1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#define WR_FEATURE_TEXTURE_2D
#include shared,prim_shared
varying vec2 vUv;
flat varying vec4 vUvRect;
flat varying vec2 vOffsetScale;
// The number of pixels on each end that we apply the blur filter over.
flat varying int vSupport;
flat varying vec2 vGaussCoefficients;
#ifdef WR_VERTEX_SHADER
// Applies a separable gaussian blur in one direction, as specified
// by the dir field in the blur command.
#define DIR_HORIZONTAL 0
#define DIR_VERTICAL 1
PER_INSTANCE in int aBlurRenderTaskAddress;
PER_INSTANCE in int aBlurSourceTaskAddress;
PER_INSTANCE in int aBlurDirection;
struct BlurTask {
RenderTaskCommonData common_data;
float blur_radius;
vec2 blur_region;
};
BlurTask fetch_blur_task(int address) {
RenderTaskData task_data = fetch_render_task_data(address);
BlurTask task = BlurTask(
task_data.common_data,
task_data.user_data.x,
task_data.user_data.yz
);
return task;
}
void calculate_gauss_coefficients(float sigma) {
// Incremental Gaussian Coefficent Calculation (See GPU Gems 3 pp. 877 - 889)
vGaussCoefficients = vec2(1.0 / (sqrt(2.0 * 3.14159265) * sigma),
exp(-0.5 / (sigma * sigma)));
// Pre-calculate the coefficient total in the vertex shader so that
// we can avoid having to do it per-fragment and also avoid division
// by zero in the degenerate case.
vec3 gauss_coefficient = vec3(vGaussCoefficients,
vGaussCoefficients.y * vGaussCoefficients.y);
float gauss_coefficient_total = gauss_coefficient.x;
for (int i = 1; i <= vSupport; i += 2) {
gauss_coefficient.xy *= gauss_coefficient.yz;
float gauss_coefficient_subtotal = gauss_coefficient.x;
gauss_coefficient.xy *= gauss_coefficient.yz;
gauss_coefficient_subtotal += gauss_coefficient.x;
gauss_coefficient_total += 2.0 * gauss_coefficient_subtotal;
}
// Scale initial coefficient by total to avoid passing the total separately
// to the fragment shader.
vGaussCoefficients.x /= gauss_coefficient_total;
}
void main(void) {
BlurTask blur_task = fetch_blur_task(aBlurRenderTaskAddress);
RenderTaskCommonData src_task = fetch_render_task_common_data(aBlurSourceTaskAddress);
RectWithSize src_rect = src_task.task_rect;
RectWithSize target_rect = blur_task.common_data.task_rect;
vec2 texture_size = vec2(textureSize(sColor0, 0).xy);
// Ensure that the support is an even number of pixels to simplify the
// fragment shader logic.
//
// TODO(pcwalton): Actually make use of this fact and use the texture
// hardware for linear filtering.
vSupport = int(ceil(1.5 * blur_task.blur_radius)) * 2;
if (vSupport > 0) {
calculate_gauss_coefficients(blur_task.blur_radius);
} else {
// The gauss function gets NaNs when blur radius is zero.
vGaussCoefficients = vec2(1.0, 1.0);
}
switch (aBlurDirection) {
case DIR_HORIZONTAL:
vOffsetScale = vec2(1.0 / texture_size.x, 0.0);
break;
case DIR_VERTICAL:
vOffsetScale = vec2(0.0, 1.0 / texture_size.y);
break;
default:
vOffsetScale = vec2(0.0);
}
vUvRect = vec4(src_rect.p0 + vec2(0.5),
src_rect.p0 + blur_task.blur_region - vec2(0.5));
vUvRect /= texture_size.xyxy;
vec2 pos = target_rect.p0 + target_rect.size * aPosition.xy;
vec2 uv0 = src_rect.p0 / texture_size;
vec2 uv1 = (src_rect.p0 + src_rect.size) / texture_size;
vUv = mix(uv0, uv1, aPosition.xy);
gl_Position = uTransform * vec4(pos, 0.0, 1.0);
}
#endif
#ifdef WR_FRAGMENT_SHADER
#if defined WR_FEATURE_COLOR_TARGET
#define SAMPLE_TYPE vec4
#define SAMPLE_TEXTURE(uv) texture(sColor0, uv)
#else
#define SAMPLE_TYPE float
#define SAMPLE_TEXTURE(uv) texture(sColor0, uv).r
#endif
// TODO(gw): Write a fast path blur that handles smaller blur radii
// with a offset / weight uniform table and a constant
// loop iteration count!
void main(void) {
SAMPLE_TYPE original_color = SAMPLE_TEXTURE(vUv);
// Incremental Gaussian Coefficent Calculation (See GPU Gems 3 pp. 877 - 889)
vec3 gauss_coefficient = vec3(vGaussCoefficients,
vGaussCoefficients.y * vGaussCoefficients.y);
SAMPLE_TYPE avg_color = original_color * gauss_coefficient.x;
// Evaluate two adjacent texels at a time. We can do this because, if c0
// and c1 are colors of adjacent texels and k0 and k1 are arbitrary
// factors, this formula:
//
// k0 * c0 + k1 * c1 (Equation 1)
//
// is equivalent to:
//
// k1
// (k0 + k1) * lerp(c0, c1, -------)
// k0 + k1
//
// A texture lookup of adjacent texels evaluates this formula:
//
// lerp(c0, c1, t)
//
// for some t. So we can let `t = k1/(k0 + k1)` and effectively evaluate
// Equation 1 with a single texture lookup.
for (int i = 1; i <= vSupport; i += 2) {
gauss_coefficient.xy *= gauss_coefficient.yz;
float gauss_coefficient_subtotal = gauss_coefficient.x;
gauss_coefficient.xy *= gauss_coefficient.yz;
gauss_coefficient_subtotal += gauss_coefficient.x;
float gauss_ratio = gauss_coefficient.x / gauss_coefficient_subtotal;
vec2 offset = vOffsetScale * (float(i) + gauss_ratio);
vec2 st0 = max(vUv - offset, vUvRect.xy);
vec2 st1 = min(vUv + offset, vUvRect.zw);
avg_color += (SAMPLE_TEXTURE(st0) + SAMPLE_TEXTURE(st1)) *
gauss_coefficient_subtotal;
}
oFragColor = vec4(avg_color);
}
#ifdef SWGL
#ifdef WR_FEATURE_COLOR_TARGET
void swgl_drawSpanRGBA8() {
if (!swgl_isTextureRGBA8(sColor0)) {
return;
}
swgl_commitGaussianBlurRGBA8(sColor0, vUv, vUvRect, vOffsetScale.x != 0.0,
vSupport, vGaussCoefficients, 0);
}
#else
void swgl_drawSpanR8() {
if (!swgl_isTextureR8(sColor0)) {
return;
}
swgl_commitGaussianBlurR8(sColor0, vUv, vUvRect, vOffsetScale.x != 0.0,
vSupport, vGaussCoefficients, 0);
}
#endif
#endif
#endif
|