1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// Composite a picture cache tile into the framebuffer.
#include shared,yuv
#ifdef WR_FEATURE_YUV
flat varying mat3 vYuvColorMatrix;
flat varying vec3 vYuvOffsetVector;
flat varying float vYuvCoefficient;
flat varying int vYuvFormat;
flat varying vec3 vYuvLayers;
#ifdef SWGL
flat varying int vYuvColorSpace;
flat varying int vRescaleFactor;
#endif
varying vec2 vUV_y;
varying vec2 vUV_u;
varying vec2 vUV_v;
flat varying vec4 vUVBounds_y;
flat varying vec4 vUVBounds_u;
flat varying vec4 vUVBounds_v;
#else
flat varying vec4 vColor;
flat varying float vLayer;
varying vec2 vUv;
flat varying vec4 vUVBounds;
#endif
#ifdef WR_VERTEX_SHADER
// CPU side data is in CompositeInstance (gpu_types.rs) and is
// converted to GPU data using desc::COMPOSITE (renderer.rs) by
// filling vaos.composite_vao with VertexArrayKind::Composite.
PER_INSTANCE in vec4 aDeviceRect;
PER_INSTANCE in vec4 aDeviceClipRect;
PER_INSTANCE in vec4 aColor;
PER_INSTANCE in vec4 aParams;
PER_INSTANCE in vec3 aTextureLayers;
#ifdef WR_FEATURE_YUV
// YUV treats these as a UV clip rect (clamp)
PER_INSTANCE in vec4 aUvRect0;
PER_INSTANCE in vec4 aUvRect1;
PER_INSTANCE in vec4 aUvRect2;
#else
PER_INSTANCE in vec4 aUvRect0;
#endif
void main(void) {
// Get world position
vec2 world_pos = aDeviceRect.xy + aPosition.xy * aDeviceRect.zw;
// Clip the position to the world space clip rect
vec2 clipped_world_pos = clamp(world_pos, aDeviceClipRect.xy, aDeviceClipRect.xy + aDeviceClipRect.zw);
// Derive the normalized UV from the clipped vertex position
vec2 uv = (clipped_world_pos - aDeviceRect.xy) / aDeviceRect.zw;
#ifdef WR_FEATURE_YUV
int yuv_color_space = int(aParams.y);
int yuv_format = int(aParams.z);
float yuv_coefficient = aParams.w;
vYuvColorMatrix = get_yuv_color_matrix(yuv_color_space);
vYuvOffsetVector = get_yuv_offset_vector(yuv_color_space);
vYuvCoefficient = yuv_coefficient;
vYuvFormat = yuv_format;
vYuvLayers = aTextureLayers.xyz;
#ifdef SWGL
// swgl_commitTextureLinearYUV needs to know the color space specifier and
// also needs to know how many bits of scaling are required to normalize
// HDR textures.
vYuvColorSpace = yuv_color_space;
vRescaleFactor = int(log2(yuv_coefficient));
#endif
write_uv_rect(
aUvRect0.xy,
aUvRect0.zw,
uv,
TEX_SIZE(sColor0),
vUV_y,
vUVBounds_y
);
write_uv_rect(
aUvRect1.xy,
aUvRect1.zw,
uv,
TEX_SIZE(sColor1),
vUV_u,
vUVBounds_u
);
write_uv_rect(
aUvRect2.xy,
aUvRect2.zw,
uv,
TEX_SIZE(sColor2),
vUV_v,
vUVBounds_v
);
#else
vUv = mix(aUvRect0.xy, aUvRect0.zw, uv);
// flip_y might have the UV rect "upside down", make sure
// clamp works correctly:
vUVBounds = vec4(aUvRect0.x, min(aUvRect0.y, aUvRect0.w),
aUvRect0.z, max(aUvRect0.y, aUvRect0.w));
int rescale_uv = int(aParams.y);
if (rescale_uv == 1)
{
// using an atlas, so UVs are in pixels, and need to be
// normalized and clamped.
vec2 texture_size = TEX_SIZE(sColor0);
vUVBounds += vec4(0.5, 0.5, -0.5, -0.5);
#ifndef WR_FEATURE_TEXTURE_RECT
vUv /= texture_size;
vUVBounds /= texture_size.xyxy;
#endif
}
// Pass through color and texture array layer
vColor = aColor;
vLayer = aTextureLayers.x;
#endif
gl_Position = uTransform * vec4(clipped_world_pos, aParams.x /* z_id */, 1.0);
}
#endif
#ifdef WR_FRAGMENT_SHADER
void main(void) {
#ifdef WR_FEATURE_YUV
vec4 color = sample_yuv(
vYuvFormat,
vYuvColorMatrix,
vYuvOffsetVector,
vYuvCoefficient,
vYuvLayers,
vUV_y,
vUV_u,
vUV_v,
vUVBounds_y,
vUVBounds_u,
vUVBounds_v
);
#else
// The color is just the texture sample modulated by a supplied color
vec2 uv = clamp(vUv.xy, vUVBounds.xy, vUVBounds.zw);
# if defined(WR_FEATURE_TEXTURE_EXTERNAL) || defined(WR_FEATURE_TEXTURE_2D) || defined(WR_FEATURE_TEXTURE_RECT)
vec4 texel = TEX_SAMPLE(sColor0, vec3(uv, vLayer));
# else
vec4 texel = textureLod(sColor0, vec3(uv, vLayer), 0.0);
# endif
vec4 color = vColor * texel;
#endif
write_output(color);
}
#ifdef SWGL
void swgl_drawSpanRGBA8() {
#ifdef WR_FEATURE_YUV
if (vYuvFormat == YUV_FORMAT_PLANAR) {
if (!swgl_isTextureLinear(sColor0) || !swgl_isTextureLinear(sColor1) || !swgl_isTextureLinear(sColor2)) {
return;
}
int layer0 = swgl_textureLayerOffset(sColor0, vYuvLayers.x);
vec2 uv0 = swgl_linearQuantize(sColor0, vUV_y);
vec2 min_uv0 = swgl_linearQuantize(sColor0, vUVBounds_y.xy);
vec2 max_uv0 = swgl_linearQuantize(sColor0, vUVBounds_y.zw);
vec2 step_uv0 = swgl_linearQuantizeStep(sColor0, swgl_interpStep(vUV_y));
int layer1 = swgl_textureLayerOffset(sColor1, vYuvLayers.y);
vec2 uv1 = swgl_linearQuantize(sColor1, vUV_u);
vec2 min_uv1 = swgl_linearQuantize(sColor1, vUVBounds_u.xy);
vec2 max_uv1 = swgl_linearQuantize(sColor1, vUVBounds_u.zw);
vec2 step_uv1 = swgl_linearQuantizeStep(sColor1, swgl_interpStep(vUV_u));
int layer2 = swgl_textureLayerOffset(sColor2, vYuvLayers.z);
vec2 uv2 = swgl_linearQuantize(sColor2, vUV_v);
vec2 min_uv2 = swgl_linearQuantize(sColor2, vUVBounds_v.xy);
vec2 max_uv2 = swgl_linearQuantize(sColor2, vUVBounds_v.zw);
vec2 step_uv2 = swgl_linearQuantizeStep(sColor2, swgl_interpStep(vUV_v));
while (swgl_SpanLength > 0) {
swgl_commitTextureLinearYUV(sColor0, clamp(uv0, min_uv0, max_uv0), layer0,
sColor1, clamp(uv1, min_uv1, max_uv1), layer1,
sColor2, clamp(uv2, min_uv2, max_uv2), layer2,
vYuvColorSpace, vRescaleFactor);
uv0 += step_uv0;
uv1 += step_uv1;
uv2 += step_uv2;
}
} else if (vYuvFormat == YUV_FORMAT_NV12) {
if (!swgl_isTextureLinear(sColor0) || !swgl_isTextureLinear(sColor1)) {
return;
}
int layer0 = swgl_textureLayerOffset(sColor0, vYuvLayers.x);
vec2 uv0 = swgl_linearQuantize(sColor0, vUV_y);
vec2 min_uv0 = swgl_linearQuantize(sColor0, vUVBounds_y.xy);
vec2 max_uv0 = swgl_linearQuantize(sColor0, vUVBounds_y.zw);
vec2 step_uv0 = swgl_linearQuantizeStep(sColor0, swgl_interpStep(vUV_y));
int layer1 = swgl_textureLayerOffset(sColor1, vYuvLayers.y);
vec2 uv1 = swgl_linearQuantize(sColor1, vUV_u);
vec2 min_uv1 = swgl_linearQuantize(sColor1, vUVBounds_u.xy);
vec2 max_uv1 = swgl_linearQuantize(sColor1, vUVBounds_u.zw);
vec2 step_uv1 = swgl_linearQuantizeStep(sColor1, swgl_interpStep(vUV_u));
while (swgl_SpanLength > 0) {
swgl_commitTextureLinearYUV(sColor0, clamp(uv0, min_uv0, max_uv0), layer0,
sColor1, clamp(uv1, min_uv1, max_uv1), layer1,
vYuvColorSpace, vRescaleFactor);
uv0 += step_uv0;
uv1 += step_uv1;
}
} else if (vYuvFormat == YUV_FORMAT_INTERLEAVED) {
if (!swgl_isTextureLinear(sColor0) || !swgl_isTextureLinear(sColor1)) {
return;
}
int layer0 = swgl_textureLayerOffset(sColor0, vYuvLayers.x);
vec2 uv0 = swgl_linearQuantize(sColor0, vUV_y);
vec2 min_uv0 = swgl_linearQuantize(sColor0, vUVBounds_y.xy);
vec2 max_uv0 = swgl_linearQuantize(sColor0, vUVBounds_y.zw);
vec2 step_uv0 = swgl_linearQuantizeStep(sColor0, swgl_interpStep(vUV_y));
while (swgl_SpanLength > 0) {
swgl_commitTextureLinearYUV(sColor0, clamp(uv0, min_uv0, max_uv0), layer0,
vYuvColorSpace, vRescaleFactor);
uv0 += step_uv0;
}
}
#else
if (!swgl_isTextureRGBA8(sColor0) || !swgl_isTextureLinear(sColor0)) {
return;
}
int layer = swgl_textureLayerOffset(sColor0, vLayer);
if (swgl_allowTextureNearest(sColor0, vUv)) {
if (vColor != vec4(1.0)) {
swgl_commitTextureNearestColorRGBA8(sColor0, vUv, vUVBounds, vColor, layer);
} else {
swgl_commitTextureNearestRGBA8(sColor0, vUv, vUVBounds, layer);
}
return;
}
vec2 uv = swgl_linearQuantize(sColor0, vUv);
vec2 min_uv = swgl_linearQuantize(sColor0, vUVBounds.xy);
vec2 max_uv = swgl_linearQuantize(sColor0, vUVBounds.zw);
vec2 step_uv = swgl_linearQuantizeStep(sColor0, swgl_interpStep(vUv));
if (vColor != vec4(1.0)) {
while (swgl_SpanLength > 0) {
swgl_commitTextureLinearColorRGBA8(sColor0, clamp(uv, min_uv, max_uv), vColor, layer);
uv += step_uv;
}
} else {
while (swgl_SpanLength > 0) {
swgl_commitTextureLinearRGBA8(sColor0, clamp(uv, min_uv, max_uv), layer);
uv += step_uv;
}
}
#endif
}
#endif
#endif
|