned within [0,1]
if (count > 0 && t1 >= 0 && t1 < 1.0) {
FindInflectionApproximationRange(aControlPoints, &t1min, &t1max, t1,
aTolerance);
}
if (count > 1 && t2 >= 0 && t2 < 1.0) {
FindInflectionApproximationRange(aControlPoints, &t2min, &t2max, t2,
aTolerance);
}
BezierControlPoints nextCPs = aControlPoints;
BezierControlPoints prevCPs;
// Process ranges. [t1min, t1max] and [t2min, t2max] are approximated by line
// segments.
if (count == 1 && t1min <= 0 && t1max >= 1.0) {
// The whole range can be approximated by a line segment.
aSink->LineTo(aControlPoints.mCP4.ToPoint());
return;
}
if (t1min > 0) {
// Flatten the Bezier up until the first inflection point's approximation
// point.
SplitBezier(aControlPoints, &prevCPs, &remainingCP, t1min);
FlattenBezierCurveSegment(prevCPs, aSink, aTolerance);
}
if (t1max >= 0 && t1max < 1.0 && (count == 1 || t2min > t1max)) {
// The second inflection point's approximation range begins after the end
// of the first, approximate the first inflection point by a line and
// subsequently flatten up until the end or the next inflection point.
SplitBezier(aControlPoints, nullptr, &nextCPs, t1max);
aSink->LineTo(nextCPs.mCP1.ToPoint());
if (count == 1 || (count > 1 && t2min >= 1.0)) {
// No more inflection points to deal with, flatten the rest of the curve.
FlattenBezierCurveSegment(nextCPs, aSink, aTolerance);
}
} else if (count > 1 && t2min > 1.0) {
// We've already concluded t2min <= t1max, so if this is true the
// approximation range for the first inflection point runs past the
// end of the curve, draw a line to the end and we're done.
aSink->LineTo(aControlPoints.mCP4.ToPoint());
return;
}
if (count > 1 && t2min < 1.0 && t2max > 0) {
if (t2min > 0 && t2min < t1max) {
// In this case the t2 approximation range starts inside the t1
// approximation range.
SplitBezier(aControlPoints, nullptr, &nextCPs, t1max);
aSink->LineTo(nextCPs.mCP1.ToPoint());
} else if (t2min > 0 && t1max > 0) {
SplitBezier(aControlPoints, nullptr, &nextCPs, t1max);
// Find a control points describing the portion of the curve between t1max
// and t2min.
double t2mina = (t2min - t1max) / (1 - t1max);
SplitBezier(nextCPs, &prevCPs, &nextCPs, t2mina);
FlattenBezierCurveSegment(prevCPs, aSink, aTolerance);
} else if (t2min > 0) {
// We have nothing interesting before t2min, find that bit and flatten it.
SplitBezier(aControlPoints, &prevCPs, &nextCPs, t2min);
FlattenBezierCurveSegment(prevCPs, aSink, aTolerance);
}
if (t2max < 1.0) {
// Flatten the portion of the curve after t2max
SplitBezier(aControlPoints, nullptr, &nextCPs, t2max);
// Draw a line to the start, this is the approximation between t2min and
// t2max.
aSink->LineTo(nextCPs.mCP1.ToPoint());
FlattenBezierCurveSegment(nextCPs, aSink, aTolerance);
} else {
// Our approximation range extends beyond the end of the curve.
aSink->LineTo(aControlPoints.mCP4.ToPoint());
return;
}
}
}
} // namespace gfx
} // namespace mozilla
|