1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "RenderViewMLGPU.h"
#include "ContainerLayerMLGPU.h"
#include "FrameBuilder.h"
#include "mozilla/StaticPrefs_layers.h"
#include "LayersHelpers.h"
#include "MLGDevice.h"
#include "RenderPassMLGPU.h"
#include "ShaderDefinitionsMLGPU.h"
#include "Units.h"
#include "UnitTransforms.h"
#include "UtilityMLGPU.h"
namespace mozilla {
namespace layers {
using namespace gfx;
RenderViewMLGPU::RenderViewMLGPU(FrameBuilder* aBuilder,
MLGRenderTarget* aTarget,
const nsIntRegion& aInvalidRegion)
: RenderViewMLGPU(aBuilder, nullptr) {
mTarget = aTarget;
mInvalidBounds = aInvalidRegion.GetBounds();
// The clear region on the layer manager is the area that must be clear after
// we finish drawing.
mPostClearRegion = aBuilder->GetManager()->GetRegionToClear();
// Clamp the post-clear region to the invalid bounds, since clears don't go
// through the scissor rect if using ClearView.
mPostClearRegion.AndWith(mInvalidBounds);
// Since the post-clear will occlude everything, we include it in the final
// opaque area.
mOccludedRegion.OrWith(ViewAs<LayerPixel>(
mPostClearRegion,
PixelCastJustification::RenderTargetIsParentLayerForRoot));
AL_LOG("RenderView %p root with invalid area %s, clear area %s\n", this,
Stringify(mInvalidBounds).c_str(),
Stringify(mPostClearRegion).c_str());
}
RenderViewMLGPU::RenderViewMLGPU(FrameBuilder* aBuilder,
ContainerLayerMLGPU* aContainer,
RenderViewMLGPU* aParent)
: RenderViewMLGPU(aBuilder, aParent) {
mContainer = aContainer;
mTargetOffset = aContainer->GetTargetOffset();
mInvalidBounds = aContainer->GetInvalidRect();
MOZ_ASSERT(!mInvalidBounds.IsEmpty());
AL_LOG("RenderView %p starting with container %p and invalid area %s\n", this,
aContainer->GetLayer(), Stringify(mInvalidBounds).c_str());
mContainer->SetRenderView(this);
}
RenderViewMLGPU::RenderViewMLGPU(FrameBuilder* aBuilder,
RenderViewMLGPU* aParent)
: mBuilder(aBuilder),
mDevice(aBuilder->GetDevice()),
mParent(aParent),
mContainer(nullptr),
mFinishedBuilding(false),
mCurrentLayerBufferIndex(kInvalidResourceIndex),
mCurrentMaskRectBufferIndex(kInvalidResourceIndex),
mCurrentDepthMode(MLGDepthTestMode::Disabled),
mNextSortIndex(1),
mUseDepthBuffer(
StaticPrefs::layers_mlgpu_enable_depth_buffer_AtStartup()),
mDepthBufferNeedsClear(false) {
if (aParent) {
aParent->AddChild(this);
}
}
RenderViewMLGPU::~RenderViewMLGPU() {
for (const auto& child : mChildren) {
child->mParent = nullptr;
}
}
IntSize RenderViewMLGPU::GetSize() const {
MOZ_ASSERT(mFinishedBuilding);
return mTarget->GetSize();
}
MLGRenderTarget* RenderViewMLGPU::GetRenderTarget() const {
MOZ_ASSERT(mFinishedBuilding);
return mTarget;
}
void RenderViewMLGPU::AddChild(RenderViewMLGPU* aParent) {
mChildren.push_back(aParent);
}
void RenderViewMLGPU::Render() {
// We render views depth-first to minimize render target switching.
for (const auto& child : mChildren) {
child->Render();
}
// If the view requires a surface copy (of its backdrop), then we delay
// rendering it until it is added to a batch.
if (mContainer && mContainer->NeedsSurfaceCopy()) {
return;
}
ExecuteRendering();
}
void RenderViewMLGPU::RenderAfterBackdropCopy() {
MOZ_ASSERT(mContainer && mContainer->NeedsSurfaceCopy());
// Update the invalid bounds based on the container's visible region. This
// of course won't affect the prepared pipeline, but it will change the
// scissor rect in SetDeviceState.
mInvalidBounds = mContainer->GetRenderRegion().GetBounds().ToUnknownRect() -
GetTargetOffset();
ExecuteRendering();
}
void RenderViewMLGPU::FinishBuilding() {
MOZ_ASSERT(!mFinishedBuilding);
mFinishedBuilding = true;
if (mContainer) {
MOZ_ASSERT(!mTarget);
MLGRenderTargetFlags flags = MLGRenderTargetFlags::Default;
if (mUseDepthBuffer) {
flags |= MLGRenderTargetFlags::ZBuffer;
}
mTarget = mContainer->UpdateRenderTarget(mDevice, flags);
}
}
void RenderViewMLGPU::AddItem(LayerMLGPU* aItem, const IntRect& aRect,
Maybe<Polygon>&& aGeometry) {
AL_LOG("RenderView %p analyzing layer %p\n", this, aItem->GetLayer());
// If the item is not visible at all, skip it.
if (aItem->GetComputedOpacity() == 0.0f) {
AL_LOG("RenderView %p culling item %p with no opacity\n", this,
aItem->GetLayer());
return;
}
// When using the depth buffer, the z-index for items is important.
//
// Sort order starts at 1 and goes to positive infinity, with smaller values
// being closer to the screen. Our viewport is the same, with anything
// outside of [0.0, 1.0] being culled, and lower values occluding higher
// values. To make this work our projection transform scales the z-axis.
// Note that we do not use 0 as a sorting index (when depth-testing is
// enabled) because this would result in a z-value of 1.0, which would be
// culled.
ItemInfo info(mBuilder, this, aItem, mNextSortIndex++, aRect,
std::move(aGeometry));
// If the item is not visible, or we can't add it to the layer constant
// buffer for some reason, bail out.
if (!UpdateVisibleRegion(info) || !mBuilder->AddLayerToConstantBuffer(info)) {
AL_LOG("RenderView %p culled item %p!\n", this, aItem->GetLayer());
return;
}
// We support all layer types now.
MOZ_ASSERT(info.type != RenderPassType::Unknown);
if (info.renderOrder == RenderOrder::FrontToBack) {
AddItemFrontToBack(aItem, info);
} else {
AddItemBackToFront(aItem, info);
}
}
bool RenderViewMLGPU::UpdateVisibleRegion(ItemInfo& aItem) {
// If the item has some kind of complex transform, we perform a very
// simple occlusion test and move on. We using a depth buffer we skip
// CPU-based occlusion culling as well, since the GPU will do most of our
// culling work for us.
if (mUseDepthBuffer || !aItem.translation ||
!StaticPrefs::layers_mlgpu_enable_cpu_occlusion_AtStartup()) {
// Update the render region even if we won't compute visibility, since some
// layer types (like Canvas and Image) need to have the visible region
// clamped.
LayerIntRegion region = aItem.layer->GetShadowVisibleRegion();
aItem.layer->SetRenderRegion(std::move(region));
AL_LOG("RenderView %p simple occlusion test, bounds=%s, translation?=%d\n",
this, Stringify(aItem.bounds).c_str(), aItem.translation ? 1 : 0);
return mInvalidBounds.Intersects(aItem.bounds);
}
MOZ_ASSERT(aItem.rectilinear);
AL_LOG("RenderView %p starting visibility tests:\n", this);
AL_LOG(" occluded=%s\n", Stringify(mOccludedRegion).c_str());
// Compute the translation into render target space.
LayerIntPoint translation = LayerIntPoint::FromUnknownPoint(
aItem.translation.value() - mTargetOffset);
AL_LOG(" translation=%s\n", Stringify(translation).c_str());
IntRect clip = aItem.layer->GetComputedClipRect().ToUnknownRect();
AL_LOG(" clip=%s\n", Stringify(translation).c_str());
LayerIntRegion region = aItem.layer->GetShadowVisibleRegion();
region.MoveBy(translation);
AL_LOG(" effective-visible=%s\n", Stringify(region).c_str());
region.SubOut(mOccludedRegion);
region.AndWith(LayerIntRect::FromUnknownRect(mInvalidBounds));
region.AndWith(LayerIntRect::FromUnknownRect(clip));
if (region.IsEmpty()) {
return false;
}
// Move the visible region back into layer space.
region.MoveBy(-translation);
AL_LOG(" new-local-visible=%s\n", Stringify(region).c_str());
aItem.layer->SetRenderRegion(std::move(region));
// Apply the new occluded area. We do another dance with the translation to
// avoid copying the region. We do this after the SetRegionToRender call to
// accomodate the possiblity of a layer changing its visible region.
if (aItem.opaque) {
mOccludedRegion.MoveBy(-translation);
mOccludedRegion.OrWith(aItem.layer->GetRenderRegion());
mOccludedRegion.MoveBy(translation);
AL_LOG(" new-occluded=%s\n", Stringify(mOccludedRegion).c_str());
// If the occluded region gets too complicated, we reset it.
if (mOccludedRegion.GetNumRects() >= 32) {
mOccludedRegion.SetEmpty();
AL_LOG(" clear-occluded, too many rects\n");
}
}
return true;
}
void RenderViewMLGPU::AddItemFrontToBack(LayerMLGPU* aLayer, ItemInfo& aItem) {
// We receive items in front-to-back order. Ideally we want to push items
// as far back into batches impossible, to ensure the GPU can do a good
// job at culling. However we also want to make sure we actually batch
// items versus drawing one primitive per pass.
//
// As a compromise we look at the most 3 recent batches and then give up.
// This can be tweaked in the future.
static const size_t kMaxSearch = 3;
size_t iterations = 0;
for (auto iter = mFrontToBack.rbegin(); iter != mFrontToBack.rend(); iter++) {
RenderPassMLGPU* pass = (*iter);
if (pass->IsCompatible(aItem) && pass->AcceptItem(aItem)) {
AL_LOG("RenderView %p added layer %p to pass %p (%d)\n", this,
aLayer->GetLayer(), pass, int(pass->GetType()));
return;
}
if (++iterations > kMaxSearch) {
break;
}
}
RefPtr<RenderPassMLGPU> pass = RenderPassMLGPU::CreatePass(mBuilder, aItem);
if (!pass || !pass->AcceptItem(aItem)) {
MOZ_ASSERT_UNREACHABLE("Could not build a pass for item!");
return;
}
AL_LOG("RenderView %p added layer %p to new pass %p (%d)\n", this,
aLayer->GetLayer(), pass.get(), int(pass->GetType()));
mFrontToBack.push_back(pass);
}
void RenderViewMLGPU::AddItemBackToFront(LayerMLGPU* aLayer, ItemInfo& aItem) {
// We receive layers in front-to-back order, but there are two cases when we
// actually draw back-to-front: when the depth buffer is disabled, or when
// using the depth buffer and the item has transparent pixels (and therefore
// requires blending). In these cases we will build vertex and constant
// buffers in reverse, as well as execute batches in reverse, to ensure the
// correct ordering.
//
// Note: We limit the number of batches we search through, since it's better
// to add new draw calls than spend too much time finding compatible
// batches further down.
static const size_t kMaxSearch = 10;
size_t iterations = 0;
for (auto iter = mBackToFront.begin(); iter != mBackToFront.end(); iter++) {
RenderPassMLGPU* pass = (*iter);
if (pass->IsCompatible(aItem) && pass->AcceptItem(aItem)) {
AL_LOG("RenderView %p added layer %p to pass %p (%d)\n", this,
aLayer->GetLayer(), pass, int(pass->GetType()));
return;
}
if (pass->Intersects(aItem)) {
break;
}
if (++iterations > kMaxSearch) {
break;
}
}
RefPtr<RenderPassMLGPU> pass = RenderPassMLGPU::CreatePass(mBuilder, aItem);
if (!pass || !pass->AcceptItem(aItem)) {
MOZ_ASSERT_UNREACHABLE("Could not build a pass for item!");
return;
}
AL_LOG("RenderView %p added layer %p to new pass %p (%d)\n", this,
aLayer->GetLayer(), pass.get(), int(pass->GetType()));
mBackToFront.push_front(pass);
}
void RenderViewMLGPU::Prepare() {
if (!mTarget) {
return;
}
// Prepare front-to-back passes. These are only present when using the depth
// buffer, and they contain only opaque data.
for (RefPtr<RenderPassMLGPU>& pass : mFrontToBack) {
pass->PrepareForRendering();
}
// Prepare the Clear buffer, which will fill the render target with
// transparent pixels. This must happen before we set up world constants,
// since it can create new z-indices.
PrepareClears();
// Prepare the world constant buffer. This must be called after we've
// finished allocating all z-indices.
{
WorldConstants vsConstants;
Matrix4x4 projection = Matrix4x4::Translation(-1.0, 1.0, 0.0);
projection.PreScale(2.0 / float(mTarget->GetSize().width),
2.0 / float(mTarget->GetSize().height), 1.0f);
projection.PreScale(1.0f, -1.0f, 1.0f);
memcpy(vsConstants.projection, &projection._11, 64);
vsConstants.targetOffset = Point(mTargetOffset);
vsConstants.sortIndexOffset = PrepareDepthBuffer();
vsConstants.debugFrameNumber =
mBuilder->GetManager()->GetDebugFrameNumber();
SharedConstantBuffer* shared = mDevice->GetSharedVSBuffer();
if (!shared->Allocate(&mWorldConstants, vsConstants)) {
return;
}
}
// Prepare back-to-front passes. In depth buffer mode, these contain draw
// calls that might produce transparent pixels. When using CPU-based occlusion
// culling, all draw calls are back-to-front.
for (RefPtr<RenderPassMLGPU>& pass : mBackToFront) {
pass->PrepareForRendering();
}
// Now, process children.
for (const auto& iter : mChildren) {
iter->Prepare();
}
}
void RenderViewMLGPU::ExecuteRendering() {
if (!mTarget) {
return;
}
if (!mWorldConstants.IsValid()) {
gfxWarning() << "Failed to allocate constant buffer for world transform";
return;
}
SetDeviceState();
// If using the depth buffer, clear it (if needed) and enable writes.
if (mUseDepthBuffer) {
if (mDepthBufferNeedsClear) {
mDevice->ClearDepthBuffer(mTarget);
}
SetDepthTestMode(MLGDepthTestMode::Write);
}
// Opaque items, rendered front-to-back.
for (auto iter = mFrontToBack.begin(); iter != mFrontToBack.end(); iter++) {
ExecutePass(*iter);
}
if (mUseDepthBuffer) {
// From now on we might be rendering transparent pixels, so we disable
// writing to the z-buffer.
SetDepthTestMode(MLGDepthTestMode::ReadOnly);
}
// Clear any pixels that are not occluded, and therefore might require
// blending.
mDevice->DrawClearRegion(mPreClear);
// Render back-to-front passes.
for (auto iter = mBackToFront.begin(); iter != mBackToFront.end(); iter++) {
ExecutePass(*iter);
}
// Make sure the post-clear area has no pixels.
if (!mPostClearRegion.IsEmpty()) {
mDevice->DrawClearRegion(mPostClear);
}
// We repaint the entire invalid region, even if it is partially occluded.
// Thus it's safe for us to clear the invalid area here. If we ever switch
// to nsIntRegions, we will have to take the difference between the paitned
// area and the invalid area.
if (mContainer) {
mContainer->ClearInvalidRect();
}
}
void RenderViewMLGPU::ExecutePass(RenderPassMLGPU* aPass) {
if (!aPass->IsPrepared()) {
return;
}
// Change the layer buffer if needed.
if (aPass->GetLayerBufferIndex() != mCurrentLayerBufferIndex) {
mCurrentLayerBufferIndex = aPass->GetLayerBufferIndex();
ConstantBufferSection section =
mBuilder->GetLayerBufferByIndex(mCurrentLayerBufferIndex);
mDevice->SetVSConstantBuffer(kLayerBufferSlot, §ion);
}
// Change the mask rect buffer if needed.
if (aPass->GetMaskRectBufferIndex() &&
aPass->GetMaskRectBufferIndex().value() != mCurrentMaskRectBufferIndex) {
mCurrentMaskRectBufferIndex = aPass->GetMaskRectBufferIndex().value();
ConstantBufferSection section =
mBuilder->GetMaskRectBufferByIndex(mCurrentMaskRectBufferIndex);
mDevice->SetVSConstantBuffer(kMaskBufferSlot, §ion);
}
aPass->ExecuteRendering();
}
void RenderViewMLGPU::SetDeviceState() {
// Note: we unbind slot 0 (which is where the render target could have been
// bound on a previous frame). Otherwise we trigger
// D3D11_DEVICE_PSSETSHADERRESOURCES_HAZARD.
mDevice->UnsetPSTexture(0);
mDevice->SetRenderTarget(mTarget);
mDevice->SetViewport(IntRect(IntPoint(0, 0), mTarget->GetSize()));
mDevice->SetScissorRect(Some(mInvalidBounds));
mDevice->SetVSConstantBuffer(kWorldConstantBufferSlot, &mWorldConstants);
}
void RenderViewMLGPU::SetDepthTestMode(MLGDepthTestMode aMode) {
mDevice->SetDepthTestMode(aMode);
mCurrentDepthMode = aMode;
}
void RenderViewMLGPU::RestoreDeviceState() {
SetDeviceState();
mDevice->SetDepthTestMode(mCurrentDepthMode);
mCurrentLayerBufferIndex = kInvalidResourceIndex;
mCurrentMaskRectBufferIndex = kInvalidResourceIndex;
}
int32_t RenderViewMLGPU::PrepareDepthBuffer() {
if (!mUseDepthBuffer) {
return 0;
}
// Rather than clear the depth buffer every frame, we offset z-indices each
// frame, starting with indices far away from the screen and moving toward
// the user each successive frame. This ensures that frames can re-use the
// depth buffer but never collide with previously written values.
//
// Once a frame runs out of sort indices, we finally clear the depth buffer
// and start over again.
// Note: the lowest sort index (kDepthLimit) is always occluded since it will
// resolve to the clear value - kDepthLimit / kDepthLimit == 1.0.
//
// If we don't have any more indices to allocate, we need to clear the depth
// buffer and start fresh.
int32_t highestIndex = mTarget->GetLastDepthStart();
if (highestIndex < mNextSortIndex) {
mDepthBufferNeedsClear = true;
highestIndex = kDepthLimit;
}
// We should not have more than kDepthLimit layers to draw. The last known
// sort index might appear in the depth buffer and occlude something, so
// we subtract 1. This ensures all our indices will compare less than all
// old indices.
int32_t sortOffset = highestIndex - mNextSortIndex - 1;
MOZ_ASSERT(sortOffset >= 0);
mTarget->SetLastDepthStart(sortOffset);
return sortOffset;
}
void RenderViewMLGPU::PrepareClears() {
// We don't do any clearing if we're copying from a source backdrop.
if (mContainer && mContainer->NeedsSurfaceCopy()) {
return;
}
// Get the list of rects to clear. If using the depth buffer, we don't
// care if it's accurate since the GPU will do occlusion testing for us.
// If not using the depth buffer, we subtract out the occluded region.
LayerIntRegion region = LayerIntRect::FromUnknownRect(mInvalidBounds);
if (!mUseDepthBuffer) {
// Don't let the clear region become too complicated.
region.SubOut(mOccludedRegion);
region.SimplifyOutward(kMaxClearViewRects);
}
Maybe<int32_t> sortIndex;
if (mUseDepthBuffer) {
// Note that we use the lowest available sorting index, to ensure that when
// using the z-buffer, we don't draw over already-drawn content.
sortIndex = Some(mNextSortIndex++);
}
nsTArray<IntRect> rects = ToRectArray(region);
mDevice->PrepareClearRegion(&mPreClear, std::move(rects), sortIndex);
if (!mPostClearRegion.IsEmpty()) {
// Prepare the final clear as well. Note that we always do this clear at the
// very end, even when the depth buffer is enabled, so we don't bother
// setting a useful sorting index. If and when we try to ship the depth
// buffer, we would execute this clear earlier in the pipeline and give it
// the closest possible z-ordering to the screen.
nsTArray<IntRect> rects = ToRectArray(mPostClearRegion);
mDevice->PrepareClearRegion(&mPostClear, std::move(rects), Nothing());
}
}
} // namespace layers
} // namespace mozilla
|