1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
template <typename P>
static inline void scale_row(P* dst, int dstWidth, const P* src, int srcWidth,
int span, int frac) {
for (P* end = dst + span; dst < end; dst++) {
*dst = *src;
// Step source according to width ratio.
for (frac += srcWidth; frac >= dstWidth; frac -= dstWidth) {
src++;
}
}
}
static NO_INLINE void scale_blit(Texture& srctex, const IntRect& srcReq,
int srcZ, Texture& dsttex,
const IntRect& dstReq, int dstZ, bool invertY,
const IntRect& clipRect) {
// Cache scaling ratios
int srcWidth = srcReq.width();
int srcHeight = srcReq.height();
int dstWidth = dstReq.width();
int dstHeight = dstReq.height();
// Compute valid dest bounds
IntRect dstBounds = dsttex.sample_bounds(dstReq);
// Compute valid source bounds
// Scale source to dest, rounding inward to avoid sampling outside source
IntRect srcBounds = srctex.sample_bounds(srcReq, invertY).scale(
srcWidth, srcHeight, dstWidth, dstHeight, true);
// Limit dest sampling bounds to overlap source bounds
dstBounds.intersect(srcBounds);
// Compute the clipped bounds, relative to dstBounds.
IntRect clippedDest = dstBounds.intersection(clipRect) - dstBounds.origin();
// Check if clipped sampling bounds are empty
if (clippedDest.is_empty()) {
return;
}
// Compute final source bounds from clamped dest sampling bounds
srcBounds =
IntRect(dstBounds).scale(dstWidth, dstHeight, srcWidth, srcHeight);
// Calculate source and dest pointers from clamped offsets
int bpp = srctex.bpp();
int srcStride = srctex.stride();
int destStride = dsttex.stride();
char* dest = dsttex.sample_ptr(dstReq, dstBounds, dstZ);
char* src = srctex.sample_ptr(srcReq, srcBounds, srcZ, invertY);
// Inverted Y must step downward along source rows
if (invertY) {
srcStride = -srcStride;
}
int span = clippedDest.width();
int fracX = srcWidth * clippedDest.x0;
int fracY = srcHeight * clippedDest.y0;
dest += destStride * clippedDest.y0;
dest += bpp * clippedDest.x0;
src += srcStride * (fracY / dstHeight);
src += bpp * (fracX / dstWidth);
fracY %= dstHeight;
fracX %= dstWidth;
for (int rows = clippedDest.height(); rows > 0; rows--) {
if (srcWidth == dstWidth) {
// No scaling, so just do a fast copy.
memcpy(dest, src, span * bpp);
} else {
// Do scaling with different source and dest widths.
switch (bpp) {
case 1:
scale_row((uint8_t*)dest, dstWidth, (uint8_t*)src, srcWidth, span,
fracX);
break;
case 2:
scale_row((uint16_t*)dest, dstWidth, (uint16_t*)src, srcWidth, span,
fracX);
break;
case 4:
scale_row((uint32_t*)dest, dstWidth, (uint32_t*)src, srcWidth, span,
fracX);
break;
default:
assert(false);
break;
}
}
dest += destStride;
// Step source according to height ratio.
for (fracY += srcHeight; fracY >= dstHeight; fracY -= dstHeight) {
src += srcStride;
}
}
}
static void linear_row_blit(uint32_t* dest, int span, const vec2_scalar& srcUV,
float srcDU, int srcZOffset,
sampler2DArray sampler) {
vec2 uv = init_interp(srcUV, vec2_scalar(srcDU, 0.0f));
for (; span >= 4; span -= 4) {
auto srcpx = textureLinearPackedRGBA8(sampler, ivec2(uv), srcZOffset);
unaligned_store(dest, srcpx);
dest += 4;
uv.x += 4 * srcDU;
}
if (span > 0) {
auto srcpx = textureLinearPackedRGBA8(sampler, ivec2(uv), srcZOffset);
partial_store_span(dest, srcpx, span);
}
}
static void linear_row_blit(uint8_t* dest, int span, const vec2_scalar& srcUV,
float srcDU, int srcZOffset,
sampler2DArray sampler) {
vec2 uv = init_interp(srcUV, vec2_scalar(srcDU, 0.0f));
for (; span >= 4; span -= 4) {
auto srcpx = textureLinearPackedR8(sampler, ivec2(uv), srcZOffset);
unaligned_store(dest, srcpx);
dest += 4;
uv.x += 4 * srcDU;
}
if (span > 0) {
auto srcpx = textureLinearPackedR8(sampler, ivec2(uv), srcZOffset);
partial_store_span(dest, srcpx, span);
}
}
static void linear_row_blit(uint16_t* dest, int span, const vec2_scalar& srcUV,
float srcDU, int srcZOffset,
sampler2DArray sampler) {
vec2 uv = init_interp(srcUV, vec2_scalar(srcDU, 0.0f));
for (; span >= 4; span -= 4) {
auto srcpx = textureLinearPackedRG8(sampler, ivec2(uv), srcZOffset);
unaligned_store(dest, srcpx);
dest += 4;
uv.x += 4 * srcDU;
}
if (span > 0) {
auto srcpx = textureLinearPackedRG8(sampler, ivec2(uv), srcZOffset);
partial_store_span(dest, srcpx, span);
}
}
static NO_INLINE void linear_blit(Texture& srctex, const IntRect& srcReq,
int srcZ, Texture& dsttex,
const IntRect& dstReq, int dstZ, bool invertY,
const IntRect& clipRect) {
assert(srctex.internal_format == GL_RGBA8 ||
srctex.internal_format == GL_R8 || srctex.internal_format == GL_RG8);
// Compute valid dest bounds
IntRect dstBounds = dsttex.sample_bounds(dstReq);
dstBounds.intersect(clipRect);
// Check if sampling bounds are empty
if (dstBounds.is_empty()) {
return;
}
// Initialize sampler for source texture
sampler2DArray_impl sampler;
init_sampler(&sampler, srctex);
init_depth(&sampler, srctex);
sampler.filter = TextureFilter::LINEAR;
// Compute source UVs
int srcZOffset = srcZ * sampler.height_stride;
vec2_scalar srcUV(srcReq.x0, srcReq.y0);
vec2_scalar srcDUV(float(srcReq.width()) / dstReq.width(),
float(srcReq.height()) / dstReq.height());
// Inverted Y must step downward along source rows
if (invertY) {
srcUV.y += srcReq.height();
srcDUV.y = -srcDUV.y;
}
// Skip to clamped source start
srcUV += srcDUV * (vec2_scalar(dstBounds.x0, dstBounds.y0) + 0.5f);
// Scale UVs by lerp precision
srcUV = linearQuantize(srcUV, 128);
srcDUV *= 128.0f;
// Calculate dest pointer from clamped offsets
int bpp = dsttex.bpp();
int destStride = dsttex.stride();
char* dest = dsttex.sample_ptr(dstReq, dstBounds, dstZ);
int span = dstBounds.width();
for (int rows = dstBounds.height(); rows > 0; rows--) {
switch (bpp) {
case 1:
linear_row_blit((uint8_t*)dest, span, srcUV, srcDUV.x, srcZOffset,
&sampler);
break;
case 2:
linear_row_blit((uint16_t*)dest, span, srcUV, srcDUV.x, srcZOffset,
&sampler);
break;
case 4:
linear_row_blit((uint32_t*)dest, span, srcUV, srcDUV.x, srcZOffset,
&sampler);
break;
default:
assert(false);
break;
}
dest += destStride;
srcUV.y += srcDUV.y;
}
}
static void linear_row_composite(uint32_t* dest, int span,
const vec2_scalar& srcUV, float srcDU,
sampler2D sampler) {
vec2 uv = init_interp(srcUV, vec2_scalar(srcDU, 0.0f));
for (; span >= 4; span -= 4) {
WideRGBA8 srcpx = textureLinearUnpackedRGBA8(sampler, ivec2(uv), 0);
WideRGBA8 dstpx = unpack(unaligned_load<PackedRGBA8>(dest));
PackedRGBA8 r = pack(srcpx + dstpx - muldiv255(dstpx, alphas(srcpx)));
unaligned_store(dest, r);
dest += 4;
uv.x += 4 * srcDU;
}
if (span > 0) {
WideRGBA8 srcpx = textureLinearUnpackedRGBA8(sampler, ivec2(uv), 0);
WideRGBA8 dstpx = unpack(partial_load_span<PackedRGBA8>(dest, span));
PackedRGBA8 r = pack(srcpx + dstpx - muldiv255(dstpx, alphas(srcpx)));
partial_store_span(dest, r, span);
}
}
static NO_INLINE void linear_composite(Texture& srctex, const IntRect& srcReq,
Texture& dsttex, const IntRect& dstReq,
bool invertY, const IntRect& clipRect) {
assert(srctex.bpp() == 4);
assert(dsttex.bpp() == 4);
// Compute valid dest bounds
IntRect dstBounds = dsttex.sample_bounds(dstReq);
dstBounds.intersect(clipRect);
// Check if sampling bounds are empty
if (dstBounds.is_empty()) {
return;
}
// Initialize sampler for source texture
sampler2D_impl sampler;
init_sampler(&sampler, srctex);
sampler.filter = TextureFilter::LINEAR;
// Compute source UVs
vec2_scalar srcUV(srcReq.x0, srcReq.y0);
vec2_scalar srcDUV(float(srcReq.width()) / dstReq.width(),
float(srcReq.height()) / dstReq.height());
// Inverted Y must step downward along source rows
if (invertY) {
srcUV.y += srcReq.height();
srcDUV.y = -srcDUV.y;
}
// Skip to clamped source start
srcUV += srcDUV * (vec2_scalar(dstBounds.x0, dstBounds.y0) + 0.5f);
// Scale UVs by lerp precision
srcUV = linearQuantize(srcUV, 128);
srcDUV *= 128.0f;
// Calculate dest pointer from clamped offsets
int destStride = dsttex.stride();
char* dest = dsttex.sample_ptr(dstReq, dstBounds, 0);
int span = dstBounds.width();
for (int rows = dstBounds.height(); rows > 0; rows--) {
linear_row_composite((uint32_t*)dest, span, srcUV, srcDUV.x, &sampler);
dest += destStride;
srcUV.y += srcDUV.y;
}
}
extern "C" {
void BlitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
GLbitfield mask, GLenum filter) {
assert(mask == GL_COLOR_BUFFER_BIT);
Framebuffer* srcfb = get_framebuffer(GL_READ_FRAMEBUFFER);
if (!srcfb || srcfb->layer < 0) return;
Framebuffer* dstfb = get_framebuffer(GL_DRAW_FRAMEBUFFER);
if (!dstfb || dstfb->layer < 0) return;
Texture& srctex = ctx->textures[srcfb->color_attachment];
if (!srctex.buf || srcfb->layer >= max(srctex.depth, 1)) return;
Texture& dsttex = ctx->textures[dstfb->color_attachment];
if (!dsttex.buf || dstfb->layer >= max(dsttex.depth, 1)) return;
assert(!dsttex.locked);
if (srctex.internal_format != dsttex.internal_format) {
assert(false);
return;
}
// Force flipped Y onto dest coordinates
if (srcY1 < srcY0) {
swap(srcY0, srcY1);
swap(dstY0, dstY1);
}
bool invertY = dstY1 < dstY0;
if (invertY) {
swap(dstY0, dstY1);
}
IntRect srcReq = IntRect{srcX0, srcY0, srcX1, srcY1} - srctex.offset;
IntRect dstReq = IntRect{dstX0, dstY0, dstX1, dstY1} - dsttex.offset;
if (srcReq.is_empty() || dstReq.is_empty()) {
return;
}
IntRect clipRect = {0, 0, dstReq.width(), dstReq.height()};
prepare_texture(srctex);
prepare_texture(dsttex, &dstReq);
if (!srcReq.same_size(dstReq) && srctex.width >= 2 && filter == GL_LINEAR &&
(srctex.internal_format == GL_RGBA8 || srctex.internal_format == GL_R8 ||
srctex.internal_format == GL_RG8)) {
linear_blit(srctex, srcReq, srcfb->layer, dsttex, dstReq, dstfb->layer,
invertY, dstReq);
} else {
scale_blit(srctex, srcReq, srcfb->layer, dsttex, dstReq, dstfb->layer,
invertY, clipRect);
}
}
typedef Texture LockedTexture;
// Lock the given texture to prevent modification.
LockedTexture* LockTexture(GLuint texId) {
Texture& tex = ctx->textures[texId];
if (!tex.buf) {
assert(tex.buf != nullptr);
return nullptr;
}
if (__sync_fetch_and_add(&tex.locked, 1) == 0) {
// If this is the first time locking the texture, flush any delayed clears.
prepare_texture(tex);
}
return (LockedTexture*)&tex;
}
// Lock the given framebuffer's color attachment to prevent modification.
LockedTexture* LockFramebuffer(GLuint fboId) {
Framebuffer& fb = ctx->framebuffers[fboId];
// Only allow locking a framebuffer if it has a valid color attachment and
// only if targeting the first layer.
if (!fb.color_attachment || fb.layer > 0) {
assert(fb.color_attachment != 0);
assert(fb.layer == 0);
return nullptr;
}
return LockTexture(fb.color_attachment);
}
// Reference an already locked resource
void LockResource(LockedTexture* resource) {
if (!resource) {
return;
}
__sync_fetch_and_add(&resource->locked, 1);
}
// Remove a lock on a texture that has been previously locked
void UnlockResource(LockedTexture* resource) {
if (!resource) {
return;
}
if (__sync_fetch_and_add(&resource->locked, -1) <= 0) {
// The lock should always be non-zero before unlocking.
assert(0);
}
}
// Get the underlying buffer for a locked resource
void* GetResourceBuffer(LockedTexture* resource, int32_t* width,
int32_t* height, int32_t* stride) {
*width = resource->width;
*height = resource->height;
*stride = resource->stride();
return resource->buf;
}
static void unscaled_row_composite(uint32_t* dest, const uint32_t* src,
int span) {
const uint32_t* end = src + span;
while (src + 4 <= end) {
WideRGBA8 srcpx = unpack(unaligned_load<PackedRGBA8>(src));
WideRGBA8 dstpx = unpack(unaligned_load<PackedRGBA8>(dest));
PackedRGBA8 r = pack(srcpx + dstpx - muldiv255(dstpx, alphas(srcpx)));
unaligned_store(dest, r);
src += 4;
dest += 4;
}
if (src < end) {
WideRGBA8 srcpx = unpack(partial_load_span<PackedRGBA8>(src, end - src));
WideRGBA8 dstpx = unpack(partial_load_span<PackedRGBA8>(dest, end - src));
auto r = pack(srcpx + dstpx - muldiv255(dstpx, alphas(srcpx)));
partial_store_span(dest, r, end - src);
}
}
static NO_INLINE void unscaled_composite(Texture& srctex, const IntRect& srcReq,
Texture& dsttex, const IntRect& dstReq,
bool invertY,
const IntRect& clipRect) {
IntRect bounds = dsttex.sample_bounds(dstReq);
bounds.intersect(clipRect);
bounds.intersect(srctex.sample_bounds(srcReq, invertY));
char* dest = dsttex.sample_ptr(dstReq, bounds, 0);
char* src = srctex.sample_ptr(srcReq, bounds, 0, invertY);
int srcStride = srctex.stride();
int destStride = dsttex.stride();
if (invertY) {
srcStride = -srcStride;
}
for (int rows = bounds.height(); rows > 0; rows--) {
unscaled_row_composite((uint32_t*)dest, (const uint32_t*)src,
bounds.width());
dest += destStride;
src += srcStride;
}
}
// Extension for optimized compositing of textures or framebuffers that may be
// safely used across threads. The source and destination must be locked to
// ensure that they can be safely accessed while the SWGL context might be used
// by another thread. Band extents along the Y axis may be used to clip the
// destination rectangle without effecting the integer scaling ratios.
void Composite(LockedTexture* lockedDst, LockedTexture* lockedSrc, GLint srcX,
GLint srcY, GLsizei srcWidth, GLsizei srcHeight, GLint dstX,
GLint dstY, GLsizei dstWidth, GLsizei dstHeight,
GLboolean opaque, GLboolean flip, GLenum filter, GLint clipX,
GLint clipY, GLsizei clipWidth, GLsizei clipHeight) {
if (!lockedDst || !lockedSrc) {
return;
}
Texture& srctex = *lockedSrc;
Texture& dsttex = *lockedDst;
assert(srctex.bpp() == 4);
assert(dsttex.bpp() == 4);
IntRect srcReq =
IntRect{srcX, srcY, srcX + srcWidth, srcY + srcHeight} - srctex.offset;
IntRect dstReq =
IntRect{dstX, dstY, dstX + dstWidth, dstY + dstHeight} - dsttex.offset;
// Compute clip rect as relative to the dstReq, as that's the same coords
// as used for the sampling bounds.
IntRect clipRect = {clipX - dstX, clipY - dstY, clipX - dstX + clipWidth,
clipY - dstY + clipHeight};
if (opaque) {
// Ensure we have rows of at least 2 pixels when using the linear filter
// to avoid overreading the row.
if (!srcReq.same_size(dstReq) && srctex.width >= 2 && filter == GL_LINEAR) {
linear_blit(srctex, srcReq, 0, dsttex, dstReq, 0, flip, clipRect);
} else {
scale_blit(srctex, srcReq, 0, dsttex, dstReq, 0, flip, clipRect);
}
} else {
if (!srcReq.same_size(dstReq) && srctex.width >= 2) {
linear_composite(srctex, srcReq, dsttex, dstReq, flip, clipRect);
} else {
unscaled_composite(srctex, srcReq, dsttex, dstReq, flip, clipRect);
}
}
}
} // extern "C"
// Saturated add helper for YUV conversion. Supported platforms have intrinsics
// to do this natively, but support a slower generic fallback just in case.
static inline V8<int16_t> addsat(V8<int16_t> x, V8<int16_t> y) {
#if USE_SSE2
return _mm_adds_epi16(x, y);
#elif USE_NEON
return vqaddq_s16(x, y);
#else
auto r = x + y;
// An overflow occurred if the signs of both inputs x and y did not differ
// but yet the sign of the result did differ.
auto overflow = (~(x ^ y) & (r ^ x)) >> 15;
// If there was an overflow, we need to choose the appropriate limit to clamp
// to depending on whether or not the inputs are negative.
auto limit = (x >> 15) ^ 0x7FFF;
// If we didn't overflow, just use the result, and otherwise, use the limit.
return (~overflow & r) | (overflow & limit);
#endif
}
// Interleave and packing helper for YUV conversion. During transform by the
// color matrix, the color components are de-interleaved as this format is
// usually what comes out of the planar YUV textures. The components thus need
// to be interleaved before finally getting packed to BGRA format. Alpha is
// forced to be opaque.
static inline PackedRGBA8 packYUV(V8<int16_t> gg, V8<int16_t> br) {
return pack(bit_cast<WideRGBA8>(zip(br, gg))) |
PackedRGBA8{0, 0, 0, 255, 0, 0, 0, 255, 0, 0, 0, 255, 0, 0, 0, 255};
}
enum YUVColorSpace { REC_601 = 0, REC_709, REC_2020, IDENTITY };
// clang-format off
// Supports YUV color matrixes of the form:
// [R] [1.1643835616438356, 0.0, rv ] [Y - 16]
// [G] = [1.1643835616438358, -gu, -gv ] x [U - 128]
// [B] [1.1643835616438356, bu, 0.0 ] [V - 128]
// We must be able to multiply a YUV input by a matrix coefficient ranging as
// high as ~2.2 in the U/V cases, where U/V can be signed values between -128
// and 127. The largest fixed-point representation we can thus support without
// overflowing 16 bit integers leaves us 6 bits of fractional precision while
// also supporting a sign bit. The closest representation of the Y coefficient
// ~1.164 in this precision is 74.5/2^6 which is common to all color spaces
// we support. Conversions can still sometimes overflow the precision and
// require clamping back into range, so we use saturated additions to do this
// efficiently at no extra cost.
// clang-format on
template <const double MATRIX[4]>
struct YUVConverterImpl {
static inline PackedRGBA8 convert(V8<int16_t> yy, V8<int16_t> uv) {
// Convert matrix coefficients to fixed-point representation.
constexpr int16_t mrv = int16_t(MATRIX[0] * 64.0 + 0.5);
constexpr int16_t mgu = -int16_t(MATRIX[1] * -64.0 + 0.5);
constexpr int16_t mgv = -int16_t(MATRIX[2] * -64.0 + 0.5);
constexpr int16_t mbu = int16_t(MATRIX[3] * 64.0 + 0.5);
// Bias Y values by -16 and multiply by 74.5. Add 2^5 offset to round to
// nearest 2^6.
yy = yy * 74 + (yy >> 1) + (int16_t(-16 * 74.5) + (1 << 5));
// Bias U/V values by -128.
uv -= 128;
// Compute (R, B) = (74.5*Y + rv*V, 74.5*Y + bu*U)
auto br = V8<int16_t>{mbu, mrv, mbu, mrv, mbu, mrv, mbu, mrv} * uv;
br = addsat(yy, br);
br >>= 6;
// Compute G = 74.5*Y + -gu*U + -gv*V
auto gg = V8<int16_t>{mgu, mgv, mgu, mgv, mgu, mgv, mgu, mgv} * uv;
gg = addsat(
yy,
addsat(gg, bit_cast<V8<int16_t>>(bit_cast<V4<uint32_t>>(gg) >> 16)));
gg >>= 6;
// Interleave B/R and G values. Force alpha to opaque.
return packYUV(gg, br);
}
};
template <YUVColorSpace COLOR_SPACE>
struct YUVConverter {};
// clang-format off
// From Rec601:
// [R] [1.1643835616438356, 0.0, 1.5960267857142858 ] [Y - 16]
// [G] = [1.1643835616438358, -0.3917622900949137, -0.8129676472377708 ] x [U - 128]
// [B] [1.1643835616438356, 2.017232142857143, 8.862867620416422e-17] [V - 128]
// clang-format on
constexpr double YUVMatrix601[4] = {1.5960267857142858, -0.3917622900949137,
-0.8129676472377708, 2.017232142857143};
template <>
struct YUVConverter<REC_601> : YUVConverterImpl<YUVMatrix601> {};
// clang-format off
// From Rec709:
// [R] [1.1643835616438356, 0.0, 1.7927410714285714] [Y - 16]
// [G] = [1.1643835616438358, -0.21324861427372963, -0.532909328559444 ] x [U - 128]
// [B] [1.1643835616438356, 2.1124017857142854, 0.0 ] [V - 128]
// clang-format on
static constexpr double YUVMatrix709[4] = {
1.7927410714285714, -0.21324861427372963, -0.532909328559444,
2.1124017857142854};
template <>
struct YUVConverter<REC_709> : YUVConverterImpl<YUVMatrix709> {};
// clang-format off
// From Re2020:
// [R] [1.16438356164384, 0.0, 1.678674107142860 ] [Y - 16]
// [G] = [1.16438356164384, -0.187326104219343, -0.650424318505057 ] x [U - 128]
// [B] [1.16438356164384, 2.14177232142857, 0.0 ] [V - 128]
// clang-format on
static constexpr double YUVMatrix2020[4] = {
1.678674107142860, -0.187326104219343, -0.650424318505057,
2.14177232142857};
template <>
struct YUVConverter<REC_2020> : YUVConverterImpl<YUVMatrix2020> {};
// clang-format off
// [R] [V]
// [G] = [Y]
// [B] [U]
// clang-format on
template <>
struct YUVConverter<IDENTITY> {
static inline PackedRGBA8 convert(V8<int16_t> y, V8<int16_t> uv) {
// Map U/V directly to B/R and map Y directly to G with opaque alpha.
return packYUV(y, uv);
}
};
// Helper function for textureLinearRowR8 that samples horizontal taps and
// combines them based on Y fraction with next row.
template <typename S>
static ALWAYS_INLINE V8<int16_t> linearRowTapsR8(S sampler, I32 ix,
int32_t offsety,
int32_t stridey,
int16_t fracy) {
uint8_t* buf = (uint8_t*)sampler->buf + offsety;
auto a0 = unaligned_load<V2<uint8_t>>(&buf[ix.x]);
auto b0 = unaligned_load<V2<uint8_t>>(&buf[ix.y]);
auto c0 = unaligned_load<V2<uint8_t>>(&buf[ix.z]);
auto d0 = unaligned_load<V2<uint8_t>>(&buf[ix.w]);
auto abcd0 = CONVERT(combine(combine(a0, b0), combine(c0, d0)), V8<int16_t>);
buf += stridey;
auto a1 = unaligned_load<V2<uint8_t>>(&buf[ix.x]);
auto b1 = unaligned_load<V2<uint8_t>>(&buf[ix.y]);
auto c1 = unaligned_load<V2<uint8_t>>(&buf[ix.z]);
auto d1 = unaligned_load<V2<uint8_t>>(&buf[ix.w]);
auto abcd1 = CONVERT(combine(combine(a1, b1), combine(c1, d1)), V8<int16_t>);
abcd0 += ((abcd1 - abcd0) * fracy) >> 7;
return abcd0;
}
// Optimized version of textureLinearPackedR8 for Y R8 texture. This assumes
// constant Y and returns a duplicate of the result interleaved with itself
// to aid in later YUV transformation.
template <typename S>
static inline V8<int16_t> textureLinearRowR8(S sampler, I32 ix, int32_t offsety,
int32_t stridey, int16_t fracy) {
assert(sampler->format == TextureFormat::R8);
// Calculate X fraction and clamp X offset into range.
I32 fracx = ix;
ix >>= 7;
fracx = ((fracx & (ix >= 0)) | (ix > int32_t(sampler->width) - 2)) & 0x7F;
ix = clampCoord(ix, sampler->width - 1);
// Load the sample taps and combine rows.
auto abcd = linearRowTapsR8(sampler, ix, offsety, stridey, fracy);
// Unzip the result and do final horizontal multiply-add base on X fraction.
auto abcdl = SHUFFLE(abcd, abcd, 0, 0, 2, 2, 4, 4, 6, 6);
auto abcdh = SHUFFLE(abcd, abcd, 1, 1, 3, 3, 5, 5, 7, 7);
abcdl += ((abcdh - abcdl) * CONVERT(fracx, I16).xxyyzzww) >> 7;
// The final result is the packed values interleaved with a duplicate of
// themselves.
return abcdl;
}
// Optimized version of textureLinearPackedR8 for paired U/V R8 textures.
// Since the two textures have the same dimensions and stride, the addressing
// math can be shared between both samplers. This also allows a coalesced
// multiply in the final stage by packing both U/V results into a single
// operation.
template <typename S>
static inline V8<int16_t> textureLinearRowPairedR8(S sampler, S sampler2,
I32 ix, int32_t offsety,
int32_t stridey,
int16_t fracy) {
assert(sampler->format == TextureFormat::R8 &&
sampler2->format == TextureFormat::R8);
assert(sampler->width == sampler2->width &&
sampler->height == sampler2->height);
assert(sampler->stride == sampler2->stride);
// Calculate X fraction and clamp X offset into range.
I32 fracx = ix;
ix >>= 7;
fracx = ((fracx & (ix >= 0)) | (ix > int32_t(sampler->width) - 2)) & 0x7F;
ix = clampCoord(ix, sampler->width - 1);
// Load the sample taps for the first sampler and combine rows.
auto abcd = linearRowTapsR8(sampler, ix, offsety, stridey, fracy);
// Load the sample taps for the second sampler and combine rows.
auto xyzw = linearRowTapsR8(sampler2, ix, offsety, stridey, fracy);
// We are left with a result vector for each sampler with values for adjacent
// pixels interleaved together in each. We need to unzip these values so that
// we can do the final horizontal multiply-add based on the X fraction.
auto abcdxyzwl = SHUFFLE(abcd, xyzw, 0, 8, 2, 10, 4, 12, 6, 14);
auto abcdxyzwh = SHUFFLE(abcd, xyzw, 1, 9, 3, 11, 5, 13, 7, 15);
abcdxyzwl += ((abcdxyzwh - abcdxyzwl) * CONVERT(fracx, I16).xxyyzzww) >> 7;
// The final result is the packed values for the first sampler interleaved
// with the packed values for the second sampler.
return abcdxyzwl;
}
template <YUVColorSpace COLOR_SPACE>
static void linear_row_yuv(uint32_t* dest, int span, const vec2_scalar& srcUV,
float srcDU, const vec2_scalar& chromaUV,
float chromaDU, sampler2D_impl sampler[3],
int colorDepth) {
// Casting to int loses some precision while stepping that can offset the
// image, so shift the values by some extra bits of precision to minimize
// this. We support up to 16 bits of image size, 7 bits of quantization,
// and 1 bit for sign, which leaves 8 bits left for extra precision.
const int STEP_BITS = 8;
// Calculate varying and constant interp data for Y plane.
I32 yU = cast(init_interp(srcUV.x, srcDU) * (1 << STEP_BITS));
int32_t yV = int32_t(srcUV.y);
// Calculate varying and constant interp data for chroma planes.
I32 cU = cast(init_interp(chromaUV.x, chromaDU) * (1 << STEP_BITS));
int32_t cV = int32_t(chromaUV.y);
// We need to skip 4 pixels per chunk.
int32_t yDU = int32_t((4 << STEP_BITS) * srcDU);
int32_t cDU = int32_t((4 << STEP_BITS) * chromaDU);
if (sampler[0].width < 2 || sampler[1].width < 2) {
// If the source row has less than 2 pixels, it's not safe to use a linear
// filter because it may overread the row. Just convert the single pixel
// with nearest filtering and fill the row with it.
I16 yuv =
CONVERT(round_pixel((Float){
texelFetch(&sampler[0], ivec2(srcUV), 0).x.x,
texelFetch(&sampler[1], ivec2(chromaUV), 0).x.x,
texelFetch(&sampler[2], ivec2(chromaUV), 0).x.x, 1.0f}),
I16);
auto rgb = YUVConverter<COLOR_SPACE>::convert(zip(I16(yuv.x), I16(yuv.x)),
zip(I16(yuv.y), I16(yuv.z)));
for (; span >= 4; span -= 4) {
unaligned_store(dest, rgb);
dest += 4;
}
if (span > 0) {
partial_store_span(dest, rgb, span);
}
} else if (sampler[0].format == TextureFormat::R16) {
// Sample each YUV plane, rescale it to fit in low 8 bits of word, and then
// transform them by the appropriate color space.
assert(colorDepth > 8);
// Need to right shift the sample by the amount of bits over 8 it occupies.
// On output from textureLinearUnpackedR16, we have lost 1 bit of precision
// at the low end already, hence 1 is subtracted from the color depth.
int rescaleBits = (colorDepth - 1) - 8;
for (; span >= 4; span -= 4) {
auto yPx =
textureLinearUnpackedR16(&sampler[0], ivec2(yU >> STEP_BITS, yV)) >>
rescaleBits;
auto uPx =
textureLinearUnpackedR16(&sampler[1], ivec2(cU >> STEP_BITS, cV)) >>
rescaleBits;
auto vPx =
textureLinearUnpackedR16(&sampler[2], ivec2(cU >> STEP_BITS, cV)) >>
rescaleBits;
unaligned_store(dest, YUVConverter<COLOR_SPACE>::convert(zip(yPx, yPx),
zip(uPx, vPx)));
dest += 4;
yU += yDU;
cU += cDU;
}
if (span > 0) {
// Handle any remaining pixels...
auto yPx =
textureLinearUnpackedR16(&sampler[0], ivec2(yU >> STEP_BITS, yV)) >>
rescaleBits;
auto uPx =
textureLinearUnpackedR16(&sampler[1], ivec2(cU >> STEP_BITS, cV)) >>
rescaleBits;
auto vPx =
textureLinearUnpackedR16(&sampler[2], ivec2(cU >> STEP_BITS, cV)) >>
rescaleBits;
partial_store_span(
dest,
YUVConverter<COLOR_SPACE>::convert(zip(yPx, yPx), zip(uPx, vPx)),
span);
}
} else {
assert(sampler[0].format == TextureFormat::R8);
assert(colorDepth == 8);
// Calculate varying and constant interp data for Y plane.
int16_t yFracV = yV & 0x7F;
yV >>= 7;
int32_t yOffsetV = clampCoord(yV, sampler[0].height) * sampler[0].stride;
int32_t yStrideV =
yV >= 0 && yV < int32_t(sampler[0].height) - 1 ? sampler[0].stride : 0;
// Calculate varying and constant interp data for chroma planes.
int16_t cFracV = cV & 0x7F;
cV >>= 7;
int32_t cOffsetV = clampCoord(cV, sampler[1].height) * sampler[1].stride;
int32_t cStrideV =
cV >= 0 && cV < int32_t(sampler[1].height) - 1 ? sampler[1].stride : 0;
for (; span >= 4; span -= 4) {
// Sample each YUV plane and then transform them by the appropriate color
// space.
auto yPx = textureLinearRowR8(&sampler[0], yU >> STEP_BITS, yOffsetV,
yStrideV, yFracV);
auto uvPx =
textureLinearRowPairedR8(&sampler[1], &sampler[2], cU >> STEP_BITS,
cOffsetV, cStrideV, cFracV);
unaligned_store(dest, YUVConverter<COLOR_SPACE>::convert(yPx, uvPx));
dest += 4;
yU += yDU;
cU += cDU;
}
if (span > 0) {
// Handle any remaining pixels...
auto yPx = textureLinearRowR8(&sampler[0], yU >> STEP_BITS, yOffsetV,
yStrideV, yFracV);
auto uvPx =
textureLinearRowPairedR8(&sampler[1], &sampler[2], cU >> STEP_BITS,
cOffsetV, cStrideV, cFracV);
partial_store_span(dest, YUVConverter<COLOR_SPACE>::convert(yPx, uvPx),
span);
}
}
}
static void linear_convert_yuv(Texture& ytex, Texture& utex, Texture& vtex,
YUVColorSpace colorSpace, int colorDepth,
const IntRect& srcReq, Texture& dsttex,
const IntRect& dstReq, bool invertY,
const IntRect& clipRect) {
// Compute valid dest bounds
IntRect dstBounds = dsttex.sample_bounds(dstReq, invertY);
dstBounds.intersect(clipRect);
// Check if sampling bounds are empty
if (dstBounds.is_empty()) {
return;
}
// Initialize samplers for source textures
sampler2D_impl sampler[3];
init_sampler(&sampler[0], ytex);
init_sampler(&sampler[1], utex);
init_sampler(&sampler[2], vtex);
// Compute source UVs
vec2_scalar srcUV(srcReq.x0, srcReq.y0);
vec2_scalar srcDUV(float(srcReq.width()) / dstReq.width(),
float(srcReq.height()) / dstReq.height());
// Inverted Y must step downward along source rows
if (invertY) {
srcUV.y += srcReq.height();
srcDUV.y = -srcDUV.y;
}
// Skip to clamped source start
srcUV += srcDUV * (vec2_scalar(dstBounds.x0, dstBounds.y0) + 0.5f);
// Calculate separate chroma UVs for chroma planes with different scale
vec2_scalar chromaScale(float(utex.width) / ytex.width,
float(utex.height) / ytex.height);
vec2_scalar chromaUV = srcUV * chromaScale;
vec2_scalar chromaDUV = srcDUV * chromaScale;
// Scale UVs by lerp precision. If the row has only 1 pixel, then don't
// quantize so that we can use nearest filtering instead to avoid overreads.
if (ytex.width >= 2 && utex.width >= 2) {
srcUV = linearQuantize(srcUV, 128);
srcDUV *= 128.0f;
chromaUV = linearQuantize(chromaUV, 128);
chromaDUV *= 128.0f;
}
// Calculate dest pointer from clamped offsets
int destStride = dsttex.stride();
char* dest = dsttex.sample_ptr(dstReq, dstBounds, 0);
int span = dstBounds.width();
for (int rows = dstBounds.height(); rows > 0; rows--) {
switch (colorSpace) {
case REC_601:
linear_row_yuv<REC_601>((uint32_t*)dest, span, srcUV, srcDUV.x,
chromaUV, chromaDUV.x, sampler, colorDepth);
break;
case REC_709:
linear_row_yuv<REC_709>((uint32_t*)dest, span, srcUV, srcDUV.x,
chromaUV, chromaDUV.x, sampler, colorDepth);
break;
case REC_2020:
linear_row_yuv<REC_2020>((uint32_t*)dest, span, srcUV, srcDUV.x,
chromaUV, chromaDUV.x, sampler, colorDepth);
break;
case IDENTITY:
linear_row_yuv<IDENTITY>((uint32_t*)dest, span, srcUV, srcDUV.x,
chromaUV, chromaDUV.x, sampler, colorDepth);
break;
default:
debugf("unknown YUV color space %d\n", colorSpace);
assert(false);
break;
}
dest += destStride;
srcUV.y += srcDUV.y;
chromaUV.y += chromaDUV.y;
}
}
extern "C" {
// Extension for compositing a YUV surface represented by separate YUV planes
// to a BGRA destination. The supplied color space is used to determine the
// transform from YUV to BGRA after sampling.
void CompositeYUV(LockedTexture* lockedDst, LockedTexture* lockedY,
LockedTexture* lockedU, LockedTexture* lockedV,
YUVColorSpace colorSpace, GLuint colorDepth, GLint srcX,
GLint srcY, GLsizei srcWidth, GLsizei srcHeight, GLint dstX,
GLint dstY, GLsizei dstWidth, GLsizei dstHeight,
GLboolean flip, GLint clipX, GLint clipY, GLsizei clipWidth,
GLsizei clipHeight) {
if (!lockedDst || !lockedY || !lockedU || !lockedV) {
return;
}
Texture& ytex = *lockedY;
Texture& utex = *lockedU;
Texture& vtex = *lockedV;
Texture& dsttex = *lockedDst;
// All YUV planes must currently be represented by R8 or R16 textures.
// The chroma (U/V) planes must have matching dimensions.
assert(ytex.bpp() == utex.bpp() && ytex.bpp() == vtex.bpp());
assert((ytex.bpp() == 1 && colorDepth == 8) ||
(ytex.bpp() == 2 && colorDepth > 8));
// assert(ytex.width == utex.width && ytex.height == utex.height);
assert(utex.width == vtex.width && utex.height == vtex.height);
assert(ytex.offset == utex.offset && ytex.offset == vtex.offset);
assert(dsttex.bpp() == 4);
IntRect srcReq =
IntRect{srcX, srcY, srcX + srcWidth, srcY + srcHeight} - ytex.offset;
IntRect dstReq =
IntRect{dstX, dstY, dstX + dstWidth, dstY + dstHeight} - dsttex.offset;
// Compute clip rect as relative to the dstReq, as that's the same coords
// as used for the sampling bounds.
IntRect clipRect = {clipX - dstX, clipY - dstY, clipX - dstX + clipWidth,
clipY - dstY + clipHeight};
// For now, always use a linear filter path that would be required for
// scaling. Further fast-paths for non-scaled video might be desirable in the
// future.
linear_convert_yuv(ytex, utex, vtex, colorSpace, colorDepth, srcReq, dsttex,
dstReq, flip, clipRect);
}
} // extern "C"
|