1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_layers_ShadowLayers_h
#define mozilla_layers_ShadowLayers_h 1
#include <stddef.h> // for size_t
#include <stdint.h> // for uint64_t
#include "gfxTypes.h"
#include "mozilla/Attributes.h" // for override
#include "mozilla/gfx/Rect.h"
#include "mozilla/WidgetUtils.h" // for ScreenRotation
#include "mozilla/ipc/SharedMemory.h" // for SharedMemory, etc
#include "mozilla/HalScreenConfiguration.h" // for ScreenOrientation
#include "mozilla/layers/CompositableForwarder.h"
#include "mozilla/layers/FocusTarget.h"
#include "mozilla/layers/LayersTypes.h"
#include "mozilla/layers/TextureForwarder.h"
#include "mozilla/layers/CompositorTypes.h" // for OpenMode, etc
#include "mozilla/layers/CompositorBridgeChild.h"
#include "nsCOMPtr.h" // for already_AddRefed
#include "nsRegion.h" // for nsIntRegion
#include "nsTArrayForwardDeclare.h" // for nsTArray
#include "nsIWidget.h"
#include <vector>
namespace mozilla {
namespace layers {
class ClientLayerManager;
class CompositorBridgeChild;
class FixedSizeSmallShmemSectionAllocator;
class ImageContainer;
class Layer;
class PLayerTransactionChild;
class LayerTransactionChild;
class ShadowableLayer;
class SurfaceDescriptor;
class TextureClient;
class ThebesBuffer;
class ThebesBufferData;
class Transaction;
/**
* We want to share layer trees across thread contexts and address
* spaces for several reasons; chief among them
*
* - a parent process can paint a child process's layer tree while
* the child process is blocked, say on content script. This is
* important on mobile devices where UI responsiveness is key.
*
* - a dedicated "compositor" process can asynchronously (wrt the
* browser process) composite and animate layer trees, allowing a
* form of pipeline parallelism between compositor/browser/content
*
* - a dedicated "compositor" process can take all responsibility for
* accessing the GPU, which is desirable on systems with
* buggy/leaky drivers because the compositor process can die while
* browser and content live on (and failover mechanisms can be
* installed to quickly bring up a replacement compositor)
*
* The Layers model has a crisply defined API, which makes it easy to
* safely "share" layer trees. The ShadowLayers API extends Layers to
* allow a remote, parent process to access a child process's layer
* tree.
*
* ShadowLayerForwarder publishes a child context's layer tree to a
* parent context. This comprises recording layer-tree modifications
* into atomic transactions and pushing them over IPC.
*
* LayerManagerComposite grafts layer subtrees published by child-context
* ShadowLayerForwarder(s) into a parent-context layer tree.
*
* (Advanced note: because our process tree may have a height >2, a
* non-leaf subprocess may both receive updates from child processes
* and publish them to parent processes. Put another way,
* LayerManagers may be both LayerManagerComposites and
* ShadowLayerForwarders.)
*
* There are only shadow types for layers that have different shadow
* vs. not-shadow behavior. ColorLayers and ContainerLayers behave
* the same way in both regimes (so far).
*
*
* The mecanism to shadow the layer tree on the compositor through IPC works as
* follows:
* The layer tree is managed on the content thread, and shadowed in the
* compositor thread. The shadow layer tree is only kept in sync with whatever
* happens in the content thread. To do this we use IPDL protocols. IPDL is a
* domain specific language that describes how two processes or thread should
* communicate. C++ code is generated from .ipdl files to implement the message
* passing, synchronization and serialization logic. To use the generated code
* we implement classes that inherit the generated IPDL actor. the ipdl actors
* of a protocol PX are PXChild or PXParent (the generated class), and we
* conventionally implement XChild and XParent. The Parent side of the protocol
* is the one that lives on the compositor thread. Think of IPDL actors as
* endpoints of communication. they are useful to send messages and also to
* dispatch the message to the right actor on the other side. One nice property
* of an IPDL actor is that when an actor, say PXChild is sent in a message, the
* PXParent comes out in the other side. we use this property a lot to dispatch
* messages to the right layers and compositable, each of which have their own
* ipdl actor on both side.
*
* Most of the synchronization logic happens in layer transactions and
* compositable transactions.
* A transaction is a set of changes to the layers and/or the compositables
* that are sent and applied together to the compositor thread to keep the
* LayerComposite in a coherent state.
* Layer transactions maintain the shape of the shadow layer tree, and
* synchronize the texture data held by compositables. Layer transactions
* are always between the content thread and the compositor thread.
* Compositable transactions are subset of a layer transaction with which only
* compositables and textures can be manipulated, and does not always originate
* from the content thread. (See CompositableForwarder.h and ImageBridgeChild.h)
*/
class ShadowLayerForwarder final : public LayersIPCActor,
public CompositableForwarder,
public LegacySurfaceDescriptorAllocator {
friend class ClientLayerManager;
public:
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ShadowLayerForwarder, override);
/**
* Setup the IPDL actor for aCompositable to be part of layers
* transactions.
*/
void Connect(CompositableClient* aCompositable,
ImageContainer* aImageContainer) override;
/**
* Adds an edit in the layers transaction in order to attach
* the corresponding compositable and layer on the compositor side.
* Connect must have been called on aCompositable beforehand.
*/
void Attach(CompositableClient* aCompositable, ShadowableLayer* aLayer);
/**
* Adds an edit in the transaction in order to attach a Compositable that
* is not managed by this ShadowLayerForwarder (for example, by ImageBridge
* in the case of async-video).
* Since the compositable is not managed by this forwarder, we can't use
* the compositable or it's IPDL actor here, so we use an ID instead, that
* is matched on the compositor side.
*/
void AttachAsyncCompositable(const CompositableHandle& aHandle,
ShadowableLayer* aLayer);
/**
* Begin recording a transaction to be forwarded atomically to a
* LayerManagerComposite.
*/
void BeginTransaction(const gfx::IntRect& aTargetBounds,
ScreenRotation aRotation,
hal::ScreenOrientation aOrientation);
/**
* The following methods may only be called after BeginTransaction()
* but before EndTransaction(). They mirror the LayerManager
* interface in Layers.h.
*/
/**
* Notify the shadow manager that a new, "real" layer has been
* created, and a corresponding shadow layer should be created in
* the compositing process.
*/
void CreatedPaintedLayer(ShadowableLayer* aThebes);
void CreatedContainerLayer(ShadowableLayer* aContainer);
void CreatedImageLayer(ShadowableLayer* aImage);
void CreatedColorLayer(ShadowableLayer* aColor);
void CreatedCanvasLayer(ShadowableLayer* aCanvas);
void CreatedRefLayer(ShadowableLayer* aRef);
/**
* At least one attribute of |aMutant| has changed, and |aMutant|
* needs to sync to its shadow layer. This initial implementation
* forwards all attributes when any of the appropriate attribute
* set is mutated.
*/
void Mutated(ShadowableLayer* aMutant);
void MutatedSimple(ShadowableLayer* aMutant);
void SetRoot(ShadowableLayer* aRoot);
/**
* Insert |aChild| after |aAfter| in |aContainer|. |aAfter| can be
* nullptr to indicated that |aChild| should be appended to the end of
* |aContainer|'s child list.
*/
void InsertAfter(ShadowableLayer* aContainer, ShadowableLayer* aChild,
ShadowableLayer* aAfter = nullptr);
void RemoveChild(ShadowableLayer* aContainer, ShadowableLayer* aChild);
void RepositionChild(ShadowableLayer* aContainer, ShadowableLayer* aChild,
ShadowableLayer* aAfter = nullptr);
/**
* Set aMaskLayer as the mask on aLayer.
* Note that only image layers are properly supported
* LayerTransactionParent::UpdateMask and accompanying ipdl
* will need changing to update properties for other kinds
* of mask layer.
*/
void SetMask(ShadowableLayer* aLayer, ShadowableLayer* aMaskLayer);
/**
* See CompositableForwarder::UseTiledLayerBuffer
*/
void UseTiledLayerBuffer(
CompositableClient* aCompositable,
const SurfaceDescriptorTiles& aTileLayerDescriptor) override;
void ReleaseCompositable(const CompositableHandle& aHandle) override;
bool DestroyInTransaction(PTextureChild* aTexture) override;
bool DestroyInTransaction(const CompositableHandle& aHandle);
void RemoveTextureFromCompositable(CompositableClient* aCompositable,
TextureClient* aTexture) override;
/**
* Communicate to the compositor that aRegion in the texture identified by
* aLayer and aIdentifier has been updated to aThebesBuffer.
*/
void UpdateTextureRegion(CompositableClient* aCompositable,
const ThebesBufferData& aThebesBufferData,
const nsIntRegion& aUpdatedRegion) override;
/**
* See CompositableForwarder::UseTextures
*/
void UseTextures(CompositableClient* aCompositable,
const nsTArray<TimedTextureClient>& aTextures) override;
void UseComponentAlphaTextures(CompositableClient* aCompositable,
TextureClient* aClientOnBlack,
TextureClient* aClientOnWhite) override;
/**
* Used for debugging to tell the compositor how long this frame took to
* paint.
*/
void SendPaintTime(TransactionId aId, TimeDuration aPaintTime);
/**
* End the current transaction and forward it to LayerManagerComposite.
* |aReplies| are directions from the LayerManagerComposite to the
* caller of EndTransaction().
*/
bool EndTransaction(const nsIntRegion& aRegionToClear, TransactionId aId,
bool aScheduleComposite, uint32_t aPaintSequenceNumber,
bool aIsRepeatTransaction,
const mozilla::VsyncId& aVsyncId,
const mozilla::TimeStamp& aVsyncTime,
const mozilla::TimeStamp& aRefreshStart,
const mozilla::TimeStamp& aTransactionStart,
bool aContainsSVG, const nsCString& aURL, bool* aSent,
const nsTArray<CompositionPayload>& aPayload =
nsTArray<CompositionPayload>());
/**
* Set an actor through which layer updates will be pushed.
*/
void SetShadowManager(PLayerTransactionChild* aShadowManager);
/**
* Layout calls here to cache current plugin widget configuration
* data. We ship this across with the rest of the layer updates when
* we update. Chrome handles applying these changes.
*/
void StorePluginWidgetConfigurations(
const nsTArray<nsIWidget::Configuration>& aConfigurations);
void StopReceiveAsyncParentMessge();
void ClearCachedResources();
void ScheduleComposite();
/**
* True if this is forwarding to a LayerManagerComposite.
*/
bool HasShadowManager() const { return !!mShadowManager; }
LayerTransactionChild* GetShadowManager() const {
return mShadowManager.get();
}
// Send a synchronous message asking the LayerTransactionParent in the
// compositor to shutdown.
void SynchronouslyShutdown();
/**
* The following Alloc/Open/Destroy interfaces abstract over the
* details of working with surfaces that are shared across
* processes. They provide the glue between C++ Layers and the
* LayerComposite IPC system.
*
* The basic lifecycle is
*
* - a Layer needs a buffer. Its ShadowableLayer subclass calls
* AllocBuffer(), then calls one of the Created*Buffer() methods
* above to transfer the (temporary) front buffer to its
* LayerComposite in the other process. The Layer needs a
* gfxASurface to paint, so the ShadowableLayer uses
* OpenDescriptor(backBuffer) to get that surface, and hands it
* out to the Layer.
*
* - a Layer has painted new pixels. Its ShadowableLayer calls one
* of the Painted*Buffer() methods above with the back buffer
* descriptor. This notification is forwarded to the LayerComposite,
* which uses OpenDescriptor() to access the newly-painted pixels.
* The LayerComposite then updates its front buffer in a Layer- and
* platform-dependent way, and sends a surface descriptor back to
* the ShadowableLayer that becomes its new back back buffer.
*
* - a Layer wants to destroy its buffers. Its ShadowableLayer
* calls Destroyed*Buffer(), which gives up control of the back
* buffer descriptor. The actual back buffer surface is then
* destroyed using DestroySharedSurface() just before notifying
* the parent process. When the parent process is notified, the
* LayerComposite also calls DestroySharedSurface() on its front
* buffer, and the double-buffer pair is gone.
*/
bool IPCOpen() const override;
/**
* Construct a shadow of |aLayer| on the "other side", at the
* LayerManagerComposite.
*/
LayerHandle ConstructShadowFor(ShadowableLayer* aLayer);
/**
* Flag the next paint as the first for a document.
*/
void SetIsFirstPaint() { mIsFirstPaint = true; }
bool GetIsFirstPaint() const { return mIsFirstPaint; }
/**
* Set the current focus target to be sent with the next paint.
*/
void SetFocusTarget(const FocusTarget& aFocusTarget) {
mFocusTarget = aFocusTarget;
}
void SetLayersObserverEpoch(LayersObserverEpoch aEpoch);
static void PlatformSyncBeforeUpdate();
bool AllocSurfaceDescriptor(const gfx::IntSize& aSize,
gfxContentType aContent,
SurfaceDescriptor* aBuffer) override;
bool AllocSurfaceDescriptorWithCaps(const gfx::IntSize& aSize,
gfxContentType aContent, uint32_t aCaps,
SurfaceDescriptor* aBuffer) override;
void DestroySurfaceDescriptor(SurfaceDescriptor* aSurface) override;
void UpdateFwdTransactionId() override;
uint64_t GetFwdTransactionId() override;
void UpdateTextureLocks();
void SyncTextures(const nsTArray<uint64_t>& aSerials);
void ReleaseLayer(const LayerHandle& aHandle);
bool InForwarderThread() override { return NS_IsMainThread(); }
PaintTiming& GetPaintTiming() { return mPaintTiming; }
ShadowLayerForwarder* AsLayerForwarder() override { return this; }
// Returns true if aSurface wraps a Shmem.
static bool IsShmem(SurfaceDescriptor* aSurface);
void SyncWithCompositor() override;
TextureForwarder* GetTextureForwarder() override {
return GetCompositorBridgeChild();
}
LayersIPCActor* GetLayersIPCActor() override { return this; }
ActiveResourceTracker* GetActiveResourceTracker() override {
return mActiveResourceTracker.get();
}
CompositorBridgeChild* GetCompositorBridgeChild();
nsISerialEventTarget* GetEventTarget() { return mEventTarget; };
bool IsThreadSafe() const override { return false; }
RefPtr<KnowsCompositor> GetForMedia() override;
protected:
virtual ~ShadowLayerForwarder();
explicit ShadowLayerForwarder(ClientLayerManager* aClientLayerManager);
#ifdef DEBUG
void CheckSurfaceDescriptor(const SurfaceDescriptor* aDescriptor) const;
#else
void CheckSurfaceDescriptor(const SurfaceDescriptor* aDescriptor) const {}
#endif
RefPtr<CompositableClient> FindCompositable(
const CompositableHandle& aHandle);
bool InWorkerThread();
RefPtr<LayerTransactionChild> mShadowManager;
RefPtr<CompositorBridgeChild> mCompositorBridgeChild;
private:
ClientLayerManager* mClientLayerManager;
Transaction* mTxn;
nsCOMPtr<nsISerialEventTarget> mThread;
DiagnosticTypes mDiagnosticTypes;
bool mIsFirstPaint;
FocusTarget mFocusTarget;
nsTArray<PluginWindowData> mPluginWindowData;
UniquePtr<ActiveResourceTracker> mActiveResourceTracker;
uint64_t mNextLayerHandle;
nsDataHashtable<nsUint64HashKey, CompositableClient*> mCompositables;
PaintTiming mPaintTiming;
/**
* ShadowLayerForwarder might dispatch tasks to main while puppet widget and
* browserChild don't exist anymore; therefore we hold the event target since
* its lifecycle is independent of these objects.
*/
nsCOMPtr<nsISerialEventTarget> mEventTarget;
};
class CompositableClient;
/**
* A ShadowableLayer is a Layer can be shared with a parent context
* through a ShadowLayerForwarder. A ShadowableLayer maps to a
* Shadow*Layer in a parent context.
*
* Note that ShadowLayers can themselves be ShadowableLayers.
*/
class ShadowableLayer {
public:
virtual ~ShadowableLayer();
virtual Layer* AsLayer() = 0;
/**
* True if this layer has a shadow in a parent process.
*/
bool HasShadow() { return mShadow.IsValid(); }
/**
* Return the IPC handle to a Shadow*Layer referring to this if one
* exists, nullptr if not.
*/
const LayerHandle& GetShadow() { return mShadow; }
void SetShadow(ShadowLayerForwarder* aForwarder, const LayerHandle& aShadow) {
MOZ_ASSERT(!mShadow, "can't have two shadows (yet)");
mForwarder = aForwarder;
mShadow = aShadow;
}
virtual CompositableClient* GetCompositableClient() { return nullptr; }
protected:
ShadowableLayer() = default;
private:
RefPtr<ShadowLayerForwarder> mForwarder;
LayerHandle mShadow;
};
} // namespace layers
} // namespace mozilla
#endif // ifndef mozilla_layers_ShadowLayers_h
|