summaryrefslogtreecommitdiffstats
path: root/gfx/angle/checkout/src/libANGLE/BinaryStream.h
blob: 083cc7bf279abdcf1c251fa208848869a465e6b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
//
// Copyright (c) 2012 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//

// BinaryStream.h: Provides binary serialization of simple types.

#ifndef LIBANGLE_BINARYSTREAM_H_
#define LIBANGLE_BINARYSTREAM_H_

#include <stdint.h>
#include <cstddef>
#include <string>
#include <vector>

#include "common/angleutils.h"
#include "common/mathutil.h"

namespace gl
{

class BinaryInputStream : angle::NonCopyable
{
  public:
    BinaryInputStream(const void *data, size_t length)
    {
        mError  = false;
        mOffset = 0;
        mData   = static_cast<const uint8_t *>(data);
        mLength = length;
    }

    // readInt will generate an error for bool types
    template <class IntT>
    IntT readInt()
    {
        int value = 0;
        read(&value);
        return static_cast<IntT>(value);
    }

    template <class IntT>
    void readInt(IntT *outValue)
    {
        *outValue = readInt<IntT>();
    }

    template <class IntT, class VectorElementT>
    void readIntVector(std::vector<VectorElementT> *param)
    {
        unsigned int size = readInt<unsigned int>();
        for (unsigned int index = 0; index < size; ++index)
        {
            param->push_back(readInt<IntT>());
        }
    }

    template <class EnumT>
    EnumT readEnum()
    {
        using UnderlyingType = typename std::underlying_type<EnumT>::type;
        return static_cast<EnumT>(readInt<UnderlyingType>());
    }

    template <class EnumT>
    void readEnum(EnumT *outValue)
    {
        *outValue = readEnum<EnumT>();
    }

    bool readBool()
    {
        int value = 0;
        read(&value);
        return (value > 0);
    }

    void readBool(bool *outValue) { *outValue = readBool(); }

    void readBytes(unsigned char outArray[], size_t count) { read<unsigned char>(outArray, count); }

    std::string readString()
    {
        std::string outString;
        readString(&outString);
        return outString;
    }

    void readString(std::string *v)
    {
        size_t length;
        readInt(&length);

        if (mError)
        {
            return;
        }

        angle::CheckedNumeric<size_t> checkedOffset(mOffset);
        checkedOffset += length;

        if (!checkedOffset.IsValid() || mOffset + length > mLength)
        {
            mError = true;
            return;
        }

        v->assign(reinterpret_cast<const char *>(mData) + mOffset, length);
        mOffset = checkedOffset.ValueOrDie();
    }

    void skip(size_t length)
    {
        angle::CheckedNumeric<size_t> checkedOffset(mOffset);
        checkedOffset += length;

        if (!checkedOffset.IsValid() || mOffset + length > mLength)
        {
            mError = true;
            return;
        }

        mOffset = checkedOffset.ValueOrDie();
    }

    size_t offset() const { return mOffset; }
    size_t remainingSize() const
    {
        ASSERT(mLength >= mOffset);
        return mLength - mOffset;
    }

    bool error() const { return mError; }

    bool endOfStream() const { return mOffset == mLength; }

    const uint8_t *data() { return mData; }

  private:
    bool mError;
    size_t mOffset;
    const uint8_t *mData;
    size_t mLength;

    template <typename T>
    void read(T *v, size_t num)
    {
        static_assert(std::is_fundamental<T>::value, "T must be a fundamental type.");

        angle::CheckedNumeric<size_t> checkedLength(num);
        checkedLength *= sizeof(T);
        if (!checkedLength.IsValid())
        {
            mError = true;
            return;
        }

        angle::CheckedNumeric<size_t> checkedOffset(mOffset);
        checkedOffset += checkedLength;

        if (!checkedOffset.IsValid() || checkedOffset.ValueOrDie() > mLength)
        {
            mError = true;
            return;
        }

        memcpy(v, mData + mOffset, checkedLength.ValueOrDie());
        mOffset = checkedOffset.ValueOrDie();
    }

    template <typename T>
    void read(T *v)
    {
        read(v, 1);
    }
};

class BinaryOutputStream : angle::NonCopyable
{
  public:
    BinaryOutputStream();
    ~BinaryOutputStream();

    // writeInt also handles bool types
    template <class IntT>
    void writeInt(IntT param)
    {
        ASSERT(angle::IsValueInRangeForNumericType<int>(param));
        int intValue = static_cast<int>(param);
        write(&intValue, 1);
    }

    // Specialized writeInt for values that can also be exactly -1.
    template <class UintT>
    void writeIntOrNegOne(UintT param)
    {
        if (param == static_cast<UintT>(-1))
        {
            writeInt(-1);
        }
        else
        {
            writeInt(param);
        }
    }

    template <class IntT>
    void writeIntVector(std::vector<IntT> param)
    {
        writeInt(param.size());
        for (IntT element : param)
        {
            writeIntOrNegOne(element);
        }
    }

    template <class EnumT>
    void writeEnum(EnumT param)
    {
        using UnderlyingType = typename std::underlying_type<EnumT>::type;
        writeInt<UnderlyingType>(static_cast<UnderlyingType>(param));
    }

    void writeString(const std::string &v)
    {
        writeInt(v.length());
        write(v.c_str(), v.length());
    }

    void writeBytes(const unsigned char *bytes, size_t count) { write(bytes, count); }

    size_t length() const { return mData.size(); }

    const void *data() const { return mData.size() ? &mData[0] : nullptr; }

  private:
    std::vector<char> mData;

    template <typename T>
    void write(const T *v, size_t num)
    {
        static_assert(std::is_fundamental<T>::value, "T must be a fundamental type.");
        const char *asBytes = reinterpret_cast<const char *>(v);
        mData.insert(mData.end(), asBytes, asBytes + num * sizeof(T));
    }
};

inline BinaryOutputStream::BinaryOutputStream() {}

inline BinaryOutputStream::~BinaryOutputStream() = default;

}  // namespace gl

#endif  // LIBANGLE_BINARYSTREAM_H_