1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
static inline void commit_span(uint32_t* buf, WideRGBA8 r) {
if (blend_key) r = blend_pixels(buf, unaligned_load<PackedRGBA8>(buf), r);
unaligned_store(buf, pack(r));
}
static inline void commit_span(uint32_t* buf, PackedRGBA8 r) {
if (blend_key)
r = pack(blend_pixels(buf, unaligned_load<PackedRGBA8>(buf), unpack(r)));
unaligned_store(buf, r);
}
UNUSED static inline void commit_solid_span(uint32_t* buf, WideRGBA8 r,
int len) {
if (blend_key) {
for (uint32_t* end = &buf[len & ~3]; buf < end; buf += 4) {
unaligned_store(
buf, pack(blend_pixels(buf, unaligned_load<PackedRGBA8>(buf), r)));
}
len &= 3;
if (len > 0) {
partial_store_span(
buf,
pack(blend_pixels(buf, partial_load_span<PackedRGBA8>(buf, len), r,
len)),
len);
}
} else {
fill_n(buf, len, bit_cast<U32>(pack(r)).x);
}
}
static inline void commit_span(uint8_t* buf, WideR8 r) {
if (blend_key)
r = blend_pixels(buf, unpack(unaligned_load<PackedR8>(buf)), r);
unaligned_store(buf, pack(r));
}
UNUSED static inline void commit_solid_span(uint8_t* buf, WideR8 r, int len) {
if (blend_key) {
for (uint8_t* end = &buf[len]; buf < end; buf += 4) {
unaligned_store(buf, pack(blend_pixels(
buf, unpack(unaligned_load<PackedR8>(buf)), r)));
}
} else {
fill_n((uint32_t*)buf, len / 4, bit_cast<uint32_t>(pack(r)));
}
}
template <typename V>
static inline WideRGBA8 pack_span(uint32_t*, const V& v) {
return pack_pixels_RGBA8(v);
}
static inline WideRGBA8 pack_span(uint32_t*) { return pack_pixels_RGBA8(); }
template <typename C>
static inline WideR8 pack_span(uint8_t*, C c) {
return pack_pixels_R8(c);
}
static inline WideR8 pack_span(uint8_t*) { return pack_pixels_R8(); }
// Forces a value with vector run-class to have scalar run-class.
template <typename T>
static ALWAYS_INLINE auto swgl_forceScalar(T v) -> decltype(force_scalar(v)) {
return force_scalar(v);
}
// Advance all varying inperpolants by a single chunk
#define swgl_stepInterp() step_interp_inputs()
// Pseudo-intrinsic that accesses the interpolation step for a given varying
#define swgl_interpStep(v) (interp_step.v)
// Commit an entire span of a solid color
#define swgl_commitSolid(format, v) \
do { \
commit_solid_span(swgl_Out##format, pack_span(swgl_Out##format, (v)), \
swgl_SpanLength); \
swgl_Out##format += swgl_SpanLength; \
swgl_SpanLength = 0; \
} while (0)
#define swgl_commitSolidRGBA8(v) swgl_commitSolid(RGBA8, v)
#define swgl_commitSolidR8(v) swgl_commitSolid(R8, v)
#define swgl_commitChunk(format, chunk) \
do { \
commit_span(swgl_Out##format, chunk); \
swgl_Out##format += swgl_StepSize; \
swgl_SpanLength -= swgl_StepSize; \
} while (0)
static inline WideRGBA8 pack_pixels_RGBA8(Float alpha) {
I32 i = round_pixel(alpha);
HalfRGBA8 c = packRGBA8(zipLow(i, i), zipHigh(i, i));
return combine(zipLow(c, c), zipHigh(c, c));
}
static inline WideRGBA8 pack_pixels_RGBA8(float alpha) {
I32 i = round_pixel(alpha);
HalfRGBA8 c = packRGBA8(i, i);
return combine(c, c);
}
// Commit a single chunk of a color scaled by an alpha weight
#define swgl_commitColor(format, color, alpha) \
swgl_commitChunk(format, muldiv255(pack_pixels_##format(color), \
pack_pixels_##format(alpha)))
#define swgl_commitColorRGBA8(color, alpha) \
swgl_commitColor(RGBA8, color, alpha)
#define swgl_commitColorR8(color, alpha) swgl_commitColor(R8, color, alpha)
template <typename S>
static ALWAYS_INLINE bool swgl_isTextureLinear(S s) {
return s->filter == TextureFilter::LINEAR;
}
template <typename S>
static ALWAYS_INLINE bool swgl_isTextureRGBA8(S s) {
return s->format == TextureFormat::RGBA8;
}
template <typename S>
static ALWAYS_INLINE bool swgl_isTextureR8(S s) {
return s->format == TextureFormat::R8;
}
// Returns the offset into the texture buffer for the given layer index. If not
// a texture array or 3D texture, this will always access the first layer.
template <typename S>
static ALWAYS_INLINE int swgl_textureLayerOffset(S s, float layer) {
return 0;
}
UNUSED static ALWAYS_INLINE int swgl_textureLayerOffset(sampler2DArray s,
float layer) {
return clampCoord(int(layer), s->depth) * s->height_stride;
}
// Use the default linear quantization scale of 128. This gives 7 bits of
// fractional precision, which when multiplied with a signed 9 bit value
// still fits in a 16 bit integer.
const int swgl_LinearQuantizeScale = 128;
// Quantizes UVs for access into a linear texture.
template <typename S, typename T>
static ALWAYS_INLINE T swgl_linearQuantize(S s, T p) {
return linearQuantize(p, swgl_LinearQuantizeScale, s);
}
// Quantizes an interpolation step for UVs for access into a linear texture.
template <typename S, typename T>
static ALWAYS_INLINE T swgl_linearQuantizeStep(S s, T p) {
return samplerScale(s, p) * swgl_LinearQuantizeScale;
}
// Commit a single chunk from a linear texture fetch
#define swgl_commitTextureLinear(format, s, p, ...) \
swgl_commitChunk(format, \
textureLinearUnpacked##format(s, ivec2(p), __VA_ARGS__))
#define swgl_commitTextureLinearRGBA8(s, p, ...) \
swgl_commitTextureLinear(RGBA8, s, p, __VA_ARGS__)
#define swgl_commitTextureLinearR8(s, p, ...) \
swgl_commitTextureLinear(R8, s, p, __VA_ARGS__)
// Commit a single chunk from a linear texture fetch that is scaled by a color
#define swgl_commitTextureLinearColor(format, s, p, color, ...) \
swgl_commitChunk(format, muldiv255(textureLinearUnpacked##format( \
s, ivec2(p), __VA_ARGS__), \
pack_pixels_##format(color)))
#define swgl_commitTextureLinearColorRGBA8(s, p, color, ...) \
swgl_commitTextureLinearColor(RGBA8, s, p, color, __VA_ARGS__)
#define swgl_commitTextureLinearColorR8(s, p, color, ...) \
swgl_commitTextureLinearColor(R8, s, p, color, __VA_ARGS__)
// Commit an entire span of a separable pass of a Gaussian blur that falls
// within the given radius scaled by supplied coefficients, clamped to uv_rect
// bounds.
#define swgl_commitGaussianBlur(format, type, s, p, uv_rect, hori, radius, \
coeffs, ...) \
do { \
vec2_scalar size = {float(s->width), float(s->height)}; \
ivec2_scalar curUV = make_ivec2(force_scalar(p) * size); \
ivec4_scalar bounds = make_ivec4(uv_rect * make_vec4(size, size)); \
int endX = min(bounds.z, curUV.x + swgl_SpanLength * swgl_StepSize); \
if (hori) { \
for (; curUV.x + swgl_StepSize <= endX; curUV.x += swgl_StepSize) { \
swgl_commitChunk(format, gaussianBlurHorizontal<type>( \
s, curUV, bounds.x, bounds.z, radius, \
coeffs.x, coeffs.y, __VA_ARGS__)); \
} \
} else { \
for (; curUV.x + swgl_StepSize <= endX; curUV.x += swgl_StepSize) { \
swgl_commitChunk(format, gaussianBlurVertical<type>( \
s, curUV, bounds.y, bounds.w, radius, \
coeffs.x, coeffs.y, __VA_ARGS__)); \
} \
} \
} while (0)
#define swgl_commitGaussianBlurRGBA8(s, p, uv_rect, hori, radius, coeffs, ...) \
swgl_commitGaussianBlur(RGBA8, uint32_t, s, p, uv_rect, hori, radius, \
coeffs, __VA_ARGS__)
#define swgl_commitGaussianBlurR8(s, p, uv_rect, hori, radius, coeffs, ...) \
swgl_commitGaussianBlur(R8, uint8_t, s, p, uv_rect, hori, radius, coeffs, \
__VA_ARGS__)
// Convert and pack planar YUV samples to RGB output using a color space
static ALWAYS_INLINE PackedRGBA8 convertYUV(int colorSpace, U16 y, U16 u,
U16 v) {
auto yy = V8<int16_t>(zip(y, y));
auto uv = V8<int16_t>(zip(u, v));
switch (colorSpace) {
case REC_601:
return YUVConverter<REC_601>::convert(yy, uv);
case REC_709:
return YUVConverter<REC_709>::convert(yy, uv);
case REC_2020:
return YUVConverter<REC_2020>::convert(yy, uv);
default:
return YUVConverter<IDENTITY>::convert(yy, uv);
}
}
// Helper functions to sample from planar YUV textures before converting to RGB
template <typename S0>
static inline PackedRGBA8 sampleYUV(S0 sampler0, vec2 uv0, int layer0,
int colorSpace, int rescaleFactor) {
ivec2 i0(uv0);
switch (sampler0->format) {
case TextureFormat::RGBA8: {
auto planar = textureLinearPlanarRGBA8(sampler0, i0, layer0);
return convertYUV(colorSpace, highHalf(planar.rg), lowHalf(planar.rg),
lowHalf(planar.ba));
}
case TextureFormat::YUV422: {
auto planar = textureLinearPlanarYUV422(sampler0, i0, layer0);
return convertYUV(colorSpace, planar.y, planar.u, planar.v);
}
default:
assert(false);
return PackedRGBA8(0);
}
}
template <typename S0, typename C>
static inline WideRGBA8 sampleColorYUV(S0 sampler0, vec2 uv0, int layer0,
int colorSpace, int rescaleFactor,
C color) {
return muldiv255(
unpack(sampleYUV(sampler0, uv0, layer0, colorSpace, rescaleFactor)),
pack_pixels_RGBA8(color));
}
template <typename S0, typename S1>
static inline PackedRGBA8 sampleYUV(S0 sampler0, vec2 uv0, int layer0,
S1 sampler1, vec2 uv1, int layer1,
int colorSpace, int rescaleFactor) {
ivec2 i0(uv0);
ivec2 i1(uv1);
switch (sampler1->format) {
case TextureFormat::RG8: {
assert(sampler0->format == TextureFormat::R8);
auto y = textureLinearUnpackedR8(sampler0, i0, layer0);
auto planar = textureLinearPlanarRG8(sampler1, i1, layer1);
return convertYUV(colorSpace, y, lowHalf(planar.rg), highHalf(planar.rg));
}
case TextureFormat::RGBA8: {
assert(sampler0->format == TextureFormat::R8);
auto y = textureLinearUnpackedR8(sampler0, i0, layer0);
auto planar = textureLinearPlanarRGBA8(sampler1, i1, layer1);
return convertYUV(colorSpace, y, lowHalf(planar.ba), highHalf(planar.rg));
}
default:
assert(false);
return PackedRGBA8(0);
}
}
template <typename S0, typename S1, typename C>
static inline WideRGBA8 sampleColorYUV(S0 sampler0, vec2 uv0, int layer0,
S1 sampler1, vec2 uv1, int layer1,
int colorSpace, int rescaleFactor,
C color) {
return muldiv255(unpack(sampleYUV(sampler0, uv0, layer0, sampler1, uv1,
layer1, colorSpace, rescaleFactor)),
pack_pixels_RGBA8(color));
}
template <typename S0, typename S1, typename S2>
static inline PackedRGBA8 sampleYUV(S0 sampler0, vec2 uv0, int layer0,
S1 sampler1, vec2 uv1, int layer1,
S2 sampler2, vec2 uv2, int layer2,
int colorSpace, int rescaleFactor) {
ivec2 i0(uv0);
ivec2 i1(uv1);
ivec2 i2(uv2);
assert(sampler0->format == sampler1->format &&
sampler0->format == sampler2->format);
switch (sampler0->format) {
case TextureFormat::R8: {
auto y = textureLinearUnpackedR8(sampler0, i0, layer0);
auto u = textureLinearUnpackedR8(sampler1, i1, layer1);
auto v = textureLinearUnpackedR8(sampler2, i2, layer2);
return convertYUV(colorSpace, y, u, v);
}
case TextureFormat::R16: {
// The rescaling factor represents how many bits to add to renormalize the
// texture to 16 bits, and so the color depth is actually 16 minus the
// rescaling factor.
// Need to right shift the sample by the amount of bits over 8 it
// occupies. On output from textureLinearUnpackedR16, we have lost 1 bit
// of precision at the low end already, hence 1 is subtracted from the
// color depth.
int colorDepth = 16 - rescaleFactor;
int rescaleBits = (colorDepth - 1) - 8;
auto y = textureLinearUnpackedR16(sampler0, i0, layer0) >> rescaleBits;
auto u = textureLinearUnpackedR16(sampler1, i1, layer1) >> rescaleBits;
auto v = textureLinearUnpackedR16(sampler2, i2, layer2) >> rescaleBits;
return convertYUV(colorSpace, U16(y), U16(u), U16(v));
}
default:
assert(false);
return PackedRGBA8(0);
}
}
template <typename S0, typename S1, typename S2, typename C>
static inline WideRGBA8 sampleColorYUV(S0 sampler0, vec2 uv0, int layer0,
S1 sampler1, vec2 uv1, int layer1,
S2 sampler2, vec2 uv2, int layer2,
int colorSpace, int rescaleFactor,
C color) {
return muldiv255(
unpack(sampleYUV(sampler0, uv0, layer0, sampler1, uv1, layer1, sampler2,
uv2, layer2, colorSpace, rescaleFactor)),
pack_pixels_RGBA8(color));
}
// Commit a single chunk of a YUV surface represented by multiple planar
// textures. This requires a color space specifier selecting how to convert
// from YUV to RGB output. In the case of HDR formats, a rescaling factor
// selects how many bits of precision must be utilized on conversion. See the
// sampleYUV dispatcher functions for the various supported plane
// configurations this intrinsic accepts.
#define swgl_commitTextureLinearYUV(...) \
swgl_commitChunk(RGBA8, sampleYUV(__VA_ARGS__))
// Commit a single chunk of a YUV surface scaled by a color.
#define swgl_commitTextureLinearColorYUV(...) \
swgl_commitChunk(RGBA8, sampleColorYUV(__VA_ARGS__))
// Helper functions to apply a color modulus when available.
struct NoColor {};
SI WideRGBA8 applyColor(WideRGBA8 src, NoColor) { return src; }
SI WideRGBA8 applyColor(WideRGBA8 src, WideRGBA8 color) {
return muldiv255(src, color);
}
SI PackedRGBA8 applyColor(PackedRGBA8 src, NoColor) { return src; }
SI PackedRGBA8 applyColor(PackedRGBA8 src, WideRGBA8 color) {
return pack(muldiv255(unpack(src), color));
}
// Samples an axis-aligned span of on a single row of a texture using 1:1
// nearest filtering. Sampling is constrained to only fall within the given UV
// bounds. This requires a pointer to the destination buffer. An optional color
// modulus can be supplied.
template <typename S, typename C>
static void blendTextureNearestRGBA8(S sampler, const ivec2_scalar& i, int span,
const ivec2_scalar& minUV,
const ivec2_scalar& maxUV, C color,
uint32_t* buf, int layerOffset = 0) {
// Calculate the row pointer within the buffer, clamping to within valid row
// bounds.
uint32_t* row =
&sampler->buf[clamp(clampCoord(i.y, sampler->height), minUV.y, maxUV.y) *
sampler->stride +
layerOffset];
// Find clamped X bounds within the row.
int minX = clamp(minUV.x, 0, sampler->width - 1);
int maxX = clamp(maxUV.x, minX, sampler->width - 1);
int curX = i.x;
// If we need to start sampling below the valid sample bounds, then we need to
// fill this section with a constant clamped sample.
if (curX < minX) {
int n = min(minX - curX, span);
auto src = applyColor(unpack(bit_cast<PackedRGBA8>(U32(row[minX]))), color);
commit_solid_span(buf, src, n);
buf += n;
span -= n;
curX += n;
}
// Here we only deal with valid samples within the sample bounds. No clamping
// should occur here within these inner loops.
int n = clamp(maxX + 1 - curX, 0, span);
span -= n;
// Try to process as many chunks as possible with full loads and stores.
if (blend_key) {
for (int end = curX + (n & ~3); curX < end; curX += 4, buf += 4) {
auto src =
applyColor(unpack(unaligned_load<PackedRGBA8>(&row[curX])), color);
auto r = blend_pixels(buf, unaligned_load<PackedRGBA8>(buf), src);
unaligned_store(buf, pack(r));
}
} else {
for (int end = curX + (n & ~3); curX < end; curX += 4, buf += 4) {
auto src = applyColor(unaligned_load<PackedRGBA8>(&row[curX]), color);
unaligned_store(buf, src);
}
}
n &= 3;
// If we have any leftover samples after processing chunks, use partial loads
// and stores.
if (n > 0) {
if (blend_key) {
auto src = applyColor(
unpack(partial_load_span<PackedRGBA8>(&row[curX], n)), color);
auto r =
blend_pixels(buf, partial_load_span<PackedRGBA8>(buf, n), src, n);
partial_store_span(buf, pack(r), n);
} else {
auto src =
applyColor(partial_load_span<PackedRGBA8>(&row[curX], n), color);
partial_store_span(buf, src, n);
}
buf += n;
curX += n;
}
// If we still have samples left above the valid sample bounds, then we again
// need to fill this section with a constant clamped sample.
if (span > 0) {
auto src = applyColor(unpack(bit_cast<PackedRGBA8>(U32(row[maxX]))), color);
commit_solid_span(buf, src, span);
}
}
// TODO: blendTextureNearestR8 if it is actually needed
// Commit an entire span of 1:1 nearest texture fetches, potentially scaled by a
// color
#define swgl_commitTextureNearest(format, s, p, uv_rect, color, ...) \
do { \
ivec2_scalar i = make_ivec2(samplerScale(s, force_scalar(p))); \
ivec2_scalar min_uv = \
make_ivec2(samplerScale(s, vec2_scalar{uv_rect.x, uv_rect.y})); \
ivec2_scalar max_uv = \
make_ivec2(samplerScale(s, vec2_scalar{uv_rect.z, uv_rect.w})); \
blendTextureNearest##format(s, i, swgl_SpanLength, min_uv, max_uv, color, \
swgl_Out##format, __VA_ARGS__); \
swgl_Out##format += swgl_SpanLength; \
swgl_SpanLength = 0; \
} while (0)
#define swgl_commitTextureNearestRGBA8(s, p, uv_rect, ...) \
swgl_commitTextureNearest(RGBA8, s, p, uv_rect, NoColor(), __VA_ARGS__)
#define swgl_commitTextureNearestR8(s, p, uv_rect, ...) \
swgl_commitTextureNearest(R8, s, p, uv_rect, NoColor(), __VA_ARGS__)
#define swgl_commitTextureNearestColor(format, s, p, uv_rect, color, ...) \
swgl_commitTextureNearest(format, s, p, uv_rect, \
pack_pixels_##format(color), __VA_ARGS__)
#define swgl_commitTextureNearestColorRGBA8(s, p, uv_rect, color, ...) \
swgl_commitTextureNearestColor(RGBA8, s, p, uv_rect, color, __VA_ARGS__)
#define swgl_commitTextureNearestColorR8(s, p, uv_rect, color, ...) \
swgl_commitTextureNearestColor(R8, s, p, uv_rect, color, __VA_ARGS__)
// Helper function to decide whether we can safely apply 1:1 nearest filtering
// without diverging too much from the linear filter
template <typename S, typename T>
static bool allowTextureNearest(S sampler, T P, int span) {
// First verify if the row Y doesn't change across samples
if (P.y.x != P.y.y) {
return false;
}
P = samplerScale(sampler, P);
// We need to verify that the pixel step reasonably approximates stepping
// by a single texel for every pixel we need to reproduce. Try to ensure
// that the margin of error is no more than approximately 2^-7.
span &= ~(128 - 1);
span += 128;
return round((P.x.y - P.x.x) * span) == span &&
// Also verify that we're reasonably close to the center of a texel
// so that it doesn't look that much different than if a linear filter
// was used.
(int(P.x.x * 4.0f + 0.5f) & 3) == 2 &&
(int(P.y.x * 4.0f + 0.5f) & 3) == 2;
}
// Determine if we can apply 1:1 nearest filtering to a span of texture
#define swgl_allowTextureNearest(s, p) \
allowTextureNearest(s, p, swgl_SpanLength)
// Extension to set a clip mask image to be sampled during blending. The offset
// specifies the positioning of the clip mask image relative to the viewport
// origin. The bounding box specifies the rectangle relative to the clip mask's
// origin that constrains sampling within the clip mask.
static sampler2D swgl_ClipMask = nullptr;
static IntPoint swgl_ClipMaskOffset = {0, 0};
static IntRect swgl_ClipMaskBounds = {0, 0, 0, 0};
#define swgl_clipMask(mask, offset, bb_origin, bb_size) \
do { \
if (bb_size != vec2_scalar(0.0f, 0.0f)) { \
swgl_ClipMask = mask; \
swgl_ClipMaskOffset = make_ivec2(offset); \
swgl_ClipMaskBounds = \
IntRect(make_ivec2(bb_origin), make_ivec2(bb_size)); \
} \
} while (0)
// Dispatch helper used by the GLSL translator to swgl_drawSpan functions.
// The number of pixels committed is tracked by checking for the difference in
// swgl_SpanLength. Any varying interpolants used will be advanced past the
// committed part of the span in case the fragment shader must be executed for
// any remaining pixels that were not committed by the span shader.
#define DISPATCH_DRAW_SPAN(self, format) \
do { \
int total = self->swgl_SpanLength; \
self->swgl_drawSpan##format(); \
int drawn = total - self->swgl_SpanLength; \
if (drawn) self->step_interp_inputs(drawn); \
while (self->swgl_SpanLength > 0) { \
run(self); \
commit_span(self->swgl_Out##format, pack_span(self->swgl_Out##format)); \
self->swgl_Out##format += swgl_StepSize; \
self->swgl_SpanLength -= swgl_StepSize; \
} \
} while (0)
|