summaryrefslogtreecommitdiffstats
path: root/gfx/layers/LayerSorter.cpp
blob: 65b5264dac416e5216fc1629dc0e31b17a43e1db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "LayerSorter.h"
#include <math.h>                     // for fabs
#include <stdint.h>                   // for uint32_t
#include <stdio.h>                    // for fprintf, stderr, FILE
#include <stdlib.h>                   // for getenv
#include "DirectedGraph.h"            // for DirectedGraph
#include "Layers.h"                   // for Layer
#include "gfxEnv.h"                   // for gfxEnv
#include "gfxLineSegment.h"           // for gfxLineSegment
#include "gfxPoint.h"                 // for gfxPoint
#include "gfxQuad.h"                  // for gfxQuad
#include "gfxRect.h"                  // for gfxRect
#include "gfxTypes.h"                 // for gfxFloat
#include "gfxUtils.h"                 // for TransformToQuad
#include "mozilla/gfx/BasePoint3D.h"  // for BasePoint3D
#include "mozilla/Sprintf.h"          // for SprintfLiteral
#include "nsRegion.h"                 // for nsIntRegion
#include "nsTArray.h"                 // for nsTArray, etc
#include "limits.h"
#include "mozilla/Assertions.h"

namespace mozilla {
namespace layers {

using namespace mozilla::gfx;

enum LayerSortOrder {
  Undefined,
  ABeforeB,
  BBeforeA,
};

/**
 * Recover the z component from a 2d transformed point by finding the
 * intersection of a line through the point in the z direction and the
 * transformed plane.
 *
 * We want to solve:
 *
 * point = normal . (p0 - l0) / normal . l
 */
static gfxFloat RecoverZDepth(const Matrix4x4& aTransform,
                              const gfxPoint& aPoint) {
  const Point3D l(0, 0, 1);
  Point3D l0 = Point3D(aPoint.x, aPoint.y, 0);
  Point3D p0 = aTransform.TransformPoint(Point3D(0, 0, 0));
  Point3D normal = aTransform.GetNormalVector();

  gfxFloat n = normal.DotProduct(p0 - l0);
  gfxFloat d = normal.DotProduct(l);

  if (!d) {
    return 0;
  }

  return n / d;
}

/**
 * Determine if this transform layer should be drawn before another when they
 * are both preserve-3d children.
 *
 * We want to find the relative z depths of the 2 layers at points where they
 * intersect when projected onto the 2d screen plane. Intersections are defined
 * as corners that are positioned within the other quad, as well as
 * intersections of the lines.
 *
 * We then choose the intersection point with the greatest difference in Z
 * depths and use this point to determine an ordering for the two layers.
 * For layers that are intersecting in 3d space, this essentially guesses an
 * order. In a lot of cases we only intersect right at the edge point (3d cubes
 * in particular) and this generates the 'correct' looking ordering. For planes
 * that truely intersect, then there is no correct ordering and this remains
 * unsolved without changing our rendering code.
 */
static LayerSortOrder CompareDepth(Layer* aOne, Layer* aTwo) {
  gfxRect ourRect =
      ThebesRect(aOne->GetLocalVisibleRegion().GetBounds().ToUnknownRect());
  gfxRect otherRect =
      ThebesRect(aTwo->GetLocalVisibleRegion().GetBounds().ToUnknownRect());

  MOZ_ASSERT(aOne->GetParent() && aOne->GetParent()->Extend3DContext() &&
             aTwo->GetParent() && aTwo->GetParent()->Extend3DContext());
  // Effective transform of leaves may had been projected to 2D.
  Matrix4x4 ourTransform =
      aOne->GetLocalTransform() * aOne->GetParent()->GetEffectiveTransform();
  Matrix4x4 otherTransform =
      aTwo->GetLocalTransform() * aTwo->GetParent()->GetEffectiveTransform();

  // Transform both rectangles and project into 2d space.
  gfxQuad ourTransformedRect = gfxUtils::TransformToQuad(ourRect, ourTransform);
  gfxQuad otherTransformedRect =
      gfxUtils::TransformToQuad(otherRect, otherTransform);

  gfxRect ourBounds = ourTransformedRect.GetBounds();
  gfxRect otherBounds = otherTransformedRect.GetBounds();

  if (!ourBounds.Intersects(otherBounds)) {
    return Undefined;
  }

  // Make a list of all points that are within the other rect.
  // Could we just check Contains() on the bounds rects. ie, is it possible
  // for layers to overlap without intersections (in 2d space) and yet still
  // have their bounds rects not completely enclose each other?
  nsTArray<gfxPoint> points;
  for (uint32_t i = 0; i < 4; i++) {
    if (ourTransformedRect.Contains(otherTransformedRect.mPoints[i])) {
      points.AppendElement(otherTransformedRect.mPoints[i]);
    }
    if (otherTransformedRect.Contains(ourTransformedRect.mPoints[i])) {
      points.AppendElement(ourTransformedRect.mPoints[i]);
    }
  }

  // Look for intersections between lines (in 2d space) and use these as
  // depth testing points.
  for (uint32_t i = 0; i < 4; i++) {
    for (uint32_t j = 0; j < 4; j++) {
      gfxPoint intersection;
      gfxLineSegment one(ourTransformedRect.mPoints[i],
                         ourTransformedRect.mPoints[(i + 1) % 4]);
      gfxLineSegment two(otherTransformedRect.mPoints[j],
                         otherTransformedRect.mPoints[(j + 1) % 4]);
      if (one.Intersects(two, intersection)) {
        points.AppendElement(intersection);
      }
    }
  }

  // No intersections, no defined order between these layers.
  if (points.IsEmpty()) {
    return Undefined;
  }

  // Find the relative Z depths of each intersection point and check that the
  // layers are in the same order.
  gfxFloat highest = 0;
  for (uint32_t i = 0; i < points.Length(); i++) {
    gfxFloat ourDepth = RecoverZDepth(ourTransform, points.ElementAt(i));
    gfxFloat otherDepth = RecoverZDepth(otherTransform, points.ElementAt(i));

    gfxFloat difference = otherDepth - ourDepth;

    if (fabs(difference) > fabs(highest)) {
      highest = difference;
    }
  }
  // If layers have the same depth keep the original order
  if (fabs(highest) < 0.1 || highest >= 0) {
    return ABeforeB;
  } else {
    return BBeforeA;
  }
}

#ifdef DEBUG
// #define USE_XTERM_COLORING
#  ifdef USE_XTERM_COLORING
// List of color values, which can be added to the xterm foreground offset or
// background offset to generate a xterm color code.
// NOTE: The colors that we don't explicitly use (by name) are commented out,
// to avoid triggering Wunused-const-variable build warnings.
static const int XTERM_FOREGROUND_COLOR_OFFSET = 30;
static const int XTERM_BACKGROUND_COLOR_OFFSET = 40;
static const int BLACK = 0;
// static const int RED = 1;
static const int GREEN = 2;
// static const int YELLOW = 3;
// static const int BLUE = 4;
// static const int MAGENTA = 5;
// static const int CYAN = 6;
// static const int WHITE = 7;

static const int RESET = 0;
// static const int BRIGHT = 1;
// static const int DIM = 2;
// static const int UNDERLINE = 3;
// static const int BLINK = 4;
// static const int REVERSE = 7;
// static const int HIDDEN = 8;

static void SetTextColor(uint32_t aColor) {
  char command[13];

  /* Command is the control command to the terminal */
  SprintfLiteral(command, "%c[%d;%d;%dm", 0x1B, RESET,
                 aColor + XTERM_FOREGROUND_COLOR_OFFSET,
                 BLACK + XTERM_BACKGROUND_COLOR_OFFSET);
  printf("%s", command);
}

static void print_layer_internal(FILE* aFile, Layer* aLayer, uint32_t aColor) {
  SetTextColor(aColor);
  fprintf(aFile, "%p", aLayer);
  SetTextColor(GREEN);
}
#  else

const char* colors[] = {"Black", "Red",     "Green", "Yellow",
                        "Blue",  "Magenta", "Cyan",  "White"};

static void print_layer_internal(FILE* aFile, Layer* aLayer, uint32_t aColor) {
  fprintf(aFile, "%p(%s)", aLayer, colors[aColor]);
}
#  endif

static void print_layer(FILE* aFile, Layer* aLayer) {
  print_layer_internal(aFile, aLayer, aLayer->GetDebugColorIndex());
}

static void DumpLayerList(nsTArray<Layer*>& aLayers) {
  for (uint32_t i = 0; i < aLayers.Length(); i++) {
    print_layer(stderr, aLayers.ElementAt(i));
    fprintf(stderr, " ");
  }
  fprintf(stderr, "\n");
}

static void DumpEdgeList(DirectedGraph<Layer*>& aGraph) {
  const nsTArray<DirectedGraph<Layer*>::Edge>& edges = aGraph.GetEdgeList();

  for (uint32_t i = 0; i < edges.Length(); i++) {
    fprintf(stderr, "From: ");
    print_layer(stderr, edges.ElementAt(i).mFrom);
    fprintf(stderr, ", To: ");
    print_layer(stderr, edges.ElementAt(i).mTo);
    fprintf(stderr, "\n");
  }
}
#endif

// The maximum number of layers that we will attempt to sort. Anything
// greater than this will be left unsorted. We should consider enabling
// depth buffering for the scene in this case.
#define MAX_SORTABLE_LAYERS 100

uint32_t gColorIndex = 1;

void SortLayersBy3DZOrder(nsTArray<Layer*>& aLayers) {
  uint32_t nodeCount = aLayers.Length();
  if (nodeCount > MAX_SORTABLE_LAYERS) {
    return;
  }
  DirectedGraph<Layer*> graph;

#ifdef DEBUG
  if (gfxEnv::DumpLayerSortList()) {
    for (uint32_t i = 0; i < nodeCount; i++) {
      if (aLayers.ElementAt(i)->GetDebugColorIndex() == 0) {
        aLayers.ElementAt(i)->SetDebugColorIndex(gColorIndex++);
        if (gColorIndex > 7) {
          gColorIndex = 1;
        }
      }
    }
    fprintf(stderr, " --- Layers before sorting: --- \n");
    DumpLayerList(aLayers);
  }
#endif

  // Iterate layers and determine edges.
  for (uint32_t i = 0; i < nodeCount; i++) {
    for (uint32_t j = i + 1; j < nodeCount; j++) {
      Layer* a = aLayers.ElementAt(i);
      Layer* b = aLayers.ElementAt(j);
      LayerSortOrder order = CompareDepth(a, b);
      if (order == ABeforeB) {
        graph.AddEdge(a, b);
      } else if (order == BBeforeA) {
        graph.AddEdge(b, a);
      }
    }
  }

#ifdef DEBUG
  if (gfxEnv::DumpLayerSortList()) {
    fprintf(stderr, " --- Edge List: --- \n");
    DumpEdgeList(graph);
  }
#endif

  // Build a new array using the graph.
  nsTArray<Layer*> noIncoming;
  nsTArray<Layer*> sortedList;

  // Make a list of all layers with no incoming edges.
  noIncoming.AppendElements(aLayers);
  const nsTArray<DirectedGraph<Layer*>::Edge>& edges = graph.GetEdgeList();
  for (uint32_t i = 0; i < edges.Length(); i++) {
    noIncoming.RemoveElement(edges.ElementAt(i).mTo);
  }

  // Move each item without incoming edges into the sorted list,
  // and remove edges from it.
  do {
    if (!noIncoming.IsEmpty()) {
      Layer* layer = noIncoming.PopLastElement();
      MOZ_ASSERT(layer);  // don't let null layer pointers sneak into sortedList

      sortedList.AppendElement(layer);

      nsTArray<DirectedGraph<Layer*>::Edge> outgoing;
      graph.GetEdgesFrom(layer, outgoing);
      for (uint32_t i = 0; i < outgoing.Length(); i++) {
        DirectedGraph<Layer*>::Edge edge = outgoing.ElementAt(i);
        graph.RemoveEdge(edge);
        if (!graph.NumEdgesTo(edge.mTo)) {
          // If this node also has no edges now, add it to the list
          noIncoming.AppendElement(edge.mTo);
        }
      }
    }

    // If there are no nodes without incoming edges, but there
    // are still edges, then we have a cycle.
    if (noIncoming.IsEmpty() && graph.GetEdgeCount()) {
      // Find the node with the least incoming edges.
      uint32_t minEdges = UINT_MAX;
      Layer* minNode = nullptr;
      for (uint32_t i = 0; i < aLayers.Length(); i++) {
        uint32_t edgeCount = graph.NumEdgesTo(aLayers.ElementAt(i));
        if (edgeCount && edgeCount < minEdges) {
          minEdges = edgeCount;
          minNode = aLayers.ElementAt(i);
          if (minEdges == 1) {
            break;
          }
        }
      }

      if (minNode) {
        // Remove all of them!
        graph.RemoveEdgesTo(minNode);
        noIncoming.AppendElement(minNode);
      }
    }
  } while (!noIncoming.IsEmpty());
  NS_ASSERTION(!graph.GetEdgeCount(), "Cycles detected!");
#ifdef DEBUG
  if (gfxEnv::DumpLayerSortList()) {
    fprintf(stderr, " --- Layers after sorting: --- \n");
    DumpLayerList(sortedList);
  }
#endif

  aLayers.Clear();
  aLayers.AppendElements(sortedList);
}

}  // namespace layers
}  // namespace mozilla