summaryrefslogtreecommitdiffstats
path: root/gfx/qcms/src/chain.rs
blob: c1faf9dcd7e83426c2312e0b38520e1ca85955ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
/* vim: set ts=8 sw=8 noexpandtab: */
//  qcms
//  Copyright (C) 2009 Mozilla Corporation
//  Copyright (C) 1998-2007 Marti Maria
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
use crate::{
    iccread::LAB_SIGNATURE,
    iccread::RGB_SIGNATURE,
    iccread::XYZ_SIGNATURE,
    iccread::{lutType, lutmABType, Profile},
    matrix::Matrix,
    s15Fixed16Number_to_float,
    transform_util::clamp_float,
    transform_util::{
        build_colorant_matrix, build_input_gamma_table, build_output_lut, lut_interp_linear,
        lut_interp_linear_float,
    },
};

#[derive(Clone, Default)]
pub struct ModularTransform {
    matrix: Matrix,
    tx: f32,
    ty: f32,
    tz: f32,
    input_clut_table_r: Option<Vec<f32>>,
    input_clut_table_g: Option<Vec<f32>>,
    input_clut_table_b: Option<Vec<f32>>,
    input_clut_table_length: u16,
    clut: Option<Vec<f32>>,
    grid_size: u16,
    output_clut_table_r: Option<Vec<f32>>,
    output_clut_table_g: Option<Vec<f32>>,
    output_clut_table_b: Option<Vec<f32>>,
    output_clut_table_length: u16,
    output_gamma_lut_r: Option<Vec<u16>>,
    output_gamma_lut_g: Option<Vec<u16>>,
    output_gamma_lut_b: Option<Vec<u16>>,
    output_gamma_lut_r_length: usize,
    output_gamma_lut_g_length: usize,
    output_gamma_lut_b_length: usize,
    transform_module_fn: TransformModuleFn,
    next_transform: Option<Box<ModularTransform>>,
}
pub type TransformModuleFn =
    Option<fn(_: &ModularTransform, _: &[f32], _: &mut [f32]) -> ()>;

#[inline]
fn lerp(a: f32, b: f32, t: f32) -> f32 {
    a * (1.0 - t) + b * t
}

fn build_lut_matrix(lut: Option<&lutType>) -> Matrix {
    let mut result: Matrix = Matrix {
        m: [[0.; 3]; 3],
        invalid: false,
    };
    if let Some(lut) = lut {
        result.m[0][0] = s15Fixed16Number_to_float(lut.e00);
        result.m[0][1] = s15Fixed16Number_to_float(lut.e01);
        result.m[0][2] = s15Fixed16Number_to_float(lut.e02);
        result.m[1][0] = s15Fixed16Number_to_float(lut.e10);
        result.m[1][1] = s15Fixed16Number_to_float(lut.e11);
        result.m[1][2] = s15Fixed16Number_to_float(lut.e12);
        result.m[2][0] = s15Fixed16Number_to_float(lut.e20);
        result.m[2][1] = s15Fixed16Number_to_float(lut.e21);
        result.m[2][2] = s15Fixed16Number_to_float(lut.e22);
        result.invalid = false
    } else {
        result.m = Default::default();
        result.invalid = true
    }
    result
}
fn build_mAB_matrix(lut: &lutmABType) -> Matrix {
    let mut result: Matrix = Matrix {
        m: [[0.; 3]; 3],
        invalid: false,
    };

    result.m[0][0] = s15Fixed16Number_to_float(lut.e00);
    result.m[0][1] = s15Fixed16Number_to_float(lut.e01);
    result.m[0][2] = s15Fixed16Number_to_float(lut.e02);
    result.m[1][0] = s15Fixed16Number_to_float(lut.e10);
    result.m[1][1] = s15Fixed16Number_to_float(lut.e11);
    result.m[1][2] = s15Fixed16Number_to_float(lut.e12);
    result.m[2][0] = s15Fixed16Number_to_float(lut.e20);
    result.m[2][1] = s15Fixed16Number_to_float(lut.e21);
    result.m[2][2] = s15Fixed16Number_to_float(lut.e22);
    result.invalid = false;

    result
}
//Based on lcms cmsLab2XYZ
fn f(t: f32) -> f32 {
    if t <= 24. / 116. * (24. / 116.) * (24. / 116.) {
        (841. / 108. * t) + 16. / 116.
    } else {
        t.powf(1. / 3.)
    }
}
fn f_1(t: f32) -> f32 {
    if t <= 24.0 / 116.0 {
        (108.0 / 841.0) * (t - 16.0 / 116.0)
    } else {
        t * t * t
    }
}

fn transform_module_LAB_to_XYZ(_transform: &ModularTransform, src: &[f32], dest: &mut [f32]) {
    // lcms: D50 XYZ values
    let WhitePointX: f32 = 0.9642;
    let WhitePointY: f32 = 1.0;
    let WhitePointZ: f32 = 0.8249;

    for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) {
        let device_L: f32 = src[0] * 100.0;
        let device_a: f32 = src[1] * 255.0 - 128.0;
        let device_b: f32 = src[2] * 255.0 - 128.0;

        let y: f32 = (device_L + 16.0) / 116.0;

        let X = f_1(y + 0.002 * device_a) * WhitePointX;
        let Y = f_1(y) * WhitePointY;
        let Z = f_1(y - 0.005 * device_b) * WhitePointZ;

        dest[0] = (X as f64 / (1.0f64 + 32767.0f64 / 32768.0f64)) as f32;
        dest[1] = (Y as f64 / (1.0f64 + 32767.0f64 / 32768.0f64)) as f32;
        dest[2] = (Z as f64 / (1.0f64 + 32767.0f64 / 32768.0f64)) as f32;
    }
}
//Based on lcms cmsXYZ2Lab
fn transform_module_XYZ_to_LAB(_transform: &ModularTransform, src: &[f32], dest: &mut [f32]) {
    // lcms: D50 XYZ values
    let WhitePointX: f32 = 0.9642;
    let WhitePointY: f32 = 1.0;
    let WhitePointZ: f32 = 0.8249;
    for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) {
        let device_x: f32 =
            (src[0] as f64 * (1.0f64 + 32767.0f64 / 32768.0f64) / WhitePointX as f64) as f32;
        let device_y: f32 =
            (src[1] as f64 * (1.0f64 + 32767.0f64 / 32768.0f64) / WhitePointY as f64) as f32;
        let device_z: f32 =
            (src[2] as f64 * (1.0f64 + 32767.0f64 / 32768.0f64) / WhitePointZ as f64) as f32;

        let fx = f(device_x);
        let fy = f(device_y);
        let fz = f(device_z);

        let L: f32 = 116.0 * fy - 16.0;
        let a: f32 = 500.0 * (fx - fy);
        let b: f32 = 200.0 * (fy - fz);

        dest[0] = L / 100.0;
        dest[1] = (a + 128.0) / 255.0;
        dest[2] = (b + 128.0) / 255.0;
    }
}
fn transform_module_clut_only(transform: &ModularTransform, src: &[f32], dest: &mut [f32]) {
    let xy_len: i32 = 1;
    let x_len: i32 = transform.grid_size as i32;
    let len: i32 = x_len * x_len;

    let r_table = &transform.clut.as_ref().unwrap()[0..];
    let g_table = &transform.clut.as_ref().unwrap()[1..];
    let b_table = &transform.clut.as_ref().unwrap()[2..];

    let CLU = |table: &[f32], x, y, z| table[((x * len + y * x_len + z * xy_len) * 3) as usize];

    for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) {
        debug_assert!(transform.grid_size as i32 >= 1);
        let linear_r: f32 = src[0];
        let linear_g: f32 = src[1];
        let linear_b: f32 = src[2];
        let x: i32 = (linear_r * (transform.grid_size as i32 - 1) as f32).floor() as i32;
        let y: i32 = (linear_g * (transform.grid_size as i32 - 1) as f32).floor() as i32;
        let z: i32 = (linear_b * (transform.grid_size as i32 - 1) as f32).floor() as i32;
        let x_n: i32 = (linear_r * (transform.grid_size as i32 - 1) as f32).ceil() as i32;
        let y_n: i32 = (linear_g * (transform.grid_size as i32 - 1) as f32).ceil() as i32;
        let z_n: i32 = (linear_b * (transform.grid_size as i32 - 1) as f32).ceil() as i32;
        let x_d: f32 = linear_r * (transform.grid_size as i32 - 1) as f32 - x as f32;
        let y_d: f32 = linear_g * (transform.grid_size as i32 - 1) as f32 - y as f32;
        let z_d: f32 = linear_b * (transform.grid_size as i32 - 1) as f32 - z as f32;

        let r_x1: f32 = lerp(CLU(r_table, x, y, z), CLU(r_table, x_n, y, z), x_d);
        let r_x2: f32 = lerp(CLU(r_table, x, y_n, z), CLU(r_table, x_n, y_n, z), x_d);
        let r_y1: f32 = lerp(r_x1, r_x2, y_d);
        let r_x3: f32 = lerp(CLU(r_table, x, y, z_n), CLU(r_table, x_n, y, z_n), x_d);
        let r_x4: f32 = lerp(CLU(r_table, x, y_n, z_n), CLU(r_table, x_n, y_n, z_n), x_d);
        let r_y2: f32 = lerp(r_x3, r_x4, y_d);
        let clut_r: f32 = lerp(r_y1, r_y2, z_d);

        let g_x1: f32 = lerp(CLU(g_table, x, y, z), CLU(g_table, x_n, y, z), x_d);
        let g_x2: f32 = lerp(CLU(g_table, x, y_n, z), CLU(g_table, x_n, y_n, z), x_d);
        let g_y1: f32 = lerp(g_x1, g_x2, y_d);
        let g_x3: f32 = lerp(CLU(g_table, x, y, z_n), CLU(g_table, x_n, y, z_n), x_d);
        let g_x4: f32 = lerp(CLU(g_table, x, y_n, z_n), CLU(g_table, x_n, y_n, z_n), x_d);
        let g_y2: f32 = lerp(g_x3, g_x4, y_d);
        let clut_g: f32 = lerp(g_y1, g_y2, z_d);

        let b_x1: f32 = lerp(CLU(b_table, x, y, z), CLU(b_table, x_n, y, z), x_d);
        let b_x2: f32 = lerp(CLU(b_table, x, y_n, z), CLU(b_table, x_n, y_n, z), x_d);
        let b_y1: f32 = lerp(b_x1, b_x2, y_d);
        let b_x3: f32 = lerp(CLU(b_table, x, y, z_n), CLU(b_table, x_n, y, z_n), x_d);
        let b_x4: f32 = lerp(CLU(b_table, x, y_n, z_n), CLU(b_table, x_n, y_n, z_n), x_d);
        let b_y2: f32 = lerp(b_x3, b_x4, y_d);
        let clut_b: f32 = lerp(b_y1, b_y2, z_d);

        dest[0] = clamp_float(clut_r);
        dest[1] = clamp_float(clut_g);
        dest[2] = clamp_float(clut_b);
    }
}
fn transform_module_clut(transform: &ModularTransform, src: &[f32], dest: &mut [f32]) {
    let xy_len: i32 = 1;
    let x_len: i32 = transform.grid_size as i32;
    let len: i32 = x_len * x_len;

    let r_table = &transform.clut.as_ref().unwrap()[0..];
    let g_table = &transform.clut.as_ref().unwrap()[1..];
    let b_table = &transform.clut.as_ref().unwrap()[2..];
    let CLU = |table: &[f32], x, y, z| table[((x * len + y * x_len + z * xy_len) * 3) as usize];

    let input_clut_table_r = transform.input_clut_table_r.as_ref().unwrap();
    let input_clut_table_g = transform.input_clut_table_g.as_ref().unwrap();
    let input_clut_table_b = transform.input_clut_table_b.as_ref().unwrap();
    for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) {
        debug_assert!(transform.grid_size as i32 >= 1);
        let device_r: f32 = src[0];
        let device_g: f32 = src[1];
        let device_b: f32 = src[2];
        let linear_r: f32 = lut_interp_linear_float(device_r, &input_clut_table_r);
        let linear_g: f32 = lut_interp_linear_float(device_g, &input_clut_table_g);
        let linear_b: f32 = lut_interp_linear_float(device_b, &input_clut_table_b);
        let x: i32 = (linear_r * (transform.grid_size as i32 - 1) as f32).floor() as i32;
        let y: i32 = (linear_g * (transform.grid_size as i32 - 1) as f32).floor() as i32;
        let z: i32 = (linear_b * (transform.grid_size as i32 - 1) as f32).floor() as i32;
        let x_n: i32 = (linear_r * (transform.grid_size as i32 - 1) as f32).ceil() as i32;
        let y_n: i32 = (linear_g * (transform.grid_size as i32 - 1) as f32).ceil() as i32;
        let z_n: i32 = (linear_b * (transform.grid_size as i32 - 1) as f32).ceil() as i32;
        let x_d: f32 = linear_r * (transform.grid_size as i32 - 1) as f32 - x as f32;
        let y_d: f32 = linear_g * (transform.grid_size as i32 - 1) as f32 - y as f32;
        let z_d: f32 = linear_b * (transform.grid_size as i32 - 1) as f32 - z as f32;

        let r_x1: f32 = lerp(CLU(r_table, x, y, z), CLU(r_table, x_n, y, z), x_d);
        let r_x2: f32 = lerp(CLU(r_table, x, y_n, z), CLU(r_table, x_n, y_n, z), x_d);
        let r_y1: f32 = lerp(r_x1, r_x2, y_d);
        let r_x3: f32 = lerp(CLU(r_table, x, y, z_n), CLU(r_table, x_n, y, z_n), x_d);
        let r_x4: f32 = lerp(CLU(r_table, x, y_n, z_n), CLU(r_table, x_n, y_n, z_n), x_d);
        let r_y2: f32 = lerp(r_x3, r_x4, y_d);
        let clut_r: f32 = lerp(r_y1, r_y2, z_d);

        let g_x1: f32 = lerp(CLU(g_table, x, y, z), CLU(g_table, x_n, y, z), x_d);
        let g_x2: f32 = lerp(CLU(g_table, x, y_n, z), CLU(g_table, x_n, y_n, z), x_d);
        let g_y1: f32 = lerp(g_x1, g_x2, y_d);
        let g_x3: f32 = lerp(CLU(g_table, x, y, z_n), CLU(g_table, x_n, y, z_n), x_d);
        let g_x4: f32 = lerp(CLU(g_table, x, y_n, z_n), CLU(g_table, x_n, y_n, z_n), x_d);
        let g_y2: f32 = lerp(g_x3, g_x4, y_d);
        let clut_g: f32 = lerp(g_y1, g_y2, z_d);

        let b_x1: f32 = lerp(CLU(b_table, x, y, z), CLU(b_table, x_n, y, z), x_d);
        let b_x2: f32 = lerp(CLU(b_table, x, y_n, z), CLU(b_table, x_n, y_n, z), x_d);
        let b_y1: f32 = lerp(b_x1, b_x2, y_d);
        let b_x3: f32 = lerp(CLU(b_table, x, y, z_n), CLU(b_table, x_n, y, z_n), x_d);
        let b_x4: f32 = lerp(CLU(b_table, x, y_n, z_n), CLU(b_table, x_n, y_n, z_n), x_d);
        let b_y2: f32 = lerp(b_x3, b_x4, y_d);
        let clut_b: f32 = lerp(b_y1, b_y2, z_d);
        let pcs_r: f32 =
            lut_interp_linear_float(clut_r, &transform.output_clut_table_r.as_ref().unwrap());
        let pcs_g: f32 =
            lut_interp_linear_float(clut_g, &transform.output_clut_table_g.as_ref().unwrap());
        let pcs_b: f32 =
            lut_interp_linear_float(clut_b, &transform.output_clut_table_b.as_ref().unwrap());
        dest[0] = clamp_float(pcs_r);
        dest[1] = clamp_float(pcs_g);
        dest[2] = clamp_float(pcs_b);
    }
}
/* NOT USED
static void qcms_transform_module_tetra_clut(struct qcms_modular_transform *transform, float *src, float *dest, size_t length)
{
    size_t i;
    int xy_len = 1;
    int x_len = transform->grid_size;
    int len = x_len * x_len;
    float* r_table = transform->r_clut;
    float* g_table = transform->g_clut;
    float* b_table = transform->b_clut;
    float c0_r, c1_r, c2_r, c3_r;
    float c0_g, c1_g, c2_g, c3_g;
    float c0_b, c1_b, c2_b, c3_b;
    float clut_r, clut_g, clut_b;
    float pcs_r, pcs_g, pcs_b;
    for (i = 0; i < length; i++) {
        float device_r = *src++;
        float device_g = *src++;
        float device_b = *src++;
        float linear_r = lut_interp_linear_float(device_r,
                transform->input_clut_table_r, transform->input_clut_table_length);
        float linear_g = lut_interp_linear_float(device_g,
                transform->input_clut_table_g, transform->input_clut_table_length);
        float linear_b = lut_interp_linear_float(device_b,
                transform->input_clut_table_b, transform->input_clut_table_length);

        int x = floorf(linear_r * (transform->grid_size-1));
        int y = floorf(linear_g * (transform->grid_size-1));
        int z = floorf(linear_b * (transform->grid_size-1));
        int x_n = ceilf(linear_r * (transform->grid_size-1));
        int y_n = ceilf(linear_g * (transform->grid_size-1));
        int z_n = ceilf(linear_b * (transform->grid_size-1));
        float rx = linear_r * (transform->grid_size-1) - x;
        float ry = linear_g * (transform->grid_size-1) - y;
        float rz = linear_b * (transform->grid_size-1) - z;

        c0_r = CLU(r_table, x, y, z);
        c0_g = CLU(g_table, x, y, z);
        c0_b = CLU(b_table, x, y, z);
        if( rx >= ry ) {
            if (ry >= rz) { //rx >= ry && ry >= rz
                c1_r = CLU(r_table, x_n, y, z) - c0_r;
                c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z);
                c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
                c1_g = CLU(g_table, x_n, y, z) - c0_g;
                c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z);
                c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
                c1_b = CLU(b_table, x_n, y, z) - c0_b;
                c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z);
                c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
            } else {
                if (rx >= rz) { //rx >= rz && rz >= ry
                    c1_r = CLU(r_table, x_n, y, z) - c0_r;
                    c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
                    c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z);
                    c1_g = CLU(g_table, x_n, y, z) - c0_g;
                    c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
                    c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z);
                    c1_b = CLU(b_table, x_n, y, z) - c0_b;
                    c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
                    c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z);
                } else { //rz > rx && rx >= ry
                    c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n);
                    c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
                    c3_r = CLU(r_table, x, y, z_n) - c0_r;
                    c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n);
                    c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
                    c3_g = CLU(g_table, x, y, z_n) - c0_g;
                    c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n);
                    c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
                    c3_b = CLU(b_table, x, y, z_n) - c0_b;
                }
            }
        } else {
            if (rx >= rz) { //ry > rx && rx >= rz
                c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z);
                c2_r = CLU(r_table, x_n, y_n, z) - c0_r;
                c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
                c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z);
                c2_g = CLU(g_table, x_n, y_n, z) - c0_g;
                c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
                c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z);
                c2_b = CLU(b_table, x_n, y_n, z) - c0_b;
                c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
            } else {
                if (ry >= rz) { //ry >= rz && rz > rx
                    c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
                    c2_r = CLU(r_table, x, y_n, z) - c0_r;
                    c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z);
                    c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
                    c2_g = CLU(g_table, x, y_n, z) - c0_g;
                    c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z);
                    c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
                    c2_b = CLU(b_table, x, y_n, z) - c0_b;
                    c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z);
                } else { //rz > ry && ry > rx
                    c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
                    c2_r = CLU(r_table, x, y_n, z) - c0_r;
                    c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
                    c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
                    c2_g = CLU(g_table, x, y_n, z) - c0_g;
                    c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
                    c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
                    c2_b = CLU(b_table, x, y_n, z) - c0_b;
                    c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
                }
            }
        }

        clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz;
        clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz;
        clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz;

        pcs_r = lut_interp_linear_float(clut_r,
                transform->output_clut_table_r, transform->output_clut_table_length);
        pcs_g = lut_interp_linear_float(clut_g,
                transform->output_clut_table_g, transform->output_clut_table_length);
        pcs_b = lut_interp_linear_float(clut_b,
                transform->output_clut_table_b, transform->output_clut_table_length);
        *dest++ = clamp_float(pcs_r);
        *dest++ = clamp_float(pcs_g);
        *dest++ = clamp_float(pcs_b);
    }
}
*/
fn transform_module_gamma_table(transform: &ModularTransform, src: &[f32], dest: &mut [f32]) {
    let mut out_r: f32;
    let mut out_g: f32;
    let mut out_b: f32;
    let input_clut_table_r = transform.input_clut_table_r.as_ref().unwrap();
    let input_clut_table_g = transform.input_clut_table_g.as_ref().unwrap();
    let input_clut_table_b = transform.input_clut_table_b.as_ref().unwrap();

    for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) {
        let in_r: f32 = src[0];
        let in_g: f32 = src[1];
        let in_b: f32 = src[2];
        out_r = lut_interp_linear_float(in_r, input_clut_table_r);
        out_g = lut_interp_linear_float(in_g, input_clut_table_g);
        out_b = lut_interp_linear_float(in_b, input_clut_table_b);

        dest[0] = clamp_float(out_r);
        dest[1] = clamp_float(out_g);
        dest[2] = clamp_float(out_b);
    }
}
fn transform_module_gamma_lut(transform: &ModularTransform, src: &[f32], dest: &mut [f32]) {
    let mut out_r: f32;
    let mut out_g: f32;
    let mut out_b: f32;
    for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) {
        let in_r: f32 = src[0];
        let in_g: f32 = src[1];
        let in_b: f32 = src[2];
        out_r = lut_interp_linear(in_r as f64, &transform.output_gamma_lut_r.as_ref().unwrap());
        out_g = lut_interp_linear(in_g as f64, &transform.output_gamma_lut_g.as_ref().unwrap());
        out_b = lut_interp_linear(in_b as f64, &transform.output_gamma_lut_b.as_ref().unwrap());
        dest[0] = clamp_float(out_r);
        dest[1] = clamp_float(out_g);
        dest[2] = clamp_float(out_b);
    }
}
fn transform_module_matrix_translate(
    transform: &ModularTransform,
    src: &[f32],
    dest: &mut [f32],
) {
    let mut mat: Matrix = Matrix {
        m: [[0.; 3]; 3],
        invalid: false,
    };
    /* store the results in column major mode
     * this makes doing the multiplication with sse easier */
    mat.m[0][0] = transform.matrix.m[0][0];
    mat.m[1][0] = transform.matrix.m[0][1];
    mat.m[2][0] = transform.matrix.m[0][2];
    mat.m[0][1] = transform.matrix.m[1][0];
    mat.m[1][1] = transform.matrix.m[1][1];
    mat.m[2][1] = transform.matrix.m[1][2];
    mat.m[0][2] = transform.matrix.m[2][0];
    mat.m[1][2] = transform.matrix.m[2][1];
    mat.m[2][2] = transform.matrix.m[2][2];
    for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) {
        let in_r: f32 = src[0];
        let in_g: f32 = src[1];
        let in_b: f32 = src[2];
        let out_r: f32 =
            mat.m[0][0] * in_r + mat.m[1][0] * in_g + mat.m[2][0] * in_b + transform.tx;
        let out_g: f32 =
            mat.m[0][1] * in_r + mat.m[1][1] * in_g + mat.m[2][1] * in_b + transform.ty;
        let out_b: f32 =
            mat.m[0][2] * in_r + mat.m[1][2] * in_g + mat.m[2][2] * in_b + transform.tz;
        dest[0] = clamp_float(out_r);
        dest[1] = clamp_float(out_g);
        dest[2] = clamp_float(out_b);
    }
}

fn transform_module_matrix(transform: &ModularTransform, src: &[f32], dest: &mut [f32]) {
    let mut mat: Matrix = Matrix {
        m: [[0.; 3]; 3],
        invalid: false,
    };
    /* store the results in column major mode
     * this makes doing the multiplication with sse easier */
    mat.m[0][0] = transform.matrix.m[0][0];
    mat.m[1][0] = transform.matrix.m[0][1];
    mat.m[2][0] = transform.matrix.m[0][2];
    mat.m[0][1] = transform.matrix.m[1][0];
    mat.m[1][1] = transform.matrix.m[1][1];
    mat.m[2][1] = transform.matrix.m[1][2];
    mat.m[0][2] = transform.matrix.m[2][0];
    mat.m[1][2] = transform.matrix.m[2][1];
    mat.m[2][2] = transform.matrix.m[2][2];
    for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) {
        let in_r: f32 = src[0];
        let in_g: f32 = src[1];
        let in_b: f32 = src[2];
        let out_r: f32 = mat.m[0][0] * in_r + mat.m[1][0] * in_g + mat.m[2][0] * in_b;
        let out_g: f32 = mat.m[0][1] * in_r + mat.m[1][1] * in_g + mat.m[2][1] * in_b;
        let out_b: f32 = mat.m[0][2] * in_r + mat.m[1][2] * in_g + mat.m[2][2] * in_b;
        dest[0] = clamp_float(out_r);
        dest[1] = clamp_float(out_g);
        dest[2] = clamp_float(out_b);
    }
}
fn modular_transform_alloc() -> Option<Box<ModularTransform>> {
    Some(Box::new(Default::default()))
}
fn modular_transform_release(mut t: Option<Box<ModularTransform>>) {
    // destroy a list of transforms non-recursively
    let mut next_transform;
    while let Some(mut transform) = t {
        next_transform = std::mem::replace(&mut transform.next_transform, None);
        t = next_transform
    }
}
/* Set transform to be the next element in the linked list. */
fn append_transform(
    transform: Option<Box<ModularTransform>>,
    mut next_transform: &mut Option<Box<ModularTransform>>,
) -> &mut Option<Box<ModularTransform>> {
    *next_transform = transform;
    while next_transform.is_some() {
        next_transform = &mut next_transform.as_mut().unwrap().next_transform;
    }
    next_transform
}
/* reverse the transformation list (used by mBA) */
fn reverse_transform(
    mut transform: Option<Box<ModularTransform>>,
) -> Option<Box<ModularTransform>> {
    let mut prev_transform = None;
    while transform.is_some() {
        let next_transform = std::mem::replace(
            &mut transform.as_mut().unwrap().next_transform,
            prev_transform,
        );
        prev_transform = transform;
        transform = next_transform
    }
    prev_transform
}
fn modular_transform_create_mAB(lut: &lutmABType) -> Option<Box<ModularTransform>> {
    let mut first_transform = None;
    let mut next_transform = &mut first_transform;
    let mut transform;
    if lut.a_curves[0].is_some() {
        let clut_length: usize;
        // If the A curve is present this also implies the
        // presence of a CLUT.
        lut.clut_table.as_ref()?;

        // Prepare A curve.
        transform = modular_transform_alloc();
        transform.as_ref()?;
        transform.as_mut().unwrap().input_clut_table_r =
            build_input_gamma_table(lut.a_curves[0].as_deref());
        transform.as_mut().unwrap().input_clut_table_g =
            build_input_gamma_table(lut.a_curves[1].as_deref());
        transform.as_mut().unwrap().input_clut_table_b =
            build_input_gamma_table(lut.a_curves[2].as_deref());
        transform.as_mut().unwrap().transform_module_fn = Some(transform_module_gamma_table);
        next_transform = append_transform(transform, next_transform);

        if lut.num_grid_points[0] as i32 != lut.num_grid_points[1] as i32
            || lut.num_grid_points[1] as i32 != lut.num_grid_points[2] as i32
        {
            //XXX: We don't currently support clut that are not squared!
            return None;
        }

        // Prepare CLUT
        transform = modular_transform_alloc();
        transform.as_ref()?;

        clut_length = (lut.num_grid_points[0] as usize).pow(3) * 3;
        assert_eq!(clut_length, lut.clut_table.as_ref().unwrap().len());
        transform.as_mut().unwrap().clut = lut.clut_table.clone();
        transform.as_mut().unwrap().grid_size = lut.num_grid_points[0] as u16;
        transform.as_mut().unwrap().transform_module_fn = Some(transform_module_clut_only);
        next_transform = append_transform(transform, next_transform);
    }

    if lut.m_curves[0].is_some() {
        // M curve imples the presence of a Matrix

        // Prepare M curve
        transform = modular_transform_alloc();
        transform.as_ref()?;
        transform.as_mut().unwrap().input_clut_table_r =
            build_input_gamma_table(lut.m_curves[0].as_deref());
        transform.as_mut().unwrap().input_clut_table_g =
            build_input_gamma_table(lut.m_curves[1].as_deref());
        transform.as_mut().unwrap().input_clut_table_b =
            build_input_gamma_table(lut.m_curves[2].as_deref());
        transform.as_mut().unwrap().transform_module_fn = Some(transform_module_gamma_table);
        next_transform = append_transform(transform, next_transform);

        // Prepare Matrix
        transform = modular_transform_alloc();
        transform.as_ref()?;
        transform.as_mut().unwrap().matrix = build_mAB_matrix(lut);
        if transform.as_mut().unwrap().matrix.invalid {
            return None;
        }
        transform.as_mut().unwrap().tx = s15Fixed16Number_to_float(lut.e03);
        transform.as_mut().unwrap().ty = s15Fixed16Number_to_float(lut.e13);
        transform.as_mut().unwrap().tz = s15Fixed16Number_to_float(lut.e23);
        transform.as_mut().unwrap().transform_module_fn = Some(transform_module_matrix_translate);
        next_transform = append_transform(transform, next_transform);
    }

    if lut.b_curves[0].is_some() {
        // Prepare B curve
        transform = modular_transform_alloc();
        transform.as_ref()?;
        transform.as_mut().unwrap().input_clut_table_r =
            build_input_gamma_table(lut.b_curves[0].as_deref());
        transform.as_mut().unwrap().input_clut_table_g =
            build_input_gamma_table(lut.b_curves[1].as_deref());
        transform.as_mut().unwrap().input_clut_table_b =
            build_input_gamma_table(lut.b_curves[2].as_deref());
        transform.as_mut().unwrap().transform_module_fn = Some(transform_module_gamma_table);
        append_transform(transform, next_transform);
    } else {
        // B curve is mandatory
        return None;
    }

    if lut.reversed {
        // mBA are identical to mAB except that the transformation order
        // is reversed
        first_transform = reverse_transform(first_transform)
    }
    first_transform
}

fn modular_transform_create_lut(lut: &lutType) -> Option<Box<ModularTransform>> {
    let mut first_transform = None;
    let mut next_transform = &mut first_transform;

    let _in_curve_len: usize;
    let clut_length: usize;
    let _out_curve_len: usize;
    let _in_curves: *mut f32;
    let _out_curves: *mut f32;
    let mut transform = modular_transform_alloc();
    if transform.is_some() {
        transform.as_mut().unwrap().matrix = build_lut_matrix(Some(lut));
        if !transform.as_mut().unwrap().matrix.invalid {
            transform.as_mut().unwrap().transform_module_fn = Some(transform_module_matrix);
            next_transform = append_transform(transform, next_transform);
            // Prepare input curves
            transform = modular_transform_alloc();
            if transform.is_some() {
                transform.as_mut().unwrap().input_clut_table_r =
                    Some(lut.input_table[0..lut.num_input_table_entries as usize].to_vec());
                transform.as_mut().unwrap().input_clut_table_g = Some(
                    lut.input_table[lut.num_input_table_entries as usize
                        ..lut.num_input_table_entries as usize * 2]
                        .to_vec(),
                );
                transform.as_mut().unwrap().input_clut_table_b = Some(
                    lut.input_table[lut.num_input_table_entries as usize * 2
                        ..lut.num_input_table_entries as usize * 3]
                        .to_vec(),
                );
                transform.as_mut().unwrap().input_clut_table_length = lut.num_input_table_entries;
                // Prepare table
                clut_length = (lut.num_clut_grid_points as usize).pow(3) * 3;
                assert_eq!(clut_length, lut.clut_table.len());
                transform.as_mut().unwrap().clut = Some(lut.clut_table.clone());

                transform.as_mut().unwrap().grid_size = lut.num_clut_grid_points as u16;
                // Prepare output curves
                transform.as_mut().unwrap().output_clut_table_r =
                    Some(lut.output_table[0..lut.num_output_table_entries as usize].to_vec());
                transform.as_mut().unwrap().output_clut_table_g = Some(
                    lut.output_table[lut.num_output_table_entries as usize
                        ..lut.num_output_table_entries as usize * 2]
                        .to_vec(),
                );
                transform.as_mut().unwrap().output_clut_table_b = Some(
                    lut.output_table[lut.num_output_table_entries as usize * 2
                        ..lut.num_output_table_entries as usize * 3]
                        .to_vec(),
                );
                transform.as_mut().unwrap().output_clut_table_length = lut.num_output_table_entries;
                transform.as_mut().unwrap().transform_module_fn = Some(transform_module_clut);
                append_transform(transform, next_transform);
                return first_transform;
            }
        }
    }
    modular_transform_release(first_transform);
    None
}

fn modular_transform_create_input(input: &Profile) -> Option<Box<ModularTransform>> {
    let mut first_transform = None;
    let mut next_transform = &mut first_transform;
    if input.A2B0.is_some() {
        let lut_transform = modular_transform_create_lut(input.A2B0.as_deref().unwrap());
        if lut_transform.is_none() {
            return None;
        } else {
            append_transform(lut_transform, next_transform);
        }
    } else if input.mAB.is_some()
        && (*input.mAB.as_deref().unwrap()).num_in_channels == 3
        && (*input.mAB.as_deref().unwrap()).num_out_channels == 3
    {
        let mAB_transform = modular_transform_create_mAB(input.mAB.as_deref().unwrap());
        if mAB_transform.is_none() {
            return None;
        } else {
            append_transform(mAB_transform, next_transform);
        }
    } else {
        let mut transform = modular_transform_alloc();
        if transform.is_none() {
            return None;
        } else {
            transform.as_mut().unwrap().input_clut_table_r =
                build_input_gamma_table(input.redTRC.as_deref());
            transform.as_mut().unwrap().input_clut_table_g =
                build_input_gamma_table(input.greenTRC.as_deref());
            transform.as_mut().unwrap().input_clut_table_b =
                build_input_gamma_table(input.blueTRC.as_deref());
            transform.as_mut().unwrap().transform_module_fn = Some(transform_module_gamma_table);
            if transform.as_mut().unwrap().input_clut_table_r.is_none()
                || transform.as_mut().unwrap().input_clut_table_g.is_none()
                || transform.as_mut().unwrap().input_clut_table_b.is_none()
            {
                append_transform(transform, next_transform);
                return None;
            } else {
                next_transform = append_transform(transform, next_transform);
                transform = modular_transform_alloc();
                if transform.is_none() {
                    return None;
                } else {
                    transform.as_mut().unwrap().matrix.m[0][0] = 1. / 1.999_969_5;
                    transform.as_mut().unwrap().matrix.m[0][1] = 0.0;
                    transform.as_mut().unwrap().matrix.m[0][2] = 0.0;
                    transform.as_mut().unwrap().matrix.m[1][0] = 0.0;
                    transform.as_mut().unwrap().matrix.m[1][1] = 1. / 1.999_969_5;
                    transform.as_mut().unwrap().matrix.m[1][2] = 0.0;
                    transform.as_mut().unwrap().matrix.m[2][0] = 0.0;
                    transform.as_mut().unwrap().matrix.m[2][1] = 0.0;
                    transform.as_mut().unwrap().matrix.m[2][2] = 1. / 1.999_969_5;
                    transform.as_mut().unwrap().matrix.invalid = false;
                    transform.as_mut().unwrap().transform_module_fn = Some(transform_module_matrix);
                    next_transform = append_transform(transform, next_transform);
                    transform = modular_transform_alloc();
                    if transform.is_none() {
                        return None;
                    } else {
                        transform.as_mut().unwrap().matrix = build_colorant_matrix(input);
                        transform.as_mut().unwrap().transform_module_fn =
                            Some(transform_module_matrix);
                        append_transform(transform, next_transform);
                    }
                }
            }
        }
    }
    first_transform
}
fn modular_transform_create_output(out: &Profile) -> Option<Box<ModularTransform>> {
    let mut first_transform = None;
    let mut next_transform = &mut first_transform;
    if out.B2A0.is_some() {
        let lut_transform = modular_transform_create_lut(out.B2A0.as_deref().unwrap());
        if lut_transform.is_none() {
            return None;
        } else {
            append_transform(lut_transform, next_transform);
        }
    } else if out.mBA.is_some()
        && (*out.mBA.as_deref().unwrap()).num_in_channels == 3
        && (*out.mBA.as_deref().unwrap()).num_out_channels == 3
    {
        let lut_transform_0 = modular_transform_create_mAB(out.mBA.as_deref().unwrap());
        if lut_transform_0.is_none() {
            return None;
        } else {
            append_transform(lut_transform_0, next_transform);
        }
    } else if out.redTRC.is_some() && out.greenTRC.is_some() && out.blueTRC.is_some() {
        let mut transform = modular_transform_alloc();
        if transform.is_none() {
            return None;
        } else {
            transform.as_mut().unwrap().matrix = build_colorant_matrix(out).invert();
            transform.as_mut().unwrap().transform_module_fn = Some(transform_module_matrix);
            next_transform = append_transform(transform, next_transform);
            transform = modular_transform_alloc();
            if transform.is_none() {
                return None;
            } else {
                transform.as_mut().unwrap().matrix.m[0][0] = 1.999_969_5;
                transform.as_mut().unwrap().matrix.m[0][1] = 0.0;
                transform.as_mut().unwrap().matrix.m[0][2] = 0.0;
                transform.as_mut().unwrap().matrix.m[1][0] = 0.0;
                transform.as_mut().unwrap().matrix.m[1][1] = 1.999_969_5;
                transform.as_mut().unwrap().matrix.m[1][2] = 0.0;
                transform.as_mut().unwrap().matrix.m[2][0] = 0.0;
                transform.as_mut().unwrap().matrix.m[2][1] = 0.0;
                transform.as_mut().unwrap().matrix.m[2][2] = 1.999_969_5;
                transform.as_mut().unwrap().matrix.invalid = false;
                transform.as_mut().unwrap().transform_module_fn = Some(transform_module_matrix);
                next_transform = append_transform(transform, next_transform);
                transform = modular_transform_alloc();
                if transform.is_none() {
                    return None;
                } else {
                    transform.as_mut().unwrap().output_gamma_lut_r =
                        Some(build_output_lut(out.redTRC.as_deref().unwrap()));
                    transform.as_mut().unwrap().output_gamma_lut_g =
                        Some(build_output_lut(out.greenTRC.as_deref().unwrap()));
                    transform.as_mut().unwrap().output_gamma_lut_b =
                        Some(build_output_lut(out.blueTRC.as_deref().unwrap()));
                    transform.as_mut().unwrap().transform_module_fn =
                        Some(transform_module_gamma_lut);
                    if transform.as_mut().unwrap().output_gamma_lut_r.is_none()
                        || transform.as_mut().unwrap().output_gamma_lut_g.is_none()
                        || transform.as_mut().unwrap().output_gamma_lut_b.is_none()
                    {
                        return None;
                    } else {
                        append_transform(transform, next_transform);
                    }
                }
            }
        }
    } else {
        debug_assert!(false, "Unsupported output profile workflow.");
        return None;
    }
    first_transform
}
/* Not Completed
// Simplify the transformation chain to an equivalent transformation chain
static struct qcms_modular_transform* qcms_modular_transform_reduce(struct qcms_modular_transform *transform)
{
    struct qcms_modular_transform *first_transform = NULL;
    struct qcms_modular_transform *curr_trans = transform;
    struct qcms_modular_transform *prev_trans = NULL;
    while (curr_trans) {
        struct qcms_modular_transform *next_trans = curr_trans->next_transform;
        if (curr_trans->transform_module_fn == qcms_transform_module_matrix) {
            if (next_trans && next_trans->transform_module_fn == qcms_transform_module_matrix) {
                curr_trans->matrix = matrix_multiply(curr_trans->matrix, next_trans->matrix);
                goto remove_next;
            }
        }
        if (curr_trans->transform_module_fn == qcms_transform_module_gamma_table) {
            bool isLinear = true;
            uint16_t i;
            for (i = 0; isLinear && i < 256; i++) {
                isLinear &= (int)(curr_trans->input_clut_table_r[i] * 255) == i;
                isLinear &= (int)(curr_trans->input_clut_table_g[i] * 255) == i;
                isLinear &= (int)(curr_trans->input_clut_table_b[i] * 255) == i;
            }
            goto remove_current;
        }

next_transform:
        if (!next_trans) break;
        prev_trans = curr_trans;
        curr_trans = next_trans;
        continue;
remove_current:
        if (curr_trans == transform) {
            //Update head
            transform = next_trans;
        } else {
            prev_trans->next_transform = next_trans;
        }
        curr_trans->next_transform = NULL;
        qcms_modular_transform_release(curr_trans);
        //return transform;
        return qcms_modular_transform_reduce(transform);
remove_next:
        curr_trans->next_transform = next_trans->next_transform;
        next_trans->next_transform = NULL;
        qcms_modular_transform_release(next_trans);
        continue;
    }
    return transform;
}
*/
fn modular_transform_create(
    input: &Profile,
    output: &Profile,
) -> Option<Box<ModularTransform>> {
    let mut first_transform = None;
    let mut next_transform = &mut first_transform;
    if input.color_space == RGB_SIGNATURE {
        let rgb_to_pcs = modular_transform_create_input(input);
        rgb_to_pcs.as_ref()?;
        next_transform = append_transform(rgb_to_pcs, next_transform);
    } else {
        debug_assert!(false, "input color space not supported");
        return None;
    }

    if input.pcs == LAB_SIGNATURE && output.pcs == XYZ_SIGNATURE {
        let mut lab_to_pcs = modular_transform_alloc();
        lab_to_pcs.as_ref()?;
        lab_to_pcs.as_mut().unwrap().transform_module_fn = Some(transform_module_LAB_to_XYZ);
        next_transform = append_transform(lab_to_pcs, next_transform);
    }

    // This does not improve accuracy in practice, something is wrong here.
    //if (in->chromaticAdaption.invalid == false) {
    //	struct qcms_modular_transform* chromaticAdaption;
    //	chromaticAdaption = qcms_modular_transform_alloc();
    //	if (!chromaticAdaption)
    //		goto fail;
    //	append_transform(chromaticAdaption, &next_transform);
    //	chromaticAdaption->matrix = matrix_invert(in->chromaticAdaption);
    //	chromaticAdaption->transform_module_fn = qcms_transform_module_matrix;
    //}

    if input.pcs == XYZ_SIGNATURE && output.pcs == LAB_SIGNATURE {
        let mut pcs_to_lab = modular_transform_alloc();
        pcs_to_lab.as_ref()?;
        pcs_to_lab.as_mut().unwrap().transform_module_fn = Some(transform_module_XYZ_to_LAB);
        next_transform = append_transform(pcs_to_lab, next_transform);
    }

    if output.color_space == RGB_SIGNATURE {
        let pcs_to_rgb = modular_transform_create_output(output);
        pcs_to_rgb.as_ref()?;
        append_transform(pcs_to_rgb, next_transform);
    } else {
        debug_assert!(false, "output color space not supported");
    }

    // Not Completed
    //return qcms_modular_transform_reduce(first_transform);
    first_transform
}
fn modular_transform_data(
    mut transform: Option<&ModularTransform>,
    mut src: Vec<f32>,
    mut dest: Vec<f32>,
    _len: usize,
) -> Option<Vec<f32>> {
    while transform.is_some() {
        // Keep swaping src/dest when performing a transform to use less memory.
        let _transform_fn: TransformModuleFn = transform.unwrap().transform_module_fn;
        transform
            .unwrap()
            .transform_module_fn
            .expect("non-null function pointer")(
            transform.as_ref().unwrap(), &src, &mut dest
        );
        std::mem::swap(&mut src, &mut dest);
        transform = transform.unwrap().next_transform.as_deref();
    }
    // The results end up in the src buffer because of the switching
    Some(src)
}

pub fn chain_transform(
    input: &Profile,
    output: &Profile,
    src: Vec<f32>,
    dest: Vec<f32>,
    lutSize: usize,
) -> Option<Vec<f32>> {
    let transform_list = modular_transform_create(input, output);
    if transform_list.is_some() {
        let lut = modular_transform_data(transform_list.as_deref(), src, dest, lutSize / 3);
        modular_transform_release(transform_list);
        return lut;
    }
    None
}