summaryrefslogtreecommitdiffstats
path: root/gfx/wr/webrender/src/picture.rs
blob: f71cc57a439e5c0c1da0d709c114e1a99d429ca7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

//! A picture represents a dynamically rendered image.
//!
//! # Overview
//!
//! Pictures consists of:
//!
//! - A number of primitives that are drawn onto the picture.
//! - A composite operation describing how to composite this
//!   picture into its parent.
//! - A configuration describing how to draw the primitives on
//!   this picture (e.g. in screen space or local space).
//!
//! The tree of pictures are generated during scene building.
//!
//! Depending on their composite operations pictures can be rendered into
//! intermediate targets or folded into their parent picture.
//!
//! ## Picture caching
//!
//! Pictures can be cached to reduce the amount of rasterization happening per
//! frame.
//!
//! When picture caching is enabled, the scene is cut into a small number of slices,
//! typically:
//!
//! - content slice
//! - UI slice
//! - background UI slice which is hidden by the other two slices most of the time.
//!
//! Each of these slice is made up of fixed-size large tiles of 2048x512 pixels
//! (or 128x128 for the UI slice).
//!
//! Tiles can be either cached rasterized content into a texture or "clear tiles"
//! that contain only a solid color rectangle rendered directly during the composite
//! pass.
//!
//! ## Invalidation
//!
//! Each tile keeps track of the elements that affect it, which can be:
//!
//! - primitives
//! - clips
//! - image keys
//! - opacity bindings
//! - transforms
//!
//! These dependency lists are built each frame and compared to the previous frame to
//! see if the tile changed.
//!
//! The tile's primitive dependency information is organized in a quadtree, each node
//! storing an index buffer of tile primitive dependencies.
//!
//! The union of the invalidated leaves of each quadtree produces a per-tile dirty rect
//! which defines the scissor rect used when replaying the tile's drawing commands and
//! can be used for partial present.
//!
//! ## Display List shape
//!
//! WR will first look for an iframe item in the root stacking context to apply
//! picture caching to. If that's not found, it will apply to the entire root
//! stacking context of the display list. Apart from that, the format of the
//! display list is not important to picture caching. Each time a new scroll root
//! is encountered, a new picture cache slice will be created. If the display
//! list contains more than some arbitrary number of slices (currently 8), the
//! content will all be squashed into a single slice, in order to save GPU memory
//! and compositing performance.
//!
//! ## Compositor Surfaces
//!
//! Sometimes, a primitive would prefer to exist as a native compositor surface.
//! This allows a large and/or regularly changing primitive (such as a video, or
//! webgl canvas) to be updated each frame without invalidating the content of
//! tiles, and can provide a significant performance win and battery saving.
//!
//! Since drawing a primitive as a compositor surface alters the ordering of
//! primitives in a tile, we use 'overlay tiles' to ensure correctness. If a
//! tile has a compositor surface, _and_ that tile has primitives that overlap
//! the compositor surface rect, the tile switches to be drawn in alpha mode.
//!
//! We rely on only promoting compositor surfaces that are opaque primitives.
//! With this assumption, the tile(s) that intersect the compositor surface get
//! a 'cutout' in the rectangle where the compositor surface exists (not the
//! entire tile), allowing that tile to be drawn as an alpha tile after the
//! compositor surface.
//!
//! Tiles are only drawn in overlay mode if there is content that exists on top
//! of the compositor surface. Otherwise, we can draw the tiles in the normal fast
//! path before the compositor surface is drawn. Use of the per-tile valid and
//! dirty rects ensure that we do a minimal amount of per-pixel work here to
//! blend the overlay tile (this is not always optimal right now, but will be
//! improved as a follow up).

use api::{MixBlendMode, PremultipliedColorF, FilterPrimitiveKind};
use api::{PropertyBinding, PropertyBindingId, FilterPrimitive};
use api::{DebugFlags, ImageKey, ColorF, ColorU, PrimitiveFlags};
use api::{ImageRendering, ColorDepth, YuvColorSpace, YuvFormat};
use api::units::*;
use crate::box_shadow::BLUR_SAMPLE_SCALE;
use crate::clip::{ClipStore, ClipChainInstance, ClipChainId, ClipInstance};
use crate::spatial_tree::{ROOT_SPATIAL_NODE_INDEX,
    SpatialTree, CoordinateSpaceMapping, SpatialNodeIndex, VisibleFace
};
use crate::composite::{CompositorKind, CompositeState, NativeSurfaceId, NativeTileId};
use crate::composite::{ExternalSurfaceDescriptor, ExternalSurfaceDependency};
use crate::debug_colors;
use euclid::{vec2, vec3, Point2D, Scale, Size2D, Vector2D, Vector3D, Rect, Transform3D, SideOffsets2D};
use euclid::approxeq::ApproxEq;
use crate::filterdata::SFilterData;
use crate::intern::ItemUid;
use crate::internal_types::{FastHashMap, FastHashSet, PlaneSplitter, Filter, PlaneSplitAnchor, TextureSource};
use crate::frame_builder::{FrameBuildingContext, FrameBuildingState, PictureState, PictureContext};
use crate::gpu_cache::{GpuCache, GpuCacheAddress, GpuCacheHandle};
use crate::gpu_types::{UvRectKind, ZBufferId};
use plane_split::{Clipper, Polygon, Splitter};
use crate::prim_store::{PrimitiveTemplateKind, PictureIndex, PrimitiveInstance, PrimitiveInstanceKind};
use crate::prim_store::{ColorBindingStorage, ColorBindingIndex, PrimitiveScratchBuffer};
use crate::print_tree::{PrintTree, PrintTreePrinter};
use crate::render_backend::{DataStores, FrameId};
use crate::render_task_graph::RenderTaskId;
use crate::render_target::RenderTargetKind;
use crate::render_task::{BlurTask, RenderTask, RenderTaskLocation, BlurTaskCache};
use crate::render_task::{StaticRenderTaskSurface, RenderTaskKind};
use crate::resource_cache::{ResourceCache, ImageGeneration};
use crate::space::{SpaceMapper, SpaceSnapper};
use crate::scene::SceneProperties;
use smallvec::SmallVec;
use std::{mem, u8, marker, u32};
use std::sync::atomic::{AtomicUsize, Ordering};
use std::collections::hash_map::Entry;
use std::ops::Range;
use crate::texture_cache::TextureCacheHandle;
use crate::util::{MaxRect, VecHelper, MatrixHelpers, Recycler, raster_rect_to_device_pixels, ScaleOffset};
use crate::filterdata::{FilterDataHandle};
use crate::tile_cache::{SliceDebugInfo, TileDebugInfo, DirtyTileDebugInfo};
use crate::visibility::{PrimitiveVisibilityMask, PrimitiveVisibilityFlags, FrameVisibilityContext};
use crate::visibility::{VisibilityState, FrameVisibilityState};
#[cfg(any(feature = "capture", feature = "replay"))]
use ron;
#[cfg(feature = "capture")]
use crate::scene_builder_thread::InternerUpdates;
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::intern::{Internable, UpdateList};
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::clip::ClipIntern;
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::filterdata::FilterDataIntern;
#[cfg(any(feature = "capture", feature = "replay"))]
use api::PrimitiveKeyKind;
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::prim_store::backdrop::Backdrop;
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::prim_store::borders::{ImageBorder, NormalBorderPrim};
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::prim_store::gradient::{LinearGradient, RadialGradient, ConicGradient};
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::prim_store::image::{Image, YuvImage};
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::prim_store::line_dec::LineDecoration;
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::prim_store::picture::Picture;
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::prim_store::text_run::TextRun;

#[cfg(feature = "capture")]
use std::fs::File;
#[cfg(feature = "capture")]
use std::io::prelude::*;
#[cfg(feature = "capture")]
use std::path::PathBuf;
use crate::scene_building::{SliceFlags};

#[cfg(feature = "replay")]
// used by tileview so don't use an internal_types FastHashMap
use std::collections::HashMap;

// Maximum blur radius for blur filter (different than box-shadow blur).
// Taken from FilterNodeSoftware.cpp in Gecko.
pub const MAX_BLUR_RADIUS: f32 = 100.;

/// Specify whether a surface allows subpixel AA text rendering.
#[derive(Debug, Clone, PartialEq)]
pub enum SubpixelMode {
    /// This surface allows subpixel AA text
    Allow,
    /// Subpixel AA text cannot be drawn on this surface
    Deny,
    /// Subpixel AA can be drawn on this surface, if not intersecting
    /// with the excluded regions, and inside the allowed rect.
    Conditional {
        allowed_rect: PictureRect,
        excluded_rects: Vec<PictureRect>,
    },
}

/// A comparable transform matrix, that compares with epsilon checks.
#[derive(Debug, Clone)]
struct MatrixKey {
    m: [f32; 16],
}

impl PartialEq for MatrixKey {
    fn eq(&self, other: &Self) -> bool {
        const EPSILON: f32 = 0.001;

        // TODO(gw): It's possible that we may need to adjust the epsilon
        //           to be tighter on most of the matrix, except the
        //           translation parts?
        for (i, j) in self.m.iter().zip(other.m.iter()) {
            if !i.approx_eq_eps(j, &EPSILON) {
                return false;
            }
        }

        true
    }
}

/// A comparable / hashable version of a coordinate space mapping. Used to determine
/// if a transform dependency for a tile has changed.
#[derive(Debug, PartialEq, Clone)]
enum TransformKey {
    Local,
    ScaleOffset {
        scale_x: f32,
        scale_y: f32,
        offset_x: f32,
        offset_y: f32,
    },
    Transform {
        m: MatrixKey,
    }
}

impl<Src, Dst> From<CoordinateSpaceMapping<Src, Dst>> for TransformKey {
    fn from(transform: CoordinateSpaceMapping<Src, Dst>) -> TransformKey {
        match transform {
            CoordinateSpaceMapping::Local => {
                TransformKey::Local
            }
            CoordinateSpaceMapping::ScaleOffset(ref scale_offset) => {
                TransformKey::ScaleOffset {
                    scale_x: scale_offset.scale.x,
                    scale_y: scale_offset.scale.y,
                    offset_x: scale_offset.offset.x,
                    offset_y: scale_offset.offset.y,
                }
            }
            CoordinateSpaceMapping::Transform(ref m) => {
                TransformKey::Transform {
                    m: MatrixKey {
                        m: m.to_array(),
                    },
                }
            }
        }
    }
}

/// Information about a picture that is pushed / popped on the
/// PictureUpdateState during picture traversal pass.
struct PictureInfo {
    /// The spatial node for this picture.
    _spatial_node_index: SpatialNodeIndex,
}

/// Unit for tile coordinates.
#[derive(Hash, Clone, Copy, Debug, Eq, PartialEq, Ord, PartialOrd)]
pub struct TileCoordinate;

// Geometry types for tile coordinates.
pub type TileOffset = Point2D<i32, TileCoordinate>;
pub type TileSize = Size2D<i32, TileCoordinate>;
pub type TileRect = Rect<i32, TileCoordinate>;

/// The maximum number of compositor surfaces that are allowed per picture cache. This
/// is an arbitrary number that should be enough for common cases, but low enough to
/// prevent performance and memory usage drastically degrading in pathological cases.
const MAX_COMPOSITOR_SURFACES: usize = 4;

/// The size in device pixels of a normal cached tile.
pub const TILE_SIZE_DEFAULT: DeviceIntSize = DeviceIntSize {
    width: 1024,
    height: 512,
    _unit: marker::PhantomData,
};

/// The size in device pixels of a tile for horizontal scroll bars
pub const TILE_SIZE_SCROLLBAR_HORIZONTAL: DeviceIntSize = DeviceIntSize {
    width: 1024,
    height: 32,
    _unit: marker::PhantomData,
};

/// The size in device pixels of a tile for vertical scroll bars
pub const TILE_SIZE_SCROLLBAR_VERTICAL: DeviceIntSize = DeviceIntSize {
    width: 32,
    height: 1024,
    _unit: marker::PhantomData,
};

/// The maximum size per axis of a surface,
///  in WorldPixel coordinates.
const MAX_SURFACE_SIZE: f32 = 4096.0;
/// Maximum size of a compositor surface.
const MAX_COMPOSITOR_SURFACES_SIZE: f32 = 8192.0;

/// The maximum number of sub-dependencies (e.g. clips, transforms) we can handle
/// per-primitive. If a primitive has more than this, it will invalidate every frame.
const MAX_PRIM_SUB_DEPS: usize = u8::MAX as usize;

/// Used to get unique tile IDs, even when the tile cache is
/// destroyed between display lists / scenes.
static NEXT_TILE_ID: AtomicUsize = AtomicUsize::new(0);

fn clamp(value: i32, low: i32, high: i32) -> i32 {
    value.max(low).min(high)
}

fn clampf(value: f32, low: f32, high: f32) -> f32 {
    value.max(low).min(high)
}

/// Clamps the blur radius depending on scale factors.
fn clamp_blur_radius(blur_radius: f32, scale_factors: (f32, f32)) -> f32 {
    // Clamping must occur after scale factors are applied, but scale factors are not applied
    // until later on. To clamp the blur radius, we first apply the scale factors and then clamp
    // and finally revert the scale factors.

    // TODO: the clamping should be done on a per-axis basis, but WR currently only supports
    // having a single value for both x and y blur.
    let largest_scale_factor = f32::max(scale_factors.0, scale_factors.1);
    let scaled_blur_radius = blur_radius * largest_scale_factor;

    if scaled_blur_radius > MAX_BLUR_RADIUS {
        MAX_BLUR_RADIUS / largest_scale_factor
    } else {
        // Return the original blur radius to avoid any rounding errors
        blur_radius
    }
}

/// An index into the prims array in a TileDescriptor.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct PrimitiveDependencyIndex(pub u32);

/// Information about the state of a binding.
#[derive(Debug)]
pub struct BindingInfo<T> {
    /// The current value retrieved from dynamic scene properties.
    value: T,
    /// True if it was changed (or is new) since the last frame build.
    changed: bool,
}

/// Information stored in a tile descriptor for a binding.
#[derive(Debug, PartialEq, Clone, Copy)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum Binding<T> {
    Value(T),
    Binding(PropertyBindingId),
}

impl<T> From<PropertyBinding<T>> for Binding<T> {
    fn from(binding: PropertyBinding<T>) -> Binding<T> {
        match binding {
            PropertyBinding::Binding(key, _) => Binding::Binding(key.id),
            PropertyBinding::Value(value) => Binding::Value(value),
        }
    }
}

pub type OpacityBinding = Binding<f32>;
pub type OpacityBindingInfo = BindingInfo<f32>;

pub type ColorBinding = Binding<ColorU>;
pub type ColorBindingInfo = BindingInfo<ColorU>;

/// A dependency for a transform is defined by the spatial node index + frame it was used
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct SpatialNodeKey {
    spatial_node_index: SpatialNodeIndex,
    frame_id: FrameId,
}

/// A helper for comparing spatial nodes between frames. The comparisons
/// are done by-value, so that if the shape of the spatial node tree
/// changes, invalidations aren't done simply due to the spatial node
/// index changing between display lists.
struct SpatialNodeComparer {
    /// The root spatial node index of the tile cache
    ref_spatial_node_index: SpatialNodeIndex,
    /// Maintains a map of currently active transform keys
    spatial_nodes: FastHashMap<SpatialNodeKey, TransformKey>,
    /// A cache of recent comparisons between prev and current spatial nodes
    compare_cache: FastHashMap<(SpatialNodeKey, SpatialNodeKey), bool>,
    /// A set of frames that we need to retain spatial node entries for
    referenced_frames: FastHashSet<FrameId>,
}

impl SpatialNodeComparer {
    /// Construct a new comparer
    fn new() -> Self {
        SpatialNodeComparer {
            ref_spatial_node_index: ROOT_SPATIAL_NODE_INDEX,
            spatial_nodes: FastHashMap::default(),
            compare_cache: FastHashMap::default(),
            referenced_frames: FastHashSet::default(),
        }
    }

    /// Advance to the next frame
    fn next_frame(
        &mut self,
        ref_spatial_node_index: SpatialNodeIndex,
    ) {
        // Drop any node information for unreferenced frames, to ensure that the
        // hashmap doesn't grow indefinitely!
        let referenced_frames = &self.referenced_frames;
        self.spatial_nodes.retain(|key, _| {
            referenced_frames.contains(&key.frame_id)
        });

        // Update the root spatial node for this comparer
        self.ref_spatial_node_index = ref_spatial_node_index;
        self.compare_cache.clear();
        self.referenced_frames.clear();
    }

    /// Register a transform that is used, and build the transform key for it if new.
    fn register_used_transform(
        &mut self,
        spatial_node_index: SpatialNodeIndex,
        frame_id: FrameId,
        spatial_tree: &SpatialTree,
    ) {
        let key = SpatialNodeKey {
            spatial_node_index,
            frame_id,
        };

        if let Entry::Vacant(entry) = self.spatial_nodes.entry(key) {
            entry.insert(
                get_transform_key(
                    spatial_node_index,
                    self.ref_spatial_node_index,
                    spatial_tree,
                )
            );
        }
    }

    /// Return true if the transforms for two given spatial nodes are considered equivalent
    fn are_transforms_equivalent(
        &mut self,
        prev_spatial_node_key: &SpatialNodeKey,
        curr_spatial_node_key: &SpatialNodeKey,
    ) -> bool {
        let key = (*prev_spatial_node_key, *curr_spatial_node_key);
        let spatial_nodes = &self.spatial_nodes;

        *self.compare_cache
            .entry(key)
            .or_insert_with(|| {
                let prev = &spatial_nodes[&prev_spatial_node_key];
                let curr = &spatial_nodes[&curr_spatial_node_key];
                curr == prev
            })
    }

    /// Ensure that the comparer won't GC any nodes for a given frame id
    fn retain_for_frame(&mut self, frame_id: FrameId) {
        self.referenced_frames.insert(frame_id);
    }
}

// Immutable context passed to picture cache tiles during pre_update
struct TilePreUpdateContext {
    /// Maps from picture cache coords -> world space coords.
    pic_to_world_mapper: SpaceMapper<PicturePixel, WorldPixel>,

    /// The fractional position of the picture cache, which may
    /// require invalidation of all tiles.
    fract_offset: PictureVector2D,
    device_fract_offset: DeviceVector2D,

    /// The optional background color of the picture cache instance
    background_color: Option<ColorF>,

    /// The visible part of the screen in world coords.
    global_screen_world_rect: WorldRect,

    /// Current size of tiles in picture units.
    tile_size: PictureSize,

    /// The current frame id for this picture cache
    frame_id: FrameId,
}

// Immutable context passed to picture cache tiles during post_update
struct TilePostUpdateContext<'a> {
    /// Maps from picture cache coords -> world space coords.
    pic_to_world_mapper: SpaceMapper<PicturePixel, WorldPixel>,

    /// Global scale factor from world -> device pixels.
    global_device_pixel_scale: DevicePixelScale,

    /// The local clip rect (in picture space) of the entire picture cache
    local_clip_rect: PictureRect,

    /// The calculated backdrop information for this cache instance.
    backdrop: BackdropInfo,

    /// Information about opacity bindings from the picture cache.
    opacity_bindings: &'a FastHashMap<PropertyBindingId, OpacityBindingInfo>,

    /// Information about color bindings from the picture cache.
    color_bindings: &'a FastHashMap<PropertyBindingId, ColorBindingInfo>,

    /// Current size in device pixels of tiles for this cache
    current_tile_size: DeviceIntSize,

    /// The local rect of the overall picture cache
    local_rect: PictureRect,

    /// A list of the external surfaces that are present on this slice
    external_surfaces: &'a [ExternalSurfaceDescriptor],

    /// Pre-allocated z-id to assign to opaque tiles during post_update. We
    /// use a different z-id for opaque/alpha tiles, so that compositor
    /// surfaces (such as videos) can have a z-id between these values,
    /// which allows compositor surfaces to occlude opaque tiles, but not
    /// alpha tiles.
    z_id_opaque: ZBufferId,

    /// Pre-allocated z-id to assign to alpha tiles during post_update
    z_id_alpha: ZBufferId,

    /// If true, the scale factor of the root transform for this picture
    /// cache changed, so we need to invalidate the tile and re-render.
    invalidate_all: bool,
}

// Mutable state passed to picture cache tiles during post_update
struct TilePostUpdateState<'a> {
    /// Allow access to the texture cache for requesting tiles
    resource_cache: &'a mut ResourceCache,

    /// Current configuration and setup for compositing all the picture cache tiles in renderer.
    composite_state: &'a mut CompositeState,

    /// A cache of comparison results to avoid re-computation during invalidation.
    compare_cache: &'a mut FastHashMap<PrimitiveComparisonKey, PrimitiveCompareResult>,

    /// Information about transform node differences from last frame.
    spatial_node_comparer: &'a mut SpatialNodeComparer,
}

/// Information about the dependencies of a single primitive instance.
struct PrimitiveDependencyInfo {
    /// Unique content identifier of the primitive.
    prim_uid: ItemUid,

    /// The (conservative) clipped area in picture space this primitive occupies.
    prim_clip_box: PictureBox2D,

    /// Image keys this primitive depends on.
    images: SmallVec<[ImageDependency; 8]>,

    /// Opacity bindings this primitive depends on.
    opacity_bindings: SmallVec<[OpacityBinding; 4]>,

    /// Color binding this primitive depends on.
    color_binding: Option<ColorBinding>,

    /// Clips that this primitive depends on.
    clips: SmallVec<[ItemUid; 8]>,

    /// Spatial nodes references by the clip dependencies of this primitive.
    spatial_nodes: SmallVec<[SpatialNodeIndex; 4]>,

    /// If true, this primitive has been promoted to be a compositor surface.
    is_compositor_surface: bool,
}

impl PrimitiveDependencyInfo {
    /// Construct dependency info for a new primitive.
    fn new(
        prim_uid: ItemUid,
        prim_clip_box: PictureBox2D,
    ) -> Self {
        PrimitiveDependencyInfo {
            prim_uid,
            images: SmallVec::new(),
            opacity_bindings: SmallVec::new(),
            color_binding: None,
            prim_clip_box,
            clips: SmallVec::new(),
            spatial_nodes: SmallVec::new(),
            is_compositor_surface: false,
        }
    }
}

/// A stable ID for a given tile, to help debugging. These are also used
/// as unique identifiers for tile surfaces when using a native compositor.
#[derive(Debug, Copy, Clone, PartialEq, PartialOrd, Ord, Eq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct TileId(pub usize);

/// A descriptor for the kind of texture that a picture cache tile will
/// be drawn into.
#[derive(Debug)]
pub enum SurfaceTextureDescriptor {
    /// When using the WR compositor, the tile is drawn into an entry
    /// in the WR texture cache.
    TextureCache {
        handle: TextureCacheHandle
    },
    /// When using an OS compositor, the tile is drawn into a native
    /// surface identified by arbitrary id.
    Native {
        /// The arbitrary id of this tile.
        id: Option<NativeTileId>,
    },
}

/// This is the same as a `SurfaceTextureDescriptor` but has been resolved
/// into a texture cache handle (if appropriate) that can be used by the
/// batching and compositing code in the renderer.
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum ResolvedSurfaceTexture {
    TextureCache {
        /// The texture ID to draw to.
        texture: TextureSource,
        /// Slice index in the texture array to draw to.
        layer: i32,
    },
    Native {
        /// The arbitrary id of this tile.
        id: NativeTileId,
        /// The size of the tile in device pixels.
        size: DeviceIntSize,
    }
}

impl SurfaceTextureDescriptor {
    /// Create a resolved surface texture for this descriptor
    pub fn resolve(
        &self,
        resource_cache: &ResourceCache,
        size: DeviceIntSize,
    ) -> ResolvedSurfaceTexture {
        match self {
            SurfaceTextureDescriptor::TextureCache { handle } => {
                let cache_item = resource_cache.texture_cache.get(handle);

                ResolvedSurfaceTexture::TextureCache {
                    texture: cache_item.texture_id,
                    layer: cache_item.texture_layer,
                }
            }
            SurfaceTextureDescriptor::Native { id } => {
                ResolvedSurfaceTexture::Native {
                    id: id.expect("bug: native surface not allocated"),
                    size,
                }
            }
        }
    }
}

/// The backing surface for this tile.
#[derive(Debug)]
pub enum TileSurface {
    Texture {
        /// Descriptor for the surface that this tile draws into.
        descriptor: SurfaceTextureDescriptor,
        /// Bitfield specifying the dirty region(s) that are relevant to this tile.
        visibility_mask: PrimitiveVisibilityMask,
    },
    Color {
        color: ColorF,
    },
    Clear,
}

impl TileSurface {
    fn kind(&self) -> &'static str {
        match *self {
            TileSurface::Color { .. } => "Color",
            TileSurface::Texture { .. } => "Texture",
            TileSurface::Clear => "Clear",
        }
    }
}

/// Optional extra information returned by is_same when
/// logging is enabled.
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum CompareHelperResult<T> {
    /// Primitives match
    Equal,
    /// Counts differ
    Count {
        prev_count: u8,
        curr_count: u8,
    },
    /// Sentinel
    Sentinel,
    /// Two items are not equal
    NotEqual {
        prev: T,
        curr: T,
    },
    /// User callback returned true on item
    PredicateTrue {
        curr: T
    },
}

/// The result of a primitive dependency comparison. Size is a u8
/// since this is a hot path in the code, and keeping the data small
/// is a performance win.
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[repr(u8)]
pub enum PrimitiveCompareResult {
    /// Primitives match
    Equal,
    /// Something in the PrimitiveDescriptor was different
    Descriptor,
    /// The clip node content or spatial node changed
    Clip,
    /// The value of the transform changed
    Transform,
    /// An image dependency was dirty
    Image,
    /// The value of an opacity binding changed
    OpacityBinding,
    /// The value of a color binding changed
    ColorBinding,
}

/// A more detailed version of PrimitiveCompareResult used when
/// debug logging is enabled.
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum PrimitiveCompareResultDetail {
    /// Primitives match
    Equal,
    /// Something in the PrimitiveDescriptor was different
    Descriptor {
        old: PrimitiveDescriptor,
        new: PrimitiveDescriptor,
    },
    /// The clip node content or spatial node changed
    Clip {
        detail: CompareHelperResult<ItemUid>,
    },
    /// The value of the transform changed
    Transform {
        detail: CompareHelperResult<SpatialNodeKey>,
    },
    /// An image dependency was dirty
    Image {
        detail: CompareHelperResult<ImageDependency>,
    },
    /// The value of an opacity binding changed
    OpacityBinding {
        detail: CompareHelperResult<OpacityBinding>,
    },
    /// The value of a color binding changed
    ColorBinding {
        detail: CompareHelperResult<ColorBinding>,
    },
}

/// Debugging information about why a tile was invalidated
#[derive(Debug,Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum InvalidationReason {
    /// The fractional offset changed
    FractionalOffset {
        old: DeviceVector2D,
        new: DeviceVector2D,
    },
    /// The background color changed
    BackgroundColor {
        old: Option<ColorF>,
        new: Option<ColorF>,
    },
    /// The opaque state of the backing native surface changed
    SurfaceOpacityChanged{
        became_opaque: bool
    },
    /// There was no backing texture (evicted or never rendered)
    NoTexture,
    /// There was no backing native surface (never rendered, or recreated)
    NoSurface,
    /// The primitive count in the dependency list was different
    PrimCount {
        old: Option<Vec<ItemUid>>,
        new: Option<Vec<ItemUid>>,
    },
    /// The content of one of the primitives was different
    Content {
        /// What changed in the primitive that was different
        prim_compare_result: PrimitiveCompareResult,
        prim_compare_result_detail: Option<PrimitiveCompareResultDetail>,
    },
    // The compositor type changed
    CompositorKindChanged,
    // The valid region of the tile changed
    ValidRectChanged,
    // The overall scale of the picture cache changed
    ScaleChanged,
}

/// A minimal subset of Tile for debug capturing
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct TileSerializer {
    pub rect: PictureRect,
    pub current_descriptor: TileDescriptor,
    pub device_fract_offset: DeviceVector2D,
    pub id: TileId,
    pub root: TileNode,
    pub background_color: Option<ColorF>,
    pub invalidation_reason: Option<InvalidationReason>
}

/// A minimal subset of TileCacheInstance for debug capturing
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct TileCacheInstanceSerializer {
    pub slice: usize,
    pub tiles: FastHashMap<TileOffset, TileSerializer>,
    pub background_color: Option<ColorF>,
    pub fract_offset: PictureVector2D,
}

/// Information about a cached tile.
pub struct Tile {
    /// The grid position of this tile within the picture cache
    pub tile_offset: TileOffset,
    /// The current world rect of this tile.
    pub world_tile_rect: WorldRect,
    /// The current local rect of this tile.
    pub local_tile_rect: PictureRect,
    /// Same as local_tile_rect, but in min/max form as an optimization
    pub local_tile_box: PictureBox2D,
    /// The picture space dirty rect for this tile.
    local_dirty_rect: PictureRect,
    /// The device space dirty rect for this tile.
    /// TODO(gw): We have multiple dirty rects available due to the quadtree above. In future,
    ///           expose these as multiple dirty rects, which will help in some cases.
    pub device_dirty_rect: DeviceRect,
    /// Device space rect that contains valid pixels region of this tile.
    pub device_valid_rect: DeviceRect,
    /// Uniquely describes the content of this tile, in a way that can be
    /// (reasonably) efficiently hashed and compared.
    pub current_descriptor: TileDescriptor,
    /// The content descriptor for this tile from the previous frame.
    pub prev_descriptor: TileDescriptor,
    /// Handle to the backing surface for this tile.
    pub surface: Option<TileSurface>,
    /// If true, this tile is marked valid, and the existing texture
    /// cache handle can be used. Tiles are invalidated during the
    /// build_dirty_regions method.
    pub is_valid: bool,
    /// If true, this tile intersects with the currently visible screen
    /// rect, and will be drawn.
    pub is_visible: bool,
    /// The current fractional offset of the cache transform root. If this changes,
    /// all tiles need to be invalidated and redrawn, since snapping differences are
    /// likely to occur.
    device_fract_offset: DeviceVector2D,
    /// The tile id is stable between display lists and / or frames,
    /// if the tile is retained. Useful for debugging tile evictions.
    pub id: TileId,
    /// If true, the tile was determined to be opaque, which means blending
    /// can be disabled when drawing it.
    pub is_opaque: bool,
    /// Root node of the quadtree dirty rect tracker.
    root: TileNode,
    /// The last rendered background color on this tile.
    background_color: Option<ColorF>,
    /// The first reason the tile was invalidated this frame.
    invalidation_reason: Option<InvalidationReason>,
    /// If true, this tile has one or more compositor surfaces affecting it.
    pub has_compositor_surface: bool,
    /// The local space valid rect for any primitives found prior to the first compositor
    /// surface that affects this tile.
    bg_local_valid_rect: PictureBox2D,
    /// The local space valid rect for any primitives found after the first compositor
    /// surface that affects this tile.
    fg_local_valid_rect: PictureBox2D,
    /// z-buffer id for this tile, which is one of z_id_opaque or z_id_alpha, depending on tile opacity
    pub z_id: ZBufferId,
    /// The last frame this tile had its dependencies updated (dependency updating is
    /// skipped if a tile is off-screen).
    pub last_updated_frame_id: FrameId,
}

impl Tile {
    /// Construct a new, invalid tile.
    fn new(tile_offset: TileOffset) -> Self {
        let id = TileId(NEXT_TILE_ID.fetch_add(1, Ordering::Relaxed));

        Tile {
            tile_offset,
            local_tile_rect: PictureRect::zero(),
            local_tile_box: PictureBox2D::zero(),
            world_tile_rect: WorldRect::zero(),
            device_valid_rect: DeviceRect::zero(),
            local_dirty_rect: PictureRect::zero(),
            device_dirty_rect: DeviceRect::zero(),
            surface: None,
            current_descriptor: TileDescriptor::new(),
            prev_descriptor: TileDescriptor::new(),
            is_valid: false,
            is_visible: false,
            device_fract_offset: DeviceVector2D::zero(),
            id,
            is_opaque: false,
            root: TileNode::new_leaf(Vec::new()),
            background_color: None,
            invalidation_reason: None,
            has_compositor_surface: false,
            bg_local_valid_rect: PictureBox2D::zero(),
            fg_local_valid_rect: PictureBox2D::zero(),
            z_id: ZBufferId::invalid(),
            last_updated_frame_id: FrameId::INVALID,
        }
    }

    /// Print debug information about this tile to a tree printer.
    fn print(&self, pt: &mut dyn PrintTreePrinter) {
        pt.new_level(format!("Tile {:?}", self.id));
        pt.add_item(format!("local_tile_rect: {:?}", self.local_tile_rect));
        pt.add_item(format!("device_fract_offset: {:?}", self.device_fract_offset));
        pt.add_item(format!("background_color: {:?}", self.background_color));
        pt.add_item(format!("invalidation_reason: {:?}", self.invalidation_reason));
        self.current_descriptor.print(pt);
        pt.end_level();
    }

    /// Check if the content of the previous and current tile descriptors match
    fn update_dirty_rects(
        &mut self,
        ctx: &TilePostUpdateContext,
        state: &mut TilePostUpdateState,
        invalidation_reason: &mut Option<InvalidationReason>,
        frame_context: &FrameVisibilityContext,
    ) -> PictureRect {
        let mut prim_comparer = PrimitiveComparer::new(
            &self.prev_descriptor,
            &self.current_descriptor,
            state.resource_cache,
            state.spatial_node_comparer,
            ctx.opacity_bindings,
            ctx.color_bindings,
        );

        let mut dirty_rect = PictureBox2D::zero();
        self.root.update_dirty_rects(
            &self.prev_descriptor.prims,
            &self.current_descriptor.prims,
            &mut prim_comparer,
            &mut dirty_rect,
            state.compare_cache,
            invalidation_reason,
            frame_context,
        );

        dirty_rect.to_rect()
    }

    /// Invalidate a tile based on change in content. This
    /// must be called even if the tile is not currently
    /// visible on screen. We might be able to improve this
    /// later by changing how ComparableVec is used.
    fn update_content_validity(
        &mut self,
        ctx: &TilePostUpdateContext,
        state: &mut TilePostUpdateState,
        frame_context: &FrameVisibilityContext,
    ) {
        // Check if the contents of the primitives, clips, and
        // other dependencies are the same.
        state.compare_cache.clear();
        let mut invalidation_reason = None;
        let dirty_rect = self.update_dirty_rects(
            ctx,
            state,
            &mut invalidation_reason,
            frame_context,
        );
        if !dirty_rect.is_empty() {
            self.invalidate(
                Some(dirty_rect),
                invalidation_reason.expect("bug: no invalidation_reason"),
            );
        }
        if ctx.invalidate_all {
            self.invalidate(None, InvalidationReason::ScaleChanged);
        }
        // TODO(gw): We can avoid invalidating the whole tile in some cases here,
        //           but it should be a fairly rare invalidation case.
        if self.current_descriptor.local_valid_rect != self.prev_descriptor.local_valid_rect {
            self.invalidate(None, InvalidationReason::ValidRectChanged);
            state.composite_state.dirty_rects_are_valid = false;
        }
    }

    /// Invalidate this tile. If `invalidation_rect` is None, the entire
    /// tile is invalidated.
    fn invalidate(
        &mut self,
        invalidation_rect: Option<PictureRect>,
        reason: InvalidationReason,
    ) {
        self.is_valid = false;

        match invalidation_rect {
            Some(rect) => {
                self.local_dirty_rect = self.local_dirty_rect.union(&rect);
            }
            None => {
                self.local_dirty_rect = self.local_tile_rect;
            }
        }

        if self.invalidation_reason.is_none() {
            self.invalidation_reason = Some(reason);
        }
    }

    /// Called during pre_update of a tile cache instance. Allows the
    /// tile to setup state before primitive dependency calculations.
    fn pre_update(
        &mut self,
        ctx: &TilePreUpdateContext,
    ) {
        // Ensure each tile is offset by the appropriate amount from the
        // origin, such that the content origin will be a whole number and
        // the snapping will be consistent.
        self.local_tile_rect = PictureRect::new(
            PicturePoint::new(
                self.tile_offset.x as f32 * ctx.tile_size.width + ctx.fract_offset.x,
                self.tile_offset.y as f32 * ctx.tile_size.height + ctx.fract_offset.y,
            ),
            ctx.tile_size,
        );
        self.local_tile_box = PictureBox2D::new(
            self.local_tile_rect.origin,
            self.local_tile_rect.bottom_right(),
        );
        self.bg_local_valid_rect = PictureBox2D::zero();
        self.fg_local_valid_rect = PictureBox2D::zero();
        self.invalidation_reason  = None;
        self.has_compositor_surface = false;

        self.world_tile_rect = ctx.pic_to_world_mapper
            .map(&self.local_tile_rect)
            .expect("bug: map local tile rect");

        // Check if this tile is currently on screen.
        self.is_visible = self.world_tile_rect.intersects(&ctx.global_screen_world_rect);

        // If the tile isn't visible, early exit, skipping the normal set up to
        // validate dependencies. Instead, we will only compare the current tile
        // dependencies the next time it comes into view.
        if !self.is_visible {
            return;
        }

        // We may need to rerender if glyph subpixel positions have changed. Note
        // that we update the tile fract offset itself after we have completed
        // invalidation. This allows for other whole tile invalidation cases to
        // update the fract offset appropriately.
        let fract_delta = self.device_fract_offset - ctx.device_fract_offset;
        let fract_changed = fract_delta.x.abs() > 0.01 || fract_delta.y.abs() > 0.01;
        if fract_changed {
            self.invalidate(None, InvalidationReason::FractionalOffset {
                                    old: self.device_fract_offset,
                                    new: ctx.device_fract_offset });
        }

        if ctx.background_color != self.background_color {
            self.invalidate(None, InvalidationReason::BackgroundColor {
                                    old: self.background_color,
                                    new: ctx.background_color });
            self.background_color = ctx.background_color;
        }

        // Clear any dependencies so that when we rebuild them we
        // can compare if the tile has the same content.
        mem::swap(
            &mut self.current_descriptor,
            &mut self.prev_descriptor,
        );
        self.current_descriptor.clear();
        self.root.clear(self.local_tile_rect.to_box2d());

        // Since this tile is determined to be visible, it will get updated
        // dependencies, so update the frame id we are storing dependencies for.
        self.last_updated_frame_id = ctx.frame_id;
    }

    /// Add dependencies for a given primitive to this tile.
    fn add_prim_dependency(
        &mut self,
        info: &PrimitiveDependencyInfo,
    ) {
        // If this tile isn't currently visible, we don't want to update the dependencies
        // for this tile, as an optimization, since it won't be drawn anyway.
        if !self.is_visible {
            return;
        }

        // If this primitive is a compositor surface, any tile it affects must be
        // drawn as an overlay tile.
        if info.is_compositor_surface {
            self.has_compositor_surface = true;
        } else {
            // Incorporate the bounding rect of the primitive in the local valid rect
            // for this tile. This is used to minimize the size of the scissor rect
            // during rasterization and the draw rect during composition of partial tiles.

            // Once we have encountered 1+ compositor surfaces affecting this tile, include
            // this bounding rect in the foreground. Otherwise, include in the background rect.
            // This allows us to determine if we found any primitives that are on top of the
            // compositor surface(s) for this tile. If so, we need to draw the tile with alpha
            // blending as an overlay.
            if self.has_compositor_surface {
                self.fg_local_valid_rect = self.fg_local_valid_rect.union(&info.prim_clip_box);
            } else {
                self.bg_local_valid_rect = self.bg_local_valid_rect.union(&info.prim_clip_box);
            }
        }

        // Include any image keys this tile depends on.
        self.current_descriptor.images.extend_from_slice(&info.images);

        // Include any opacity bindings this primitive depends on.
        self.current_descriptor.opacity_bindings.extend_from_slice(&info.opacity_bindings);

        // Include any clip nodes that this primitive depends on.
        self.current_descriptor.clips.extend_from_slice(&info.clips);

        // Include any transforms that this primitive depends on.
        for spatial_node_index in &info.spatial_nodes {
            self.current_descriptor.transforms.push(
                SpatialNodeKey {
                    spatial_node_index: *spatial_node_index,
                    frame_id: self.last_updated_frame_id,
                }
            );
        }

        // Include any color bindings this primitive depends on.
        if info.color_binding.is_some() {
            self.current_descriptor.color_bindings.insert(
                self.current_descriptor.color_bindings.len(), info.color_binding.unwrap());
        }

        // TODO(gw): The prim_clip_rect can be impacted by the clip rect of the display port,
        //           which can cause invalidations when a new display list with changed
        //           display port is received. To work around this, clamp the prim clip rect
        //           to the tile boundaries - if the clip hasn't affected the tile, then the
        //           changed clip can't affect the content of the primitive on this tile.
        //           In future, we could consider supplying the display port clip from Gecko
        //           in a different way (e.g. as a scroll frame clip) which still provides
        //           the desired clip for checkerboarding, but doesn't require this extra
        //           work below.

        // TODO(gw): This is a hot part of the code - we could probably optimize further by:
        //           - Using min/max instead of clamps below (if we guarantee the rects are well formed)

        let tile_p0 = self.local_tile_box.min;
        let tile_p1 = self.local_tile_box.max;

        let prim_clip_box = PictureBox2D::new(
            PicturePoint::new(
                clampf(info.prim_clip_box.min.x, tile_p0.x, tile_p1.x),
                clampf(info.prim_clip_box.min.y, tile_p0.y, tile_p1.y),
            ),
            PicturePoint::new(
                clampf(info.prim_clip_box.max.x, tile_p0.x, tile_p1.x),
                clampf(info.prim_clip_box.max.y, tile_p0.y, tile_p1.y),
            ),
        );

        // Update the tile descriptor, used for tile comparison during scene swaps.
        let prim_index = PrimitiveDependencyIndex(self.current_descriptor.prims.len() as u32);

        // We know that the casts below will never overflow because the array lengths are
        // truncated to MAX_PRIM_SUB_DEPS during update_prim_dependencies.
        debug_assert!(info.spatial_nodes.len() <= MAX_PRIM_SUB_DEPS);
        debug_assert!(info.clips.len() <= MAX_PRIM_SUB_DEPS);
        debug_assert!(info.images.len() <= MAX_PRIM_SUB_DEPS);
        debug_assert!(info.opacity_bindings.len() <= MAX_PRIM_SUB_DEPS);

        self.current_descriptor.prims.push(PrimitiveDescriptor {
            prim_uid: info.prim_uid,
            prim_clip_box,
            transform_dep_count: info.spatial_nodes.len()  as u8,
            clip_dep_count: info.clips.len() as u8,
            image_dep_count: info.images.len() as u8,
            opacity_binding_dep_count: info.opacity_bindings.len() as u8,
            color_binding_dep_count: if info.color_binding.is_some() { 1 } else { 0 } as u8,
        });

        // Add this primitive to the dirty rect quadtree.
        self.root.add_prim(prim_index, &info.prim_clip_box);
    }

    /// Called during tile cache instance post_update. Allows invalidation and dirty
    /// rect calculation after primitive dependencies have been updated.
    fn post_update(
        &mut self,
        ctx: &TilePostUpdateContext,
        state: &mut TilePostUpdateState,
        frame_context: &FrameVisibilityContext,
    ) -> bool {
        // Register the frame id of this tile with the spatial node comparer, to ensure
        // that it doesn't GC any spatial nodes from the comparer that are referenced
        // by this tile. Must be done before we early exit below, so that we retain
        // spatial node info even for tiles that are currently not visible.
        state.spatial_node_comparer.retain_for_frame(self.last_updated_frame_id);

        // If tile is not visible, just early out from here - we don't update dependencies
        // so don't want to invalidate, merge, split etc. The tile won't need to be drawn
        // (and thus updated / invalidated) until it is on screen again.
        if !self.is_visible {
            return false;
        }

        // Calculate the overall valid rect for this tile, including both the foreground
        // and background local valid rects.
        self.current_descriptor.local_valid_rect =
            self.bg_local_valid_rect
                .union(&self.fg_local_valid_rect)
                .to_rect();

        // TODO(gw): In theory, the local tile rect should always have an
        //           intersection with the overall picture rect. In practice,
        //           due to some accuracy issues with how fract_offset (and
        //           fp accuracy) are used in the calling method, this isn't
        //           always true. In this case, it's safe to set the local
        //           valid rect to zero, which means it will be clipped out
        //           and not affect the scene. In future, we should fix the
        //           accuracy issue above, so that this assumption holds, but
        //           it shouldn't have any noticeable effect on performance
        //           or memory usage (textures should never get allocated).
        self.current_descriptor.local_valid_rect = self.local_tile_rect
            .intersection(&ctx.local_rect)
            .and_then(|r| r.intersection(&self.current_descriptor.local_valid_rect))
            .unwrap_or_else(PictureRect::zero);

        // The device_valid_rect is referenced during `update_content_validity` so it
        // must be updated here first.
        let world_valid_rect = ctx.pic_to_world_mapper
            .map(&self.current_descriptor.local_valid_rect)
            .expect("bug: map local valid rect");

        // The device rect is guaranteed to be aligned on a device pixel - the round
        // is just to deal with float accuracy. However, the valid rect is not
        // always aligned to a device pixel. To handle this, round out to get all
        // required pixels, and intersect with the tile device rect.
        let device_rect = (self.world_tile_rect * ctx.global_device_pixel_scale).round();
        self.device_valid_rect = (world_valid_rect * ctx.global_device_pixel_scale)
            .round_out()
            .intersection(&device_rect)
            .unwrap_or_else(DeviceRect::zero);

        // Invalidate the tile based on the content changing.
        self.update_content_validity(ctx, state, frame_context);

        // If there are no primitives there is no need to draw or cache it.
        if self.current_descriptor.prims.is_empty() {
            // If there is a native compositor surface allocated for this (now empty) tile
            // it must be freed here, otherwise the stale tile with previous contents will
            // be composited. If the tile subsequently gets new primitives added to it, the
            // surface will be re-allocated when it's added to the composite draw list.
            if let Some(TileSurface::Texture { descriptor: SurfaceTextureDescriptor::Native { mut id, .. }, .. }) = self.surface.take() {
                if let Some(id) = id.take() {
                    state.resource_cache.destroy_compositor_tile(id);
                }
            }

            self.is_visible = false;
            return false;
        }

        // Check if this tile can be considered opaque. Opacity state must be updated only
        // after all early out checks have been performed. Otherwise, we might miss updating
        // the native surface next time this tile becomes visible.
        let clipped_rect = self.current_descriptor.local_valid_rect
            .intersection(&ctx.local_clip_rect)
            .unwrap_or_else(PictureRect::zero);
        let mut is_opaque = ctx.backdrop.opaque_rect.contains_rect(&clipped_rect);

        if self.has_compositor_surface {
            // If we found primitive(s) that are ordered _after_ the first compositor
            // surface, _and_ intersect with any compositor surface, then we will need
            // to draw this tile with alpha blending, as an overlay to the compositor surface.
            let fg_world_valid_rect = ctx.pic_to_world_mapper
                .map(&self.fg_local_valid_rect.to_rect())
                .expect("bug: map fg local valid rect");
            let fg_device_valid_rect = fg_world_valid_rect * ctx.global_device_pixel_scale;

            for surface in ctx.external_surfaces {
                if surface.device_rect.intersects(&fg_device_valid_rect) {
                    is_opaque = false;
                    break;
                }
            }
        }

        // Set the correct z_id for this tile based on opacity
        if is_opaque {
            self.z_id = ctx.z_id_opaque;
        } else {
            self.z_id = ctx.z_id_alpha;
        }

        if is_opaque != self.is_opaque {
            // If opacity changed, the native compositor surface and all tiles get invalidated.
            // (this does nothing if not using native compositor mode).
            // TODO(gw): This property probably changes very rarely, so it is OK to invalidate
            //           everything in this case. If it turns out that this isn't true, we could
            //           consider other options, such as per-tile opacity (natively supported
            //           on CoreAnimation, and supported if backed by non-virtual surfaces in
            //           DirectComposition).
            if let Some(TileSurface::Texture { descriptor: SurfaceTextureDescriptor::Native { ref mut id, .. }, .. }) = self.surface {
                if let Some(id) = id.take() {
                    state.resource_cache.destroy_compositor_tile(id);
                }
            }

            // Invalidate the entire tile to force a redraw.
            self.invalidate(None, InvalidationReason::SurfaceOpacityChanged { became_opaque: is_opaque });
            self.is_opaque = is_opaque;
        }

        // Check if the selected composite mode supports dirty rect updates. For Draw composite
        // mode, we can always update the content with smaller dirty rects, unless there is a
        // driver bug to workaround. For native composite mode, we can only use dirty rects if
        // the compositor supports partial surface updates.
        let (supports_dirty_rects, supports_simple_prims) = match state.composite_state.compositor_kind {
            CompositorKind::Draw { .. } => {
                (frame_context.config.gpu_supports_render_target_partial_update, true)
            }
            CompositorKind::Native { max_update_rects, .. } => {
                (max_update_rects > 0, false)
            }
        };

        // TODO(gw): Consider using smaller tiles and/or tile splits for
        //           native compositors that don't support dirty rects.
        if supports_dirty_rects {
            // Only allow splitting for normal content sized tiles
            if ctx.current_tile_size == state.resource_cache.texture_cache.default_picture_tile_size() {
                let max_split_level = 3;

                // Consider splitting / merging dirty regions
                self.root.maybe_merge_or_split(
                    0,
                    &self.current_descriptor.prims,
                    max_split_level,
                );
            }
        }

        // The dirty rect will be set correctly by now. If the underlying platform
        // doesn't support partial updates, and this tile isn't valid, force the dirty
        // rect to be the size of the entire tile.
        if !self.is_valid && !supports_dirty_rects {
            self.local_dirty_rect = self.local_tile_rect;
        }

        // See if this tile is a simple color, in which case we can just draw
        // it as a rect, and avoid allocating a texture surface and drawing it.
        // TODO(gw): Initial native compositor interface doesn't support simple
        //           color tiles. We can definitely support this in DC, so this
        //           should be added as a follow up.
        let is_simple_prim =
            ctx.backdrop.kind.is_some() &&
            self.current_descriptor.prims.len() == 1 &&
            self.is_opaque &&
            supports_simple_prims;

        // Set up the backing surface for this tile.
        let surface = if is_simple_prim {
            // If we determine the tile can be represented by a color, set the
            // surface unconditionally (this will drop any previously used
            // texture cache backing surface).
            match ctx.backdrop.kind {
                Some(BackdropKind::Color { color }) => {
                    TileSurface::Color {
                        color,
                    }
                }
                Some(BackdropKind::Clear) => {
                    TileSurface::Clear
                }
                None => {
                    // This should be prevented by the is_simple_prim check above.
                    unreachable!();
                }
            }
        } else {
            // If this tile will be backed by a surface, we want to retain
            // the texture handle from the previous frame, if possible. If
            // the tile was previously a color, or not set, then just set
            // up a new texture cache handle.
            match self.surface.take() {
                Some(TileSurface::Texture { descriptor, visibility_mask }) => {
                    // Reuse the existing descriptor and vis mask
                    TileSurface::Texture {
                        descriptor,
                        visibility_mask,
                    }
                }
                Some(TileSurface::Color { .. }) | Some(TileSurface::Clear) | None => {
                    // This is the case where we are constructing a tile surface that
                    // involves drawing to a texture. Create the correct surface
                    // descriptor depending on the compositing mode that will read
                    // the output.
                    let descriptor = match state.composite_state.compositor_kind {
                        CompositorKind::Draw { .. } => {
                            // For a texture cache entry, create an invalid handle that
                            // will be allocated when update_picture_cache is called.
                            SurfaceTextureDescriptor::TextureCache {
                                handle: TextureCacheHandle::invalid(),
                            }
                        }
                        CompositorKind::Native { .. } => {
                            // Create a native surface surface descriptor, but don't allocate
                            // a surface yet. The surface is allocated *after* occlusion
                            // culling occurs, so that only visible tiles allocate GPU memory.
                            SurfaceTextureDescriptor::Native {
                                id: None,
                            }
                        }
                    };

                    TileSurface::Texture {
                        descriptor,
                        visibility_mask: PrimitiveVisibilityMask::empty(),
                    }
                }
            }
        };

        // Store the current surface backing info for use during batching.
        self.surface = Some(surface);

        true
    }
}

/// Defines a key that uniquely identifies a primitive instance.
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct PrimitiveDescriptor {
    /// Uniquely identifies the content of the primitive template.
    pub prim_uid: ItemUid,
    /// The clip rect for this primitive. Included here in
    /// dependencies since there is no entry in the clip chain
    /// dependencies for the local clip rect.
    pub prim_clip_box: PictureBox2D,
    /// The number of extra dependencies that this primitive has.
    transform_dep_count: u8,
    image_dep_count: u8,
    opacity_binding_dep_count: u8,
    clip_dep_count: u8,
    color_binding_dep_count: u8,
}

impl PartialEq for PrimitiveDescriptor {
    fn eq(&self, other: &Self) -> bool {
        const EPSILON: f32 = 0.001;

        if self.prim_uid != other.prim_uid {
            return false;
        }

        if !self.prim_clip_box.min.x.approx_eq_eps(&other.prim_clip_box.min.x, &EPSILON) {
            return false;
        }
        if !self.prim_clip_box.min.y.approx_eq_eps(&other.prim_clip_box.min.y, &EPSILON) {
            return false;
        }
        if !self.prim_clip_box.max.x.approx_eq_eps(&other.prim_clip_box.max.x, &EPSILON) {
            return false;
        }
        if !self.prim_clip_box.max.y.approx_eq_eps(&other.prim_clip_box.max.y, &EPSILON) {
            return false;
        }

        true
    }
}

/// A small helper to compare two arrays of primitive dependencies.
struct CompareHelper<'a, T> where T: Copy {
    offset_curr: usize,
    offset_prev: usize,
    curr_items: &'a [T],
    prev_items: &'a [T],
}

impl<'a, T> CompareHelper<'a, T> where T: Copy + PartialEq {
    /// Construct a new compare helper for a current / previous set of dependency information.
    fn new(
        prev_items: &'a [T],
        curr_items: &'a [T],
    ) -> Self {
        CompareHelper {
            offset_curr: 0,
            offset_prev: 0,
            curr_items,
            prev_items,
        }
    }

    /// Reset the current position in the dependency array to the start
    fn reset(&mut self) {
        self.offset_prev = 0;
        self.offset_curr = 0;
    }

    /// Test if two sections of the dependency arrays are the same, by checking both
    /// item equality, and a user closure to see if the content of the item changed.
    fn is_same<F>(
        &self,
        prev_count: u8,
        curr_count: u8,
        mut f: F,
        opt_detail: Option<&mut CompareHelperResult<T>>,
    ) -> bool where F: FnMut(&T, &T) -> bool {
        // If the number of items is different, trivial reject.
        if prev_count != curr_count {
            if let Some(detail) = opt_detail { *detail = CompareHelperResult::Count{ prev_count, curr_count }; }
            return false;
        }
        // If both counts are 0, then no need to check these dependencies.
        if curr_count == 0 {
            if let Some(detail) = opt_detail { *detail = CompareHelperResult::Equal; }
            return true;
        }
        // If both counts are u8::MAX, this is a sentinel that we can't compare these
        // deps, so just trivial reject.
        if curr_count as usize == MAX_PRIM_SUB_DEPS {
            if let Some(detail) = opt_detail { *detail = CompareHelperResult::Sentinel; }
            return false;
        }

        let end_prev = self.offset_prev + prev_count as usize;
        let end_curr = self.offset_curr + curr_count as usize;

        let curr_items = &self.curr_items[self.offset_curr .. end_curr];
        let prev_items = &self.prev_items[self.offset_prev .. end_prev];

        for (curr, prev) in curr_items.iter().zip(prev_items.iter()) {
            if !f(prev, curr) {
                if let Some(detail) = opt_detail { *detail = CompareHelperResult::PredicateTrue{ curr: *curr }; }
                return false;
            }
        }

        if let Some(detail) = opt_detail { *detail = CompareHelperResult::Equal; }
        true
    }

    // Advance the prev dependency array by a given amount
    fn advance_prev(&mut self, count: u8) {
        self.offset_prev += count as usize;
    }

    // Advance the current dependency array by a given amount
    fn advance_curr(&mut self, count: u8) {
        self.offset_curr  += count as usize;
    }
}

/// Uniquely describes the content of this tile, in a way that can be
/// (reasonably) efficiently hashed and compared.
#[cfg_attr(any(feature="capture",feature="replay"), derive(Clone))]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct TileDescriptor {
    /// List of primitive instance unique identifiers. The uid is guaranteed
    /// to uniquely describe the content of the primitive template, while
    /// the other parameters describe the clip chain and instance params.
    pub prims: Vec<PrimitiveDescriptor>,

    /// List of clip node descriptors.
    clips: Vec<ItemUid>,

    /// List of image keys that this tile depends on.
    images: Vec<ImageDependency>,

    /// The set of opacity bindings that this tile depends on.
    // TODO(gw): Ugh, get rid of all opacity binding support!
    opacity_bindings: Vec<OpacityBinding>,

    /// List of the effects of transforms that we care about
    /// tracking for this tile.
    transforms: Vec<SpatialNodeKey>,

    /// Picture space rect that contains valid pixels region of this tile.
    local_valid_rect: PictureRect,

    /// List of the effects of color that we care about
    /// tracking for this tile.
    color_bindings: Vec<ColorBinding>,
}

impl TileDescriptor {
    fn new() -> Self {
        TileDescriptor {
            prims: Vec::new(),
            clips: Vec::new(),
            opacity_bindings: Vec::new(),
            images: Vec::new(),
            transforms: Vec::new(),
            local_valid_rect: PictureRect::zero(),
            color_bindings: Vec::new(),
        }
    }

    /// Print debug information about this tile descriptor to a tree printer.
    fn print(&self, pt: &mut dyn PrintTreePrinter) {
        pt.new_level("current_descriptor".to_string());

        pt.new_level("prims".to_string());
        for prim in &self.prims {
            pt.new_level(format!("prim uid={}", prim.prim_uid.get_uid()));
            pt.add_item(format!("clip: p0={},{} p1={},{}",
                prim.prim_clip_box.min.x,
                prim.prim_clip_box.min.y,
                prim.prim_clip_box.max.x,
                prim.prim_clip_box.max.y,
            ));
            pt.add_item(format!("deps: t={} i={} o={} c={} color={}",
                prim.transform_dep_count,
                prim.image_dep_count,
                prim.opacity_binding_dep_count,
                prim.clip_dep_count,
                prim.color_binding_dep_count,
            ));
            pt.end_level();
        }
        pt.end_level();

        if !self.clips.is_empty() {
            pt.new_level("clips".to_string());
            for clip in &self.clips {
                pt.new_level(format!("clip uid={}", clip.get_uid()));
                pt.end_level();
            }
            pt.end_level();
        }

        if !self.images.is_empty() {
            pt.new_level("images".to_string());
            for info in &self.images {
                pt.new_level(format!("key={:?}", info.key));
                pt.add_item(format!("generation={:?}", info.generation));
                pt.end_level();
            }
            pt.end_level();
        }

        if !self.opacity_bindings.is_empty() {
            pt.new_level("opacity_bindings".to_string());
            for opacity_binding in &self.opacity_bindings {
                pt.new_level(format!("binding={:?}", opacity_binding));
                pt.end_level();
            }
            pt.end_level();
        }

        if !self.transforms.is_empty() {
            pt.new_level("transforms".to_string());
            for transform in &self.transforms {
                pt.new_level(format!("spatial_node={:?}", transform));
                pt.end_level();
            }
            pt.end_level();
        }

        if !self.color_bindings.is_empty() {
            pt.new_level("color_bindings".to_string());
            for color_binding in &self.color_bindings {
                pt.new_level(format!("binding={:?}", color_binding));
                pt.end_level();
            }
            pt.end_level();
        }

        pt.end_level();
    }

    /// Clear the dependency information for a tile, when the dependencies
    /// are being rebuilt.
    fn clear(&mut self) {
        self.prims.clear();
        self.clips.clear();
        self.opacity_bindings.clear();
        self.images.clear();
        self.transforms.clear();
        self.local_valid_rect = PictureRect::zero();
        self.color_bindings.clear();
    }
}

/// Stores both the world and devices rects for a single dirty rect.
#[derive(Debug, Clone)]
pub struct DirtyRegionRect {
    /// Bitfield for picture render tasks that draw this dirty region.
    pub visibility_mask: PrimitiveVisibilityMask,
    /// The dirty region in space of the picture cache
    pub rect_in_pic_space: PictureRect,
}

/// Represents the dirty region of a tile cache picture.
#[derive(Debug, Clone)]
pub struct DirtyRegion {
    /// The individual dirty rects of this region.
    pub dirty_rects: Vec<DirtyRegionRect>,

    /// The overall dirty rect, a combination of dirty_rects
    pub combined: WorldRect,

    /// Spatial node of the picture cache this region represents
    spatial_node_index: SpatialNodeIndex,
}

impl DirtyRegion {
    /// Construct a new dirty region tracker.
    pub fn new(
        spatial_node_index: SpatialNodeIndex,
    ) -> Self {
        DirtyRegion {
            dirty_rects: Vec::with_capacity(PrimitiveVisibilityMask::MAX_DIRTY_REGIONS),
            combined: WorldRect::zero(),
            spatial_node_index,
        }
    }

    /// Reset the dirty regions back to empty
    pub fn reset(
        &mut self,
        spatial_node_index: SpatialNodeIndex,
    ) {
        self.dirty_rects.clear();
        self.combined = WorldRect::zero();
        self.spatial_node_index = spatial_node_index;
    }

    /// Add a dirty region to the tracker. Returns the visibility mask that corresponds to
    /// this region in the tracker.
    pub fn add_dirty_region(
        &mut self,
        rect_in_pic_space: PictureRect,
        spatial_tree: &SpatialTree,
    ) -> PrimitiveVisibilityMask {
        let map_pic_to_world = SpaceMapper::new_with_target(
            ROOT_SPATIAL_NODE_INDEX,
            self.spatial_node_index,
            WorldRect::max_rect(),
            spatial_tree,
        );

        let world_rect = map_pic_to_world
            .map(&rect_in_pic_space)
            .expect("bug");

        // Include this in the overall dirty rect
        self.combined = self.combined.union(&world_rect);

        let dirty_region_index = self.dirty_rects.len();
        let mut visibility_mask = PrimitiveVisibilityMask::empty();

        if dirty_region_index < PrimitiveVisibilityMask::MAX_DIRTY_REGIONS {
            visibility_mask.set_visible(dirty_region_index);

            self.dirty_rects.push(DirtyRegionRect {
                visibility_mask,
                rect_in_pic_space,
            });
        } else {
            // If we run out of dirty regions, then force the last dirty region to
            // be a union of any remaining regions. This is an inefficiency, in that
            // we'll add items to batches later on that are redundant / outside this
            // tile, but it's really rare except in pathological cases (even on a
            // 4k screen, the typical dirty region count is < 16).
            visibility_mask.set_visible(PrimitiveVisibilityMask::MAX_DIRTY_REGIONS - 1);

            let combined_region = self.dirty_rects.last_mut().unwrap();
            combined_region.rect_in_pic_space = combined_region.rect_in_pic_space.union(&rect_in_pic_space);
        }

        visibility_mask
    }

    // TODO(gw): This returns a heap allocated object. Perhaps we can simplify this
    //           logic? Although - it's only used very rarely so it may not be an issue.
    pub fn inflate(
        &self,
        inflate_amount: f32,
        spatial_tree: &SpatialTree,
    ) -> DirtyRegion {
        let map_pic_to_world = SpaceMapper::new_with_target(
            ROOT_SPATIAL_NODE_INDEX,
            self.spatial_node_index,
            WorldRect::max_rect(),
            spatial_tree,
        );

        let mut dirty_rects = Vec::with_capacity(self.dirty_rects.len());
        let mut combined = WorldRect::zero();

        for rect in &self.dirty_rects {
            let rect_in_pic_space = rect.rect_in_pic_space.inflate(inflate_amount, inflate_amount);

            let world_rect = map_pic_to_world
                .map(&rect_in_pic_space)
                .expect("bug");

            combined = combined.union(&world_rect);
            dirty_rects.push(DirtyRegionRect {
                visibility_mask: rect.visibility_mask,
                rect_in_pic_space,
            });
        }

        DirtyRegion {
            dirty_rects,
            combined,
            spatial_node_index: self.spatial_node_index,
        }
    }
}

#[derive(Debug, Copy, Clone)]
pub enum BackdropKind {
    Color {
        color: ColorF,
    },
    Clear,
}

/// Stores information about the calculated opaque backdrop of this slice.
#[derive(Debug, Copy, Clone)]
pub struct BackdropInfo {
    /// The picture space rectangle that is known to be opaque. This is used
    /// to determine where subpixel AA can be used, and where alpha blending
    /// can be disabled.
    pub opaque_rect: PictureRect,
    /// Kind of the backdrop
    pub kind: Option<BackdropKind>,
}

impl BackdropInfo {
    fn empty() -> Self {
        BackdropInfo {
            opaque_rect: PictureRect::zero(),
            kind: None,
        }
    }
}

#[derive(Clone)]
pub struct TileCacheLoggerSlice {
    pub serialized_slice: String,
    pub local_to_world_transform: Transform3D<f32, PicturePixel, WorldPixel>,
}

#[cfg(any(feature = "capture", feature = "replay"))]
macro_rules! declare_tile_cache_logger_updatelists {
    ( $( $name:ident : $ty:ty, )+ ) => {
        #[cfg_attr(feature = "capture", derive(Serialize))]
        #[cfg_attr(feature = "replay", derive(Deserialize))]
        struct TileCacheLoggerUpdateListsSerializer {
            pub ron_string: Vec<String>,
        }

        pub struct TileCacheLoggerUpdateLists {
            $(
                /// Generate storage, one per interner.
                /// the tuple is a workaround to avoid the need for multiple
                /// fields that start with $name (macro concatenation).
                /// the string is .ron serialized updatelist at capture time;
                /// the updates is the list of DataStore updates (avoid UpdateList
                /// due to Default() requirements on the Keys) reconstructed at
                /// load time.
                pub $name: (Vec<String>, Vec<UpdateList<<$ty as Internable>::Key>>),
            )+
        }

        impl TileCacheLoggerUpdateLists {
            pub fn new() -> Self {
                TileCacheLoggerUpdateLists {
                    $(
                        $name : ( Vec::new(), Vec::new() ),
                    )+
                }
            }

            /// serialize all interners in updates to .ron
            #[cfg(feature = "capture")]
            fn serialize_updates(
                &mut self,
                updates: &InternerUpdates
            ) {
                $(
                    self.$name.0.push(ron::ser::to_string_pretty(&updates.$name, Default::default()).unwrap());
                )+
            }

            fn is_empty(&self) -> bool {
                $(
                    if !self.$name.0.is_empty() { return false; }
                )+
                true
            }

            #[cfg(feature = "capture")]
            fn to_ron(&self) -> String {
                let mut serializer =
                    TileCacheLoggerUpdateListsSerializer { ron_string: Vec::new() };
                $(
                    serializer.ron_string.push(
                        ron::ser::to_string_pretty(&self.$name.0, Default::default()).unwrap());
                )+
                ron::ser::to_string_pretty(&serializer, Default::default()).unwrap()
            }

            #[cfg(feature = "replay")]
            pub fn from_ron(&mut self, text: &str) {
                let serializer : TileCacheLoggerUpdateListsSerializer =
                    match ron::de::from_str(&text) {
                        Ok(data) => { data }
                        Err(e) => {
                            println!("ERROR: failed to deserialize updatelist: {:?}\n{:?}", &text, e);
                            return;
                        }
                    };
                let mut index = 0;
                $(
                    let ron_lists : Vec<String> = ron::de::from_str(&serializer.ron_string[index]).unwrap();
                    self.$name.1 = ron_lists.iter()
                                            .map( |list| ron::de::from_str(&list).unwrap() )
                                            .collect();
                    index = index + 1;
                )+
                // error: value assigned to `index` is never read
                let _ = index;
            }

            /// helper method to add a stringified version of all interned keys into
            /// a lookup table based on ItemUid.  Use strings as a form of type erasure
            /// so all UpdateLists can go into a single map.
            /// Then during analysis, when we see an invalidation reason due to
            /// "ItemUid such and such was added to the tile primitive list", the lookup
            /// allows mapping that back into something readable.
            #[cfg(feature = "replay")]
            pub fn insert_in_lookup(
                        &mut self,
                        itemuid_to_string: &mut HashMap<ItemUid, String>)
            {
                $(
                    {
                        for list in &self.$name.1 {
                            for insertion in &list.insertions {
                                itemuid_to_string.insert(
                                    insertion.uid,
                                    format!("{:?}", insertion.value));
                            }
                        }
                    }
                )+
            }
        }
    }
}

#[cfg(any(feature = "capture", feature = "replay"))]
crate::enumerate_interners!(declare_tile_cache_logger_updatelists);

#[cfg(not(any(feature = "capture", feature = "replay")))]
pub struct TileCacheLoggerUpdateLists {
}

#[cfg(not(any(feature = "capture", feature = "replay")))]
impl TileCacheLoggerUpdateLists {
    pub fn new() -> Self { TileCacheLoggerUpdateLists {} }
    fn is_empty(&self) -> bool { true }
}

/// Log tile cache activity for one single frame.
/// Also stores the commands sent to the interning data_stores
/// so we can see which items were created or destroyed this frame,
/// and correlate that with tile invalidation activity.
pub struct TileCacheLoggerFrame {
    /// slices in the frame, one per take_context call
    pub slices: Vec<TileCacheLoggerSlice>,
    /// interning activity
    pub update_lists: TileCacheLoggerUpdateLists
}

impl TileCacheLoggerFrame {
    pub fn new() -> Self {
        TileCacheLoggerFrame {
            slices: Vec::new(),
            update_lists: TileCacheLoggerUpdateLists::new()
        }
    }

    pub fn is_empty(&self) -> bool {
        self.slices.is_empty() && self.update_lists.is_empty()
    }
}

/// Log tile cache activity whenever anything happens in take_context.
pub struct TileCacheLogger {
    /// next write pointer
    pub write_index : usize,
    /// ron serialization of tile caches;
    pub frames: Vec<TileCacheLoggerFrame>
}

impl TileCacheLogger {
    pub fn new(
        num_frames: usize
    ) -> Self {
        let mut frames = Vec::with_capacity(num_frames);
        for _i in 0..num_frames { // no Clone so no resize
            frames.push(TileCacheLoggerFrame::new());
        }
        TileCacheLogger {
            write_index: 0,
            frames
        }
    }

    pub fn is_enabled(&self) -> bool {
        !self.frames.is_empty()
    }

    #[cfg(feature = "capture")]
    pub fn add(
            &mut self,
            serialized_slice: String,
            local_to_world_transform: Transform3D<f32, PicturePixel, WorldPixel>
    ) {
        if !self.is_enabled() {
            return;
        }
        self.frames[self.write_index].slices.push(
            TileCacheLoggerSlice {
                serialized_slice,
                local_to_world_transform });
    }

    #[cfg(feature = "capture")]
    pub fn serialize_updates(&mut self, updates: &InternerUpdates) {
        if !self.is_enabled() {
            return;
        }
        self.frames[self.write_index].update_lists.serialize_updates(updates);
    }

    /// see if anything was written in this frame, and if so,
    /// advance the write index in a circular way and clear the
    /// recorded string.
    pub fn advance(&mut self) {
        if !self.is_enabled() || self.frames[self.write_index].is_empty() {
            return;
        }
        self.write_index = self.write_index + 1;
        if self.write_index >= self.frames.len() {
            self.write_index = 0;
        }
        self.frames[self.write_index] = TileCacheLoggerFrame::new();
    }

    #[cfg(feature = "capture")]
    pub fn save_capture(
        &self, root: &PathBuf
    ) {
        if !self.is_enabled() {
            return;
        }
        use std::fs;

        info!("saving tile cache log");
        let path_tile_cache = root.join("tile_cache");
        if !path_tile_cache.is_dir() {
            fs::create_dir(&path_tile_cache).unwrap();
        }

        let mut files_written = 0;
        for ix in 0..self.frames.len() {
            // ...and start with write_index, since that's the oldest entry
            // that we're about to overwrite. However when we get to
            // save_capture, we've add()ed entries but haven't advance()d yet,
            // so the actual oldest entry is write_index + 1
            let index = (self.write_index + 1 + ix) % self.frames.len();
            if self.frames[index].is_empty() {
                continue;
            }

            let filename = path_tile_cache.join(format!("frame{:05}.ron", files_written));
            let mut output = File::create(filename).unwrap();
            output.write_all(b"// slice data\n").unwrap();
            output.write_all(b"[\n").unwrap();
            for item in &self.frames[index].slices {
                output.write_all(b"( transform:\n").unwrap();
                let transform =
                    ron::ser::to_string_pretty(
                        &item.local_to_world_transform, Default::default()).unwrap();
                output.write_all(transform.as_bytes()).unwrap();
                output.write_all(b",\n tile_cache:\n").unwrap();
                output.write_all(item.serialized_slice.as_bytes()).unwrap();
                output.write_all(b"\n),\n").unwrap();
            }
            output.write_all(b"]\n\n").unwrap();

            output.write_all(b"// @@@ chunk @@@\n\n").unwrap();

            output.write_all(b"// interning data\n").unwrap();
            output.write_all(self.frames[index].update_lists.to_ron().as_bytes()).unwrap();

            files_written = files_written + 1;
        }
    }
}

/// Represents the native surfaces created for a picture cache, if using
/// a native compositor. An opaque and alpha surface is always created,
/// but tiles are added to a surface based on current opacity. If the
/// calculated opacity of a tile changes, the tile is invalidated and
/// attached to a different native surface. This means that we don't
/// need to invalidate the entire surface if only some tiles are changing
/// opacity. It also means we can take advantage of opaque tiles on cache
/// slices where only some of the tiles are opaque. There is an assumption
/// that creating a native surface is cheap, and only when a tile is added
/// to a surface is there a significant cost. This assumption holds true
/// for the current native compositor implementations on Windows and Mac.
pub struct NativeSurface {
    /// Native surface for opaque tiles
    pub opaque: NativeSurfaceId,
    /// Native surface for alpha tiles
    pub alpha: NativeSurfaceId,
}

/// Hash key for an external native compositor surface
#[derive(PartialEq, Eq, Hash)]
pub struct ExternalNativeSurfaceKey {
    /// The YUV/RGB image keys that are used to draw this surface.
    pub image_keys: [ImageKey; 3],
    /// The current device size of the surface.
    pub size: DeviceIntSize,
    /// True if this is an 'external' compositor surface created via
    /// Compositor::create_external_surface.
    pub is_external_surface: bool,
}

/// Information about a native compositor surface cached between frames.
pub struct ExternalNativeSurface {
    /// If true, the surface was used this frame. Used for a simple form
    /// of GC to remove old surfaces.
    pub used_this_frame: bool,
    /// The native compositor surface handle
    pub native_surface_id: NativeSurfaceId,
    /// List of image keys, and current image generations, that are drawn in this surface.
    /// The image generations are used to check if the compositor surface is dirty and
    /// needs to be updated.
    pub image_dependencies: [ImageDependency; 3],
}

/// The key that identifies a tile cache instance. For now, it's simple the index of
/// the slice as it was created during scene building.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct SliceId(usize);

impl SliceId {
    pub fn new(index: usize) -> Self {
        SliceId(index)
    }
}

/// Information that is required to reuse or create a new tile cache. Created
/// during scene building and passed to the render backend / frame builder.
pub struct TileCacheParams {
    // Index of the slice (also effectively the key of the tile cache, though we use SliceId where that matters)
    pub slice: usize,
    // Flags describing content of this cache (e.g. scrollbars)
    pub slice_flags: SliceFlags,
    // The anchoring spatial node / scroll root
    pub spatial_node_index: SpatialNodeIndex,
    // Optional background color of this tilecache. If present, can be used as an optimization
    // to enable opaque blending and/or subpixel AA in more places.
    pub background_color: Option<ColorF>,
    // List of clips shared by all prims that are promoted to this tile cache
    pub shared_clips: Vec<ClipInstance>,
    // The clip chain handle representing `shared_clips`
    pub shared_clip_chain: ClipChainId,
    // Virtual surface sizes are always square, so this represents both the width and height
    pub virtual_surface_size: i32,
}

/// Represents a cache of tiles that make up a picture primitives.
pub struct TileCacheInstance {
    /// Index of the tile cache / slice for this frame builder. It's determined
    /// by the setup_picture_caching method during flattening, which splits the
    /// picture tree into multiple slices. It's used as a simple input to the tile
    /// keys. It does mean we invalidate tiles if a new layer gets inserted / removed
    /// between display lists - this seems very unlikely to occur on most pages, but
    /// can be revisited if we ever notice that.
    pub slice: usize,
    /// Propagated information about the slice
    pub slice_flags: SliceFlags,
    /// The currently selected tile size to use for this cache
    pub current_tile_size: DeviceIntSize,
    /// The positioning node for this tile cache.
    pub spatial_node_index: SpatialNodeIndex,
    /// Hash of tiles present in this picture.
    pub tiles: FastHashMap<TileOffset, Box<Tile>>,
    /// A helper struct to map local rects into surface coords.
    map_local_to_surface: SpaceMapper<LayoutPixel, PicturePixel>,
    /// A helper struct to map child picture rects into picture cache surface coords.
    map_child_pic_to_surface: SpaceMapper<PicturePixel, PicturePixel>,
    /// List of opacity bindings, with some extra information
    /// about whether they changed since last frame.
    opacity_bindings: FastHashMap<PropertyBindingId, OpacityBindingInfo>,
    /// Switch back and forth between old and new bindings hashmaps to avoid re-allocating.
    old_opacity_bindings: FastHashMap<PropertyBindingId, OpacityBindingInfo>,
    /// A helper to compare transforms between previous and current frame.
    spatial_node_comparer: SpatialNodeComparer,
    /// List of color bindings, with some extra information
    /// about whether they changed since last frame.
    color_bindings: FastHashMap<PropertyBindingId, ColorBindingInfo>,
    /// Switch back and forth between old and new bindings hashmaps to avoid re-allocating.
    old_color_bindings: FastHashMap<PropertyBindingId, ColorBindingInfo>,
    /// The current dirty region tracker for this picture.
    pub dirty_region: DirtyRegion,
    /// Current size of tiles in picture units.
    tile_size: PictureSize,
    /// Tile coords of the currently allocated grid.
    tile_rect: TileRect,
    /// Pre-calculated versions of the tile_rect above, used to speed up the
    /// calculations in get_tile_coords_for_rect.
    tile_bounds_p0: TileOffset,
    tile_bounds_p1: TileOffset,
    /// Local rect (unclipped) of the picture this cache covers.
    pub local_rect: PictureRect,
    /// The local clip rect, from the shared clips of this picture.
    pub local_clip_rect: PictureRect,
    /// The surface index that this tile cache will be drawn into.
    surface_index: SurfaceIndex,
    /// The background color from the renderer. If this is set opaque, we know it's
    /// fine to clear the tiles to this and allow subpixel text on the first slice.
    pub background_color: Option<ColorF>,
    /// Information about the calculated backdrop content of this cache.
    pub backdrop: BackdropInfo,
    /// The allowed subpixel mode for this surface, which depends on the detected
    /// opacity of the background.
    pub subpixel_mode: SubpixelMode,
    /// A list of clip handles that exist on every (top-level) primitive in this picture.
    /// It's often the case that these are root / fixed position clips. By handling them
    /// here, we can avoid applying them to the items, which reduces work, but more importantly
    /// reduces invalidations.
    pub shared_clips: Vec<ClipInstance>,
    /// The clip chain that represents the shared_clips above. Used to build the local
    /// clip rect for this tile cache.
    shared_clip_chain: ClipChainId,
    /// The current transform of the picture cache root spatial node
    root_transform: ScaleOffset,
    /// The number of frames until this cache next evaluates what tile size to use.
    /// If a picture rect size is regularly changing just around a size threshold,
    /// we don't want to constantly invalidate and reallocate different tile size
    /// configuration each frame.
    frames_until_size_eval: usize,
    /// The current fractional offset of the cached picture
    fract_offset: PictureVector2D,
    /// The current device fractional offset of the cached picture
    device_fract_offset: DeviceVector2D,
    /// For DirectComposition, virtual surfaces don't support negative coordinates. However,
    /// picture cache tile coordinates can be negative. To handle this, we apply an offset
    /// to each tile in DirectComposition. We want to change this as little as possible,
    /// to avoid invalidating tiles. However, if we have a picture cache tile coordinate
    /// which is outside the virtual surface bounds, we must change this to allow
    /// correct remapping of the coordinates passed to BeginDraw in DC.
    virtual_offset: DeviceIntPoint,
    /// keep around the hash map used as compare_cache to avoid reallocating it each
    /// frame.
    compare_cache: FastHashMap<PrimitiveComparisonKey, PrimitiveCompareResult>,
    /// The allocated compositor surfaces for this picture cache. May be None if
    /// not using native compositor, or if the surface was destroyed and needs
    /// to be reallocated next time this surface contains valid tiles.
    pub native_surface: Option<NativeSurface>,
    /// The current device position of this cache. Used to set the compositor
    /// offset of the surface when building the visual tree.
    pub device_position: DevicePoint,
    /// The currently considered tile size override. Used to check if we should
    /// re-evaluate tile size, even if the frame timer hasn't expired.
    tile_size_override: Option<DeviceIntSize>,
    /// List of external surfaces that have been promoted from primitives
    /// in this tile cache.
    pub external_surfaces: Vec<ExternalSurfaceDescriptor>,
    /// z-buffer ID assigned to opaque tiles in this slice
    pub z_id_opaque: ZBufferId,
    /// A cache of compositor surfaces that are retained between frames
    pub external_native_surface_cache: FastHashMap<ExternalNativeSurfaceKey, ExternalNativeSurface>,
    /// Current frame ID of this tile cache instance. Used for book-keeping / garbage collecting
    frame_id: FrameId,
}

enum SurfacePromotionResult {
    Failed,
    Success {
        flip_y: bool,
    }
}

impl TileCacheInstance {
    pub fn new(params: TileCacheParams) -> Self {
        TileCacheInstance {
            slice: params.slice,
            slice_flags: params.slice_flags,
            spatial_node_index: params.spatial_node_index,
            tiles: FastHashMap::default(),
            map_local_to_surface: SpaceMapper::new(
                ROOT_SPATIAL_NODE_INDEX,
                PictureRect::zero(),
            ),
            map_child_pic_to_surface: SpaceMapper::new(
                ROOT_SPATIAL_NODE_INDEX,
                PictureRect::zero(),
            ),
            opacity_bindings: FastHashMap::default(),
            old_opacity_bindings: FastHashMap::default(),
            spatial_node_comparer: SpatialNodeComparer::new(),
            color_bindings: FastHashMap::default(),
            old_color_bindings: FastHashMap::default(),
            dirty_region: DirtyRegion::new(params.spatial_node_index),
            tile_size: PictureSize::zero(),
            tile_rect: TileRect::zero(),
            tile_bounds_p0: TileOffset::zero(),
            tile_bounds_p1: TileOffset::zero(),
            local_rect: PictureRect::zero(),
            local_clip_rect: PictureRect::zero(),
            surface_index: SurfaceIndex(0),
            background_color: params.background_color,
            backdrop: BackdropInfo::empty(),
            subpixel_mode: SubpixelMode::Allow,
            root_transform: ScaleOffset::identity(),
            shared_clips: params.shared_clips,
            shared_clip_chain: params.shared_clip_chain,
            current_tile_size: DeviceIntSize::zero(),
            frames_until_size_eval: 0,
            fract_offset: PictureVector2D::zero(),
            device_fract_offset: DeviceVector2D::zero(),
            // Default to centering the virtual offset in the middle of the DC virtual surface
            virtual_offset: DeviceIntPoint::new(
                params.virtual_surface_size / 2,
                params.virtual_surface_size / 2,
            ),
            compare_cache: FastHashMap::default(),
            native_surface: None,
            device_position: DevicePoint::zero(),
            tile_size_override: None,
            external_surfaces: Vec::new(),
            z_id_opaque: ZBufferId::invalid(),
            external_native_surface_cache: FastHashMap::default(),
            frame_id: FrameId::INVALID,
        }
    }

    /// Reset this tile cache with the updated parameters from a new scene
    /// that has arrived. This allows the tile cache to be retained across
    /// new scenes.
    pub fn prepare_for_new_scene(
        &mut self,
        params: TileCacheParams,
    ) {
        // We should only receive updated state for matching slice key
        assert_eq!(self.slice, params.slice);

        // Store the parameters from the scene builder for this slice. Other
        // params in the tile cache are retained and reused, or are always
        // updated during pre/post_update.
        self.slice_flags = params.slice_flags;
        self.spatial_node_index = params.spatial_node_index;
        self.background_color = params.background_color;
        self.shared_clips = params.shared_clips;
        self.shared_clip_chain = params.shared_clip_chain;

        // Since the slice flags may have changed, ensure we re-evaluate the
        // appropriate tile size for this cache next update.
        self.frames_until_size_eval = 0;
    }

    /// Destroy any manually managed resources before this picture cache is
    /// destroyed, such as native compositor surfaces.
    pub fn destroy(
        self,
        resource_cache: &mut ResourceCache,
    ) {
        if let Some(native_surface) = self.native_surface {
            resource_cache.destroy_compositor_surface(native_surface.opaque);
            resource_cache.destroy_compositor_surface(native_surface.alpha);
        }

        for (_, external_surface) in self.external_native_surface_cache {
            resource_cache.destroy_compositor_surface(external_surface.native_surface_id)
        }
    }

    /// Returns true if this tile cache is considered opaque.
    pub fn is_opaque(&self) -> bool {
        // If known opaque due to background clear color and being the first slice.
        // The background_color will only be Some(..) if this is the first slice.
        match self.background_color {
            Some(color) => color.a >= 1.0,
            None => false
        }
    }

    /// Get the tile coordinates for a given rectangle.
    fn get_tile_coords_for_rect(
        &self,
        rect: &PictureRect,
    ) -> (TileOffset, TileOffset) {
        // Get the tile coordinates in the picture space.
        let mut p0 = TileOffset::new(
            (rect.origin.x / self.tile_size.width).floor() as i32,
            (rect.origin.y / self.tile_size.height).floor() as i32,
        );

        let mut p1 = TileOffset::new(
            ((rect.origin.x + rect.size.width) / self.tile_size.width).ceil() as i32,
            ((rect.origin.y + rect.size.height) / self.tile_size.height).ceil() as i32,
        );

        // Clamp the tile coordinates here to avoid looping over irrelevant tiles later on.
        p0.x = clamp(p0.x, self.tile_bounds_p0.x, self.tile_bounds_p1.x);
        p0.y = clamp(p0.y, self.tile_bounds_p0.y, self.tile_bounds_p1.y);
        p1.x = clamp(p1.x, self.tile_bounds_p0.x, self.tile_bounds_p1.x);
        p1.y = clamp(p1.y, self.tile_bounds_p0.y, self.tile_bounds_p1.y);

        (p0, p1)
    }

    /// Update transforms, opacity, color bindings and tile rects.
    pub fn pre_update(
        &mut self,
        pic_rect: PictureRect,
        surface_index: SurfaceIndex,
        frame_context: &FrameVisibilityContext,
        frame_state: &mut FrameVisibilityState,
    ) -> WorldRect {
        self.external_surfaces.clear();
        self.surface_index = surface_index;
        self.local_rect = pic_rect;
        self.local_clip_rect = PictureRect::max_rect();

        // Opaque surfaces get the first z_id. Compositor surfaces then get
        // allocated a z_id each. After all compositor surfaces are added,
        // then we allocate a z_id for alpha tiles.
        self.z_id_opaque = frame_state.composite_state.z_generator.next();

        // Reset the opaque rect + subpixel mode, as they are calculated
        // during the prim dependency checks.
        self.backdrop = BackdropInfo::empty();

        self.map_local_to_surface = SpaceMapper::new(
            self.spatial_node_index,
            pic_rect,
        );
        self.map_child_pic_to_surface = SpaceMapper::new(
            self.spatial_node_index,
            pic_rect,
        );

        let pic_to_world_mapper = SpaceMapper::new_with_target(
            ROOT_SPATIAL_NODE_INDEX,
            self.spatial_node_index,
            frame_context.global_screen_world_rect,
            frame_context.spatial_tree,
        );

        // If there is a valid set of shared clips, build a clip chain instance for this,
        // which will provide a local clip rect. This is useful for establishing things
        // like whether the backdrop rect supplied by Gecko can be considered opaque.
        if self.shared_clip_chain != ClipChainId::NONE {
            let shared_clips = &mut frame_state.scratch.picture.clip_chain_ids;
            shared_clips.clear();

            let mut current_clip_chain_id = self.shared_clip_chain;
            while current_clip_chain_id != ClipChainId::NONE {
                shared_clips.push(current_clip_chain_id);
                let clip_chain_node = &frame_state.clip_store.clip_chain_nodes[current_clip_chain_id.0 as usize];
                current_clip_chain_id = clip_chain_node.parent_clip_chain_id;
            }

            frame_state.clip_store.set_active_clips(
                LayoutRect::max_rect(),
                self.spatial_node_index,
                self.map_local_to_surface.ref_spatial_node_index,
                &shared_clips,
                frame_context.spatial_tree,
                &mut frame_state.data_stores.clip,
            );

            let clip_chain_instance = frame_state.clip_store.build_clip_chain_instance(
                pic_rect.cast_unit(),
                &self.map_local_to_surface,
                &pic_to_world_mapper,
                frame_context.spatial_tree,
                frame_state.gpu_cache,
                frame_state.resource_cache,
                frame_context.global_device_pixel_scale,
                &frame_context.global_screen_world_rect,
                &mut frame_state.data_stores.clip,
                true,
                false,
            );

            // Ensure that if the entire picture cache is clipped out, the local
            // clip rect is zero. This makes sure we don't register any occluders
            // that are actually off-screen.
            self.local_clip_rect = clip_chain_instance.map_or(PictureRect::zero(), |clip_chain_instance| {
                clip_chain_instance.pic_clip_rect
            });
        }

        // Advance the current frame ID counter for this picture cache (must be done
        // after any retained prev state is taken above).
        self.frame_id.advance();

        // Notify the spatial node comparer that a new frame has started, and the
        // current reference spatial node for this tile cache.
        self.spatial_node_comparer.next_frame(self.spatial_node_index);

        // At the start of the frame, step through each current compositor surface
        // and mark it as unused. Later, this is used to free old compositor surfaces.
        // TODO(gw): In future, we might make this more sophisticated - for example,
        //           retaining them for >1 frame if unused, or retaining them in some
        //           kind of pool to reduce future allocations.
        for external_native_surface in self.external_native_surface_cache.values_mut() {
            external_native_surface.used_this_frame = false;
        }

        // Only evaluate what tile size to use fairly infrequently, so that we don't end
        // up constantly invalidating and reallocating tiles if the picture rect size is
        // changing near a threshold value.
        if self.frames_until_size_eval == 0 ||
           self.tile_size_override != frame_context.config.tile_size_override {

            // Work out what size tile is appropriate for this picture cache.
            let desired_tile_size = match frame_context.config.tile_size_override {
                Some(tile_size_override) => {
                    tile_size_override
                }
                None => {
                    if self.slice_flags.contains(SliceFlags::IS_SCROLLBAR) {
                        if pic_rect.size.width <= pic_rect.size.height {
                            TILE_SIZE_SCROLLBAR_VERTICAL
                        } else {
                            TILE_SIZE_SCROLLBAR_HORIZONTAL
                        }
                    } else {
                        frame_state.resource_cache.texture_cache.default_picture_tile_size()
                    }
                }
            };

            // If the desired tile size has changed, then invalidate and drop any
            // existing tiles.
            if desired_tile_size != self.current_tile_size {
                // Destroy any native surfaces on the tiles that will be dropped due
                // to resizing.
                if let Some(native_surface) = self.native_surface.take() {
                    frame_state.resource_cache.destroy_compositor_surface(native_surface.opaque);
                    frame_state.resource_cache.destroy_compositor_surface(native_surface.alpha);
                }
                self.tiles.clear();
                self.tile_rect = TileRect::zero();
                self.current_tile_size = desired_tile_size;
            }

            // Reset counter until next evaluating the desired tile size. This is an
            // arbitrary value.
            self.frames_until_size_eval = 120;
            self.tile_size_override = frame_context.config.tile_size_override;
        }

        // Map an arbitrary point in picture space to world space, to work out
        // what the fractional translation is that's applied by this scroll root.
        // TODO(gw): I'm not 100% sure this is right. At least, in future, we should
        //           make a specific API for this, and/or enforce that the picture
        //           cache transform only includes scale and/or translation (we
        //           already ensure it doesn't have perspective).
        let world_origin = pic_to_world_mapper
            .map(&PictureRect::new(PicturePoint::zero(), PictureSize::new(1.0, 1.0)))
            .expect("bug: unable to map origin to world space")
            .origin;

        // Get the desired integer device coordinate
        let device_origin = world_origin * frame_context.global_device_pixel_scale;
        let desired_device_origin = device_origin.round();
        self.device_position = desired_device_origin;
        self.device_fract_offset = desired_device_origin - device_origin;

        // Unmap from device space to world space rect
        let ref_world_rect = WorldRect::new(
            desired_device_origin / frame_context.global_device_pixel_scale,
            WorldSize::new(1.0, 1.0),
        );

        // Unmap from world space to picture space; this should be the fractional offset
        // required in picture space to align in device space
        self.fract_offset = pic_to_world_mapper
            .unmap(&ref_world_rect)
            .expect("bug: unable to unmap ref world rect")
            .origin
            .to_vector();

        // Do a hacky diff of opacity binding values from the last frame. This is
        // used later on during tile invalidation tests.
        let current_properties = frame_context.scene_properties.float_properties();
        mem::swap(&mut self.opacity_bindings, &mut self.old_opacity_bindings);

        self.opacity_bindings.clear();
        for (id, value) in current_properties {
            let changed = match self.old_opacity_bindings.get(id) {
                Some(old_property) => !old_property.value.approx_eq(value),
                None => true,
            };
            self.opacity_bindings.insert(*id, OpacityBindingInfo {
                value: *value,
                changed,
            });
        }

        // Do a hacky diff of color binding values from the last frame. This is
        // used later on during tile invalidation tests.
        let current_properties = frame_context.scene_properties.color_properties();
        mem::swap(&mut self.color_bindings, &mut self.old_color_bindings);

        self.color_bindings.clear();
        for (id, value) in current_properties {
            let changed = match self.old_color_bindings.get(id) {
                Some(old_property) => old_property.value != (*value).into(),
                None => true,
            };
            self.color_bindings.insert(*id, ColorBindingInfo {
                value: (*value).into(),
                changed,
            });
        }

        let world_tile_size = WorldSize::new(
            self.current_tile_size.width as f32 / frame_context.global_device_pixel_scale.0,
            self.current_tile_size.height as f32 / frame_context.global_device_pixel_scale.0,
        );

        // We know that this is an exact rectangle, since we (for now) only support tile
        // caches where the scroll root is in the root coordinate system.
        let local_tile_rect = pic_to_world_mapper
            .unmap(&WorldRect::new(WorldPoint::zero(), world_tile_size))
            .expect("bug: unable to get local tile rect");

        self.tile_size = local_tile_rect.size;

        let screen_rect_in_pic_space = pic_to_world_mapper
            .unmap(&frame_context.global_screen_world_rect)
            .expect("unable to unmap screen rect");

        // Inflate the needed rect a bit, so that we retain tiles that we have drawn
        // but have just recently gone off-screen. This means that we avoid re-drawing
        // tiles if the user is scrolling up and down small amounts, at the cost of
        // a bit of extra texture memory.
        let desired_rect_in_pic_space = screen_rect_in_pic_space
            .inflate(0.0, 1.0 * self.tile_size.height);

        let needed_rect_in_pic_space = desired_rect_in_pic_space
            .intersection(&pic_rect)
            .unwrap_or_else(PictureRect::zero);

        let p0 = needed_rect_in_pic_space.origin;
        let p1 = needed_rect_in_pic_space.bottom_right();

        let x0 = (p0.x / local_tile_rect.size.width).floor() as i32;
        let x1 = (p1.x / local_tile_rect.size.width).ceil() as i32;

        let y0 = (p0.y / local_tile_rect.size.height).floor() as i32;
        let y1 = (p1.y / local_tile_rect.size.height).ceil() as i32;

        let x_tiles = x1 - x0;
        let y_tiles = y1 - y0;
        let new_tile_rect = TileRect::new(
            TileOffset::new(x0, y0),
            TileSize::new(x_tiles, y_tiles),
        );

        // Determine whether the current bounds of the tile grid will exceed the
        // bounds of the DC virtual surface, taking into account the current
        // virtual offset. If so, we need to invalidate all tiles, and set up
        // a new virtual offset, centered around the current tile grid.

        if let CompositorKind::Native { virtual_surface_size, .. } = frame_context.config.compositor_kind {
            // We only need to invalidate in this case if the underlying platform
            // uses virtual surfaces.
            if virtual_surface_size > 0 {
                // Get the extremities of the tile grid after virtual offset is applied
                let tx0 = self.virtual_offset.x + x0 * self.current_tile_size.width;
                let ty0 = self.virtual_offset.y + y0 * self.current_tile_size.height;
                let tx1 = self.virtual_offset.x + (x1+1) * self.current_tile_size.width;
                let ty1 = self.virtual_offset.y + (y1+1) * self.current_tile_size.height;

                let need_new_virtual_offset = tx0 < 0 ||
                                              ty0 < 0 ||
                                              tx1 >= virtual_surface_size ||
                                              ty1 >= virtual_surface_size;

                if need_new_virtual_offset {
                    // Calculate a new virtual offset, centered around the middle of the
                    // current tile grid. This means we won't need to invalidate and get
                    // a new offset for a long time!
                    self.virtual_offset = DeviceIntPoint::new(
                        (virtual_surface_size/2) - ((x0 + x1) / 2) * self.current_tile_size.width,
                        (virtual_surface_size/2) - ((y0 + y1) / 2) * self.current_tile_size.height,
                    );

                    // Invalidate all native tile surfaces. They will be re-allocated next time
                    // they are scheduled to be rasterized.
                    for tile in self.tiles.values_mut() {
                        if let Some(TileSurface::Texture { descriptor: SurfaceTextureDescriptor::Native { ref mut id, .. }, .. }) = tile.surface {
                            if let Some(id) = id.take() {
                                frame_state.resource_cache.destroy_compositor_tile(id);
                                tile.surface = None;
                                // Invalidate the entire tile to force a redraw.
                                // TODO(gw): Add a new invalidation reason for virtual offset changing
                                tile.invalidate(None, InvalidationReason::CompositorKindChanged);
                            }
                        }
                    }

                    // Destroy the native virtual surfaces. They will be re-allocated next time a tile
                    // that references them is scheduled to draw.
                    if let Some(native_surface) = self.native_surface.take() {
                        frame_state.resource_cache.destroy_compositor_surface(native_surface.opaque);
                        frame_state.resource_cache.destroy_compositor_surface(native_surface.alpha);
                    }
                }
            }
        }

        // Rebuild the tile grid if the picture cache rect has changed.
        if new_tile_rect != self.tile_rect {
            let mut old_tiles = mem::replace(&mut self.tiles, FastHashMap::default());
            self.tiles.reserve(new_tile_rect.size.area() as usize);

            for y in y0 .. y1 {
                for x in x0 .. x1 {
                    let key = TileOffset::new(x, y);
                    let tile = old_tiles
                        .remove(&key)
                        .unwrap_or_else(|| {
                            Box::new(Tile::new(key))
                        });
                    self.tiles.insert(key, tile);
                }
            }

            // When old tiles that remain after the loop, dirty rects are not valid.
            if !old_tiles.is_empty() {
                frame_state.composite_state.dirty_rects_are_valid = false;
            }

            // Any old tiles that remain after the loop above are going to be dropped. For
            // simple composite mode, the texture cache handle will expire and be collected
            // by the texture cache. For native compositor mode, we need to explicitly
            // invoke a callback to the client to destroy that surface.
            frame_state.composite_state.destroy_native_tiles(
                old_tiles.values_mut(),
                frame_state.resource_cache,
            );
        }

        // This is duplicated information from tile_rect, but cached here to avoid
        // redundant calculations during get_tile_coords_for_rect
        self.tile_bounds_p0 = TileOffset::new(x0, y0);
        self.tile_bounds_p1 = TileOffset::new(x1, y1);
        self.tile_rect = new_tile_rect;

        let mut world_culling_rect = WorldRect::zero();

        let ctx = TilePreUpdateContext {
            pic_to_world_mapper,
            fract_offset: self.fract_offset,
            device_fract_offset: self.device_fract_offset,
            background_color: self.background_color,
            global_screen_world_rect: frame_context.global_screen_world_rect,
            tile_size: self.tile_size,
            frame_id: self.frame_id,
        };

        // Pre-update each tile
        for tile in self.tiles.values_mut() {
            tile.pre_update(&ctx);

            // Only include the tiles that are currently in view into the world culling
            // rect. This is a very important optimization for a couple of reasons:
            // (1) Primitives that intersect with tiles in the grid that are not currently
            //     visible can be skipped from primitive preparation, clip chain building
            //     and tile dependency updates.
            // (2) When we need to allocate an off-screen surface for a child picture (for
            //     example a CSS filter) we clip the size of the GPU surface to the world
            //     culling rect below (to ensure we draw enough of it to be sampled by any
            //     tiles that reference it). Making the world culling rect only affected
            //     by visible tiles (rather than the entire virtual tile display port) can
            //     result in allocating _much_ smaller GPU surfaces for cases where the
            //     true off-screen surface size is very large.
            if tile.is_visible {
                world_culling_rect = world_culling_rect.union(&tile.world_tile_rect);
            }
        }

        // If compositor mode is changed, need to drop all incompatible tiles.
        match frame_context.config.compositor_kind {
            CompositorKind::Draw { .. } => {
                for tile in self.tiles.values_mut() {
                    if let Some(TileSurface::Texture { descriptor: SurfaceTextureDescriptor::Native { ref mut id, .. }, .. }) = tile.surface {
                        if let Some(id) = id.take() {
                            frame_state.resource_cache.destroy_compositor_tile(id);
                        }
                        tile.surface = None;
                        // Invalidate the entire tile to force a redraw.
                        tile.invalidate(None, InvalidationReason::CompositorKindChanged);
                    }
                }

                if let Some(native_surface) = self.native_surface.take() {
                    frame_state.resource_cache.destroy_compositor_surface(native_surface.opaque);
                    frame_state.resource_cache.destroy_compositor_surface(native_surface.alpha);
                }

                for (_, external_surface) in self.external_native_surface_cache.drain() {
                    frame_state.resource_cache.destroy_compositor_surface(external_surface.native_surface_id)
                }
            }
            CompositorKind::Native { .. } => {
                // This could hit even when compositor mode is not changed,
                // then we need to check if there are incompatible tiles.
                for tile in self.tiles.values_mut() {
                    if let Some(TileSurface::Texture { descriptor: SurfaceTextureDescriptor::TextureCache { .. }, .. }) = tile.surface {
                        tile.surface = None;
                        // Invalidate the entire tile to force a redraw.
                        tile.invalidate(None, InvalidationReason::CompositorKindChanged);
                    }
                }
            }
        }

        world_culling_rect
    }

    fn can_promote_to_surface(
        &mut self,
        flags: PrimitiveFlags,
        prim_clip_chain: &ClipChainInstance,
        prim_spatial_node_index: SpatialNodeIndex,
        on_picture_surface: bool,
        frame_context: &FrameVisibilityContext,
    ) -> SurfacePromotionResult {
        // Check if this primitive _wants_ to be promoted to a compositor surface.
        if !flags.contains(PrimitiveFlags::PREFER_COMPOSITOR_SURFACE) {
            return SurfacePromotionResult::Failed;
        }

        // For now, only support a small (arbitrary) number of compositor surfaces.
        if self.external_surfaces.len() == MAX_COMPOSITOR_SURFACES {
            return SurfacePromotionResult::Failed;
        }

        // If a complex clip is being applied to this primitive, it can't be
        // promoted directly to a compositor surface (we might be able to
        // do this in limited cases in future, some native compositors do
        // support rounded rect clips, for example)
        if prim_clip_chain.needs_mask {
            return SurfacePromotionResult::Failed;
        }

        // If not on the same surface as the picture cache, it has some kind of
        // complex effect (such as a filter, mix-blend-mode or 3d transform).
        if !on_picture_surface {
            return SurfacePromotionResult::Failed;
        }

        let mapper : SpaceMapper<PicturePixel, WorldPixel> = SpaceMapper::new_with_target(
            ROOT_SPATIAL_NODE_INDEX,
            prim_spatial_node_index,
            frame_context.global_screen_world_rect,
            &frame_context.spatial_tree);
        let transform = mapper.get_transform();
        if !transform.is_2d_scale_translation() {
            return SurfacePromotionResult::Failed;
        }
        if transform.m11 < 0.0 {
            return SurfacePromotionResult::Failed;
        }

        SurfacePromotionResult::Success {
            flip_y: transform.m22 < 0.0,
        }
    }

    fn setup_compositor_surfaces_yuv(
        &mut self,
        prim_info: &mut PrimitiveDependencyInfo,
        flags: PrimitiveFlags,
        prim_rect: PictureRect,
        local_prim_rect: LayoutRect,
        prim_spatial_node_index: SpatialNodeIndex,
        frame_context: &FrameVisibilityContext,
        image_dependencies: &[ImageDependency;3],
        api_keys: &[ImageKey; 3],
        resource_cache: &mut ResourceCache,
        composite_state: &mut CompositeState,
        image_rendering: ImageRendering,
        color_depth: ColorDepth,
        color_space: YuvColorSpace,
        format: YuvFormat,
    ) -> bool {
        self.setup_compositor_surfaces_impl(
            prim_info,
            flags,
            prim_rect,
            local_prim_rect,
            prim_spatial_node_index,
            frame_context,
            ExternalSurfaceDependency::Yuv {
                image_dependencies: *image_dependencies,
                color_space,
                format,
                rescale: color_depth.rescaling_factor(),
            },
            api_keys,
            resource_cache,
            composite_state,
            image_rendering,
        )
    }

    fn setup_compositor_surfaces_rgb(
        &mut self,
        prim_info: &mut PrimitiveDependencyInfo,
        flags: PrimitiveFlags,
        prim_rect: PictureRect,
        local_prim_rect: LayoutRect,
        prim_spatial_node_index: SpatialNodeIndex,
        frame_context: &FrameVisibilityContext,
        image_dependency: ImageDependency,
        api_key: ImageKey,
        resource_cache: &mut ResourceCache,
        composite_state: &mut CompositeState,
        image_rendering: ImageRendering,
        flip_y: bool,
    ) -> bool {
        let mut api_keys = [ImageKey::DUMMY; 3];
        api_keys[0] = api_key;
        self.setup_compositor_surfaces_impl(
            prim_info,
            flags,
            prim_rect,
            local_prim_rect,
            prim_spatial_node_index,
            frame_context,
            ExternalSurfaceDependency::Rgb {
                image_dependency,
                flip_y,
            },
            &api_keys,
            resource_cache,
            composite_state,
            image_rendering,
        )
    }

    // returns false if composition is not available for this surface,
    // and the non-compositor path should be used to draw it instead.
    fn setup_compositor_surfaces_impl(
        &mut self,
        prim_info: &mut PrimitiveDependencyInfo,
        flags: PrimitiveFlags,
        prim_rect: PictureRect,
        local_prim_rect: LayoutRect,
        prim_spatial_node_index: SpatialNodeIndex,
        frame_context: &FrameVisibilityContext,
        dependency: ExternalSurfaceDependency,
        api_keys: &[ImageKey; 3],
        resource_cache: &mut ResourceCache,
        composite_state: &mut CompositeState,
        image_rendering: ImageRendering,
    ) -> bool {
        prim_info.is_compositor_surface = true;

        let pic_to_world_mapper = SpaceMapper::new_with_target(
            ROOT_SPATIAL_NODE_INDEX,
            self.spatial_node_index,
            frame_context.global_screen_world_rect,
            frame_context.spatial_tree,
        );

        let world_clip_rect = pic_to_world_mapper
            .map(&prim_info.prim_clip_box.to_rect())
            .expect("bug: unable to map clip to world space");

        let is_visible = world_clip_rect.intersects(&frame_context.global_screen_world_rect);
        if !is_visible {
            return true;
        }

        let world_rect = pic_to_world_mapper
            .map(&prim_rect)
            .expect("bug: unable to map the primitive to world space");
        let device_rect = (world_rect * frame_context.global_device_pixel_scale).round();

        // TODO(gw): Is there any case where if the primitive ends up on a fractional
        //           boundary we want to _skip_ promoting to a compositor surface and
        //           draw it as part of the content?
        let (surface_rect, transform) = match composite_state.compositor_kind {
            CompositorKind::Draw { .. } => {
                (device_rect, Transform3D::identity())
            }
            CompositorKind::Native { .. } => {
                // If we have a Native Compositor, then we can support doing the transformation
                // as part of compositing. Use the local prim rect for the external surface, and
                // compute the full local to device transform to provide to the compositor.
                let surface_to_world_mapper : SpaceMapper<PicturePixel, WorldPixel> = SpaceMapper::new_with_target(
                    ROOT_SPATIAL_NODE_INDEX,
                    prim_spatial_node_index,
                    frame_context.global_screen_world_rect,
                    frame_context.spatial_tree,
                );
                let prim_origin = Vector3D::new(local_prim_rect.origin.x, local_prim_rect.origin.y, 0.0);
                let world_to_device_scale = Transform3D::from_scale(frame_context.global_device_pixel_scale);
                let transform = surface_to_world_mapper.get_transform().pre_translate(prim_origin).then(&world_to_device_scale);

                (local_prim_rect.cast_unit(), transform)
            }
        };

        let clip_rect = (world_clip_rect * frame_context.global_device_pixel_scale).round();

        if surface_rect.size.width >= MAX_COMPOSITOR_SURFACES_SIZE ||
           surface_rect.size.height >= MAX_COMPOSITOR_SURFACES_SIZE {
               return false;
        }

        // If this primitive is an external image, and supports being used
        // directly by a native compositor, then lookup the external image id
        // so we can pass that through.
        let external_image_id = if flags.contains(PrimitiveFlags::SUPPORTS_EXTERNAL_COMPOSITOR_SURFACE) {
            resource_cache.get_image_properties(api_keys[0])
                .and_then(|properties| properties.external_image)
                .and_then(|image| Some(image.id))
        } else {
            None
        };

        // When using native compositing, we need to find an existing native surface
        // handle to use, or allocate a new one. For existing native surfaces, we can
        // also determine whether this needs to be updated, depending on whether the
        // image generation(s) of the planes have changed since last composite.
        let (native_surface_id, update_params) = match composite_state.compositor_kind {
            CompositorKind::Draw { .. } => {
                (None, None)
            }
            CompositorKind::Native { .. } => {
                let native_surface_size = surface_rect.size.round().to_i32();

                let key = ExternalNativeSurfaceKey {
                    image_keys: *api_keys,
                    size: native_surface_size,
                    is_external_surface: external_image_id.is_some(),
                };

                let native_surface = self.external_native_surface_cache
                    .entry(key)
                    .or_insert_with(|| {
                        // No existing surface, so allocate a new compositor surface.
                        let native_surface_id = match external_image_id {
                            Some(_external_image) => {
                                // If we have a suitable external image, then create an external
                                // surface to attach to.
                                resource_cache.create_compositor_external_surface(true)
                            }
                            None => {
                                // Otherwise create a normal compositor surface and a single
                                // compositor tile that covers the entire surface.
                                let native_surface_id =
                                resource_cache.create_compositor_surface(
                                    DeviceIntPoint::zero(),
                                    native_surface_size,
                                    true,
                                );

                                let tile_id = NativeTileId {
                                    surface_id: native_surface_id,
                                    x: 0,
                                    y: 0,
                                };
                                resource_cache.create_compositor_tile(tile_id);

                                native_surface_id
                            }
                        };

                        ExternalNativeSurface {
                            used_this_frame: true,
                            native_surface_id,
                            image_dependencies: [ImageDependency::INVALID; 3],
                        }
                    });

                // Mark that the surface is referenced this frame so that the
                // backing native surface handle isn't freed.
                native_surface.used_this_frame = true;

                let update_params = match external_image_id {
                    Some(external_image) => {
                        // If this is an external image surface, then there's no update
                        // to be done. Just attach the current external image to the surface
                        // and we're done.
                        resource_cache.attach_compositor_external_image(
                            native_surface.native_surface_id,
                            external_image,
                        );
                        None
                    }
                    None => {
                        // If the image dependencies match, there is no need to update
                        // the backing native surface.
                        match dependency {
                            ExternalSurfaceDependency::Yuv{ image_dependencies, .. } => {
                                if image_dependencies == native_surface.image_dependencies {
                                    None
                                } else {
                                    Some(native_surface_size)
                                }
                            },
                            ExternalSurfaceDependency::Rgb{ image_dependency, .. } => {
                                if image_dependency == native_surface.image_dependencies[0] {
                                    None
                                } else {
                                    Some(native_surface_size)
                                }
                            },
                        }
                    }
                };

                (Some(native_surface.native_surface_id), update_params)
            }
        };

        // Each compositor surface allocates a unique z-id
        self.external_surfaces.push(ExternalSurfaceDescriptor {
            local_rect: prim_info.prim_clip_box.to_rect(),
            local_clip_rect: prim_info.prim_clip_box.to_rect(),
            dependency,
            image_rendering,
            device_rect,
            surface_rect,
            clip_rect,
            transform: transform.cast_unit(),
            z_id: composite_state.z_generator.next(),
            native_surface_id,
            update_params,
        });

        true
    }

    /// Update the dependencies for each tile for a given primitive instance.
    pub fn update_prim_dependencies(
        &mut self,
        prim_instance: &mut PrimitiveInstance,
        prim_spatial_node_index: SpatialNodeIndex,
        local_prim_rect: LayoutRect,
        frame_context: &FrameVisibilityContext,
        data_stores: &DataStores,
        clip_store: &ClipStore,
        pictures: &[PicturePrimitive],
        resource_cache: &mut ResourceCache,
        color_bindings: &ColorBindingStorage,
        surface_stack: &[SurfaceIndex],
        composite_state: &mut CompositeState,
    ) {
        // This primitive exists on the last element on the current surface stack.
        profile_scope!("update_prim_dependencies");
        let prim_surface_index = *surface_stack.last().unwrap();
        let prim_clip_chain = &prim_instance.vis.clip_chain;

        self.map_local_to_surface.set_target_spatial_node(
            prim_spatial_node_index,
            frame_context.spatial_tree,
        );

        // Map the primitive local rect into picture space.
        let prim_rect = match self.map_local_to_surface.map(&local_prim_rect) {
            Some(rect) => rect,
            None => return,
        };

        // If the rect is invalid, no need to create dependencies.
        if prim_rect.size.is_empty() {
            return;
        }

        // If the primitive is directly drawn onto this picture cache surface, then
        // the pic_clip_rect is in the same space. If not, we need to map it from
        // the surface space into the picture cache space.
        let on_picture_surface = prim_surface_index == self.surface_index;
        let pic_clip_rect = if on_picture_surface {
            prim_clip_chain.pic_clip_rect
        } else {
            // We want to get the rect in the tile cache surface space that this primitive
            // occupies, in order to enable correct invalidation regions. Each surface
            // that exists in the chain between this primitive and the tile cache surface
            // may have an arbitrary inflation factor (for example, in the case of a series
            // of nested blur elements). To account for this, step through the current
            // surface stack, mapping the primitive rect into each surface space, including
            // the inflation factor from each intermediate surface.
            let mut current_pic_clip_rect = prim_clip_chain.pic_clip_rect;
            let mut current_spatial_node_index = frame_context
                .surfaces[prim_surface_index.0]
                .surface_spatial_node_index;

            for surface_index in surface_stack.iter().rev() {
                let surface = &frame_context.surfaces[surface_index.0];

                let map_local_to_surface = SpaceMapper::new_with_target(
                    surface.surface_spatial_node_index,
                    current_spatial_node_index,
                    surface.rect,
                    frame_context.spatial_tree,
                );

                // Map the rect into the parent surface, and inflate if this surface requires
                // it. If the rect can't be mapping (e.g. due to an invalid transform) then
                // just bail out from the dependencies and cull this primitive.
                current_pic_clip_rect = match map_local_to_surface.map(&current_pic_clip_rect) {
                    Some(rect) => {
                        rect.inflate(surface.inflation_factor, surface.inflation_factor)
                    }
                    None => {
                        return;
                    }
                };

                current_spatial_node_index = surface.surface_spatial_node_index;
            }

            current_pic_clip_rect
        };

        // Get the tile coordinates in the picture space.
        let (p0, p1) = self.get_tile_coords_for_rect(&pic_clip_rect);

        // If the primitive is outside the tiling rects, it's known to not
        // be visible.
        if p0.x == p1.x || p0.y == p1.y {
            return;
        }

        // Build the list of resources that this primitive has dependencies on.
        let mut prim_info = PrimitiveDependencyInfo::new(
            prim_instance.uid(),
            pic_clip_rect.to_box2d(),
        );

        // Include the prim spatial node, if differs relative to cache root.
        if prim_spatial_node_index != self.spatial_node_index {
            prim_info.spatial_nodes.push(prim_spatial_node_index);
        }

        // If there was a clip chain, add any clip dependencies to the list for this tile.
        let clip_instances = &clip_store
            .clip_node_instances[prim_clip_chain.clips_range.to_range()];
        for clip_instance in clip_instances {
            prim_info.clips.push(clip_instance.handle.uid());

            // If the clip has the same spatial node, the relative transform
            // will always be the same, so there's no need to depend on it.
            if clip_instance.spatial_node_index != self.spatial_node_index
                && !prim_info.spatial_nodes.contains(&clip_instance.spatial_node_index) {
                prim_info.spatial_nodes.push(clip_instance.spatial_node_index);
            }
        }

        // Certain primitives may select themselves to be a backdrop candidate, which is
        // then applied below.
        let mut backdrop_candidate = None;


        // For pictures, we don't (yet) know the valid clip rect, so we can't correctly
        // use it to calculate the local bounding rect for the tiles. If we include them
        // then we may calculate a bounding rect that is too large, since it won't include
        // the clip bounds of the picture. Excluding them from the bounding rect here
        // fixes any correctness issues (the clips themselves are considered when we
        // consider the bounds of the primitives that are *children* of the picture),
        // however it does potentially result in some un-necessary invalidations of a
        // tile (in cases where the picture local rect affects the tile, but the clip
        // rect eventually means it doesn't affect that tile).
        // TODO(gw): Get picture clips earlier (during the initial picture traversal
        //           pass) so that we can calculate these correctly.
        match prim_instance.kind {
            PrimitiveInstanceKind::Picture { pic_index,.. } => {
                // Pictures can depend on animated opacity bindings.
                let pic = &pictures[pic_index.0];
                if let Some(PictureCompositeMode::Filter(Filter::Opacity(binding, _))) = pic.requested_composite_mode {
                    prim_info.opacity_bindings.push(binding.into());
                }
            }
            PrimitiveInstanceKind::Rectangle { data_handle, color_binding_index, .. } => {
                // Rectangles can only form a backdrop candidate if they are known opaque.
                // TODO(gw): We could resolve the opacity binding here, but the common
                //           case for background rects is that they don't have animated opacity.
                let color = match data_stores.prim[data_handle].kind {
                    PrimitiveTemplateKind::Rectangle { color, .. } => {
                        frame_context.scene_properties.resolve_color(&color)
                    }
                    _ => unreachable!(),
                };
                if color.a >= 1.0 {
                    backdrop_candidate = Some(BackdropInfo {
                        opaque_rect: pic_clip_rect,
                        kind: Some(BackdropKind::Color { color }),
                    });
                }

                if color_binding_index != ColorBindingIndex::INVALID {
                    prim_info.color_binding = Some(color_bindings[color_binding_index].into());
                }
            }
            PrimitiveInstanceKind::Image { data_handle, ref mut is_compositor_surface, .. } => {
                let image_key = &data_stores.image[data_handle];
                let image_data = &image_key.kind;

                let mut promote_to_surface = false;
                let mut promote_with_flip_y = false;
                match self.can_promote_to_surface(image_key.common.flags,
                                                  prim_clip_chain,
                                                  prim_spatial_node_index,
                                                  on_picture_surface,
                                                  frame_context) {
                    SurfacePromotionResult::Failed => {
                    }
                    SurfacePromotionResult::Success{flip_y} => {
                        promote_to_surface = true;
                        promote_with_flip_y = flip_y;
                    }
                }

                if let Some(image_properties) = resource_cache.get_image_properties(image_data.key) {
                    // For an image to be a possible opaque backdrop, it must:
                    // - Have a valid, opaque image descriptor
                    // - Not use tiling (since they can fail to draw)
                    // - Not having any spacing / padding
                    if image_properties.descriptor.is_opaque() &&
                       image_properties.tiling.is_none() &&
                       image_data.tile_spacing == LayoutSize::zero() {
                        backdrop_candidate = Some(BackdropInfo {
                            opaque_rect: pic_clip_rect,
                            kind: None,
                        });
                    }
                }

                if promote_to_surface {
                    promote_to_surface = self.setup_compositor_surfaces_rgb(
                        &mut prim_info,
                        image_key.common.flags,
                        prim_rect,
                        local_prim_rect,
                        prim_spatial_node_index,
                        frame_context,
                        ImageDependency {
                            key: image_data.key,
                            generation: resource_cache.get_image_generation(image_data.key),
                        },
                        image_data.key,
                        resource_cache,
                        composite_state,
                        image_data.image_rendering,
                        promote_with_flip_y,
                    );
                }

                if !promote_to_surface {
                    prim_info.images.push(ImageDependency {
                        key: image_data.key,
                        generation: resource_cache.get_image_generation(image_data.key),
                    });
                }

                *is_compositor_surface = promote_to_surface;
            }
            PrimitiveInstanceKind::YuvImage { data_handle, ref mut is_compositor_surface, .. } => {
                let prim_data = &data_stores.yuv_image[data_handle];
                let mut promote_to_surface = match self.can_promote_to_surface(
                                            prim_data.common.flags,
                                            prim_clip_chain,
                                            prim_spatial_node_index,
                                            on_picture_surface,
                                            frame_context) {
                    SurfacePromotionResult::Failed => false,
                    SurfacePromotionResult::Success{flip_y} => !flip_y,
                };

                // TODO(gw): When we support RGBA images for external surfaces, we also
                //           need to check if opaque (YUV images are implicitly opaque).

                // If this primitive is being promoted to a surface, construct an external
                // surface descriptor for use later during batching and compositing. We only
                // add the image keys for this primitive as a dependency if this is _not_
                // a promoted surface, since we don't want the tiles to invalidate when the
                // video content changes, if it's a compositor surface!
                if promote_to_surface {
                    // Build dependency for each YUV plane, with current image generation for
                    // later detection of when the composited surface has changed.
                    let mut image_dependencies = [ImageDependency::INVALID; 3];
                    for (key, dep) in prim_data.kind.yuv_key.iter().cloned().zip(image_dependencies.iter_mut()) {
                        *dep = ImageDependency {
                            key,
                            generation: resource_cache.get_image_generation(key),
                        }
                    }

                    promote_to_surface = self.setup_compositor_surfaces_yuv(
                        &mut prim_info,
                        prim_data.common.flags,
                        prim_rect,
                        local_prim_rect,
                        prim_spatial_node_index,
                        frame_context,
                        &image_dependencies,
                        &prim_data.kind.yuv_key,
                        resource_cache,
                        composite_state,
                        prim_data.kind.image_rendering,
                        prim_data.kind.color_depth,
                        prim_data.kind.color_space,
                        prim_data.kind.format,
                    );
                }

                if !promote_to_surface {
                    prim_info.images.extend(
                        prim_data.kind.yuv_key.iter().map(|key| {
                            ImageDependency {
                                key: *key,
                                generation: resource_cache.get_image_generation(*key),
                            }
                        })
                    );
                }

                // Store on the YUV primitive instance whether this is a promoted surface.
                // This is used by the batching code to determine whether to draw the
                // image to the content tiles, or just a transparent z-write.
                *is_compositor_surface = promote_to_surface;

            }
            PrimitiveInstanceKind::ImageBorder { data_handle, .. } => {
                let border_data = &data_stores.image_border[data_handle].kind;
                prim_info.images.push(ImageDependency {
                    key: border_data.request.key,
                    generation: resource_cache.get_image_generation(border_data.request.key),
                });
            }
            PrimitiveInstanceKind::Clear { .. } => {
                backdrop_candidate = Some(BackdropInfo {
                    opaque_rect: pic_clip_rect,
                    kind: Some(BackdropKind::Clear),
                });
            }
            PrimitiveInstanceKind::LinearGradient { data_handle, .. } => {
                let gradient_data = &data_stores.linear_grad[data_handle];
                if gradient_data.stops_opacity.is_opaque
                    && gradient_data.tile_spacing == LayoutSize::zero()
                {
                    backdrop_candidate = Some(BackdropInfo {
                        opaque_rect: pic_clip_rect,
                        kind: None,
                    });
                }
            }
            PrimitiveInstanceKind::ConicGradient { data_handle, .. } => {
                let gradient_data = &data_stores.conic_grad[data_handle];
                if gradient_data.stops_opacity.is_opaque
                    && gradient_data.tile_spacing == LayoutSize::zero()
                {
                    backdrop_candidate = Some(BackdropInfo {
                        opaque_rect: pic_clip_rect,
                        kind: None,
                    });
                }
            }
            PrimitiveInstanceKind::RadialGradient { data_handle, .. } => {
                let gradient_data = &data_stores.radial_grad[data_handle];
                if gradient_data.stops_opacity.is_opaque
                    && gradient_data.tile_spacing == LayoutSize::zero()
                {
                    backdrop_candidate = Some(BackdropInfo {
                        opaque_rect: pic_clip_rect,
                        kind: None,
                    });
                }
            }
            PrimitiveInstanceKind::LineDecoration { .. } |
            PrimitiveInstanceKind::NormalBorder { .. } |
            PrimitiveInstanceKind::TextRun { .. } |
            PrimitiveInstanceKind::Backdrop { .. } => {
                // These don't contribute dependencies
            }
        };

        // If this primitive considers itself a backdrop candidate, apply further
        // checks to see if it matches all conditions to be a backdrop.
        let mut vis_flags = PrimitiveVisibilityFlags::empty();

        if let Some(backdrop_candidate) = backdrop_candidate {
            let is_suitable_backdrop = match backdrop_candidate.kind {
                Some(BackdropKind::Clear) => {
                    // Clear prims are special - they always end up in their own slice,
                    // and always set the backdrop. In future, we hope to completely
                    // remove clear prims, since they don't integrate with the compositing
                    // system cleanly.
                    true
                }
                Some(BackdropKind::Color { .. }) | None => {
                    // Check a number of conditions to see if we can consider this
                    // primitive as an opaque backdrop rect. Several of these are conservative
                    // checks and could be relaxed in future. However, these checks
                    // are quick and capture the common cases of background rects and images.
                    // Specifically, we currently require:
                    //  - The primitive is on the main picture cache surface.
                    //  - Same coord system as picture cache (ensures rects are axis-aligned).
                    //  - No clip masks exist.
                    let same_coord_system = {
                        let prim_spatial_node = &frame_context.spatial_tree
                            .spatial_nodes[prim_spatial_node_index.0 as usize];
                        let surface_spatial_node = &frame_context.spatial_tree
                            .spatial_nodes[self.spatial_node_index.0 as usize];

                        prim_spatial_node.coordinate_system_id == surface_spatial_node.coordinate_system_id
                    };

                    same_coord_system && on_picture_surface
                }
            };

            if is_suitable_backdrop
                && self.external_surfaces.is_empty()
                && !prim_clip_chain.needs_mask {

                if backdrop_candidate.opaque_rect.contains_rect(&self.backdrop.opaque_rect) {
                    self.backdrop.opaque_rect = backdrop_candidate.opaque_rect;
                }

                if let Some(kind) = backdrop_candidate.kind {
                    if backdrop_candidate.opaque_rect.contains_rect(&self.local_rect) {
                        // If we have a color backdrop, mark the visibility flags
                        // of the primitive so it is skipped during batching (and
                        // also clears any previous primitives).
                        if let BackdropKind::Color { .. } = kind {
                            vis_flags |= PrimitiveVisibilityFlags::IS_BACKDROP;
                        }

                        self.backdrop.kind = Some(kind);
                    }
                }
            }
        }

        // Record any new spatial nodes in the used list.
        for spatial_node_index in &prim_info.spatial_nodes {
            self.spatial_node_comparer.register_used_transform(
                *spatial_node_index,
                self.frame_id,
                frame_context.spatial_tree,
            );
        }

        // Truncate the lengths of dependency arrays to the max size we can handle.
        // Any arrays this size or longer will invalidate every frame.
        prim_info.clips.truncate(MAX_PRIM_SUB_DEPS);
        prim_info.opacity_bindings.truncate(MAX_PRIM_SUB_DEPS);
        prim_info.spatial_nodes.truncate(MAX_PRIM_SUB_DEPS);
        prim_info.images.truncate(MAX_PRIM_SUB_DEPS);

        // Normalize the tile coordinates before adding to tile dependencies.
        // For each affected tile, mark any of the primitive dependencies.
        for y in p0.y .. p1.y {
            for x in p0.x .. p1.x {
                // TODO(gw): Convert to 2d array temporarily to avoid hash lookups per-tile?
                let key = TileOffset::new(x, y);
                let tile = self.tiles.get_mut(&key).expect("bug: no tile");

                tile.add_prim_dependency(&prim_info);
            }
        }

        prim_instance.vis.flags = vis_flags;
        prim_instance.vis.state = VisibilityState::Coarse {
            rect_in_pic_space: pic_clip_rect,
        };
    }

    /// Print debug information about this picture cache to a tree printer.
    fn print(&self) {
        // TODO(gw): This initial implementation is very basic - just printing
        //           the picture cache state to stdout. In future, we can
        //           make this dump each frame to a file, and produce a report
        //           stating which frames had invalidations. This will allow
        //           diff'ing the invalidation states in a visual tool.
        let mut pt = PrintTree::new("Picture Cache");

        pt.new_level(format!("Slice {:?}", self.slice));

        pt.add_item(format!("fract_offset: {:?}", self.fract_offset));
        pt.add_item(format!("background_color: {:?}", self.background_color));

        for y in self.tile_bounds_p0.y .. self.tile_bounds_p1.y {
            for x in self.tile_bounds_p0.x .. self.tile_bounds_p1.x {
                let key = TileOffset::new(x, y);
                let tile = &self.tiles[&key];
                tile.print(&mut pt);
            }
        }

        pt.end_level();
    }

    fn calculate_subpixel_mode(&self) -> SubpixelMode {
        // If the overall tile cache is known opaque, subpixel AA is allowed everywhere
        if self.is_opaque() {
            return SubpixelMode::Allow;
        }

        // If we didn't find any valid opaque backdrop, no subpixel AA allowed
        if self.backdrop.opaque_rect.is_empty() {
            return SubpixelMode::Deny;
        }

        // If the opaque backdrop rect covers the entire tile cache surface,
        // we can allow subpixel AA anywhere, skipping the per-text-run tests
        // later on during primitive preparation.
        if self.backdrop.opaque_rect.contains_rect(&self.local_rect) {
            return SubpixelMode::Allow;
        }

        // If none of the simple cases above match, we need to build a list
        // of excluded rects (compositor surfaces) and a valid inclusion rect
        // (known opaque area) where we can support subpixel AA.
        // TODO(gw): In future, it may make sense to have > 1 inclusion rect,
        //           but this handles the common cases.
        // TODO(gw): If a text run gets animated such that it's moving in a way that is
        //           sometimes intersecting with the video rect, this can result in subpixel
        //           AA flicking on/off for that text run. It's probably very rare, but
        //           something we should handle in future.

        let excluded_rects = self.external_surfaces
            .iter()
            .map(|s| {
                s.local_rect
            })
            .collect();

        SubpixelMode::Conditional {
            allowed_rect: self.backdrop.opaque_rect,
            excluded_rects,
        }
    }

    /// Apply any updates after prim dependency updates. This applies
    /// any late tile invalidations, and sets up the dirty rect and
    /// set of tile blits.
    pub fn post_update(
        &mut self,
        frame_context: &FrameVisibilityContext,
        frame_state: &mut FrameVisibilityState,
    ) {
        self.dirty_region.reset(self.spatial_node_index);
        self.subpixel_mode = self.calculate_subpixel_mode();

        let map_pic_to_world = SpaceMapper::new_with_target(
            ROOT_SPATIAL_NODE_INDEX,
            self.spatial_node_index,
            frame_context.global_screen_world_rect,
            frame_context.spatial_tree,
        );

        // Register the opaque region of this tile cache as an occluder, which
        // is used later in the frame to occlude other tiles.
        if !self.backdrop.opaque_rect.is_empty() {
            let backdrop_rect = self.backdrop.opaque_rect
                .intersection(&self.local_rect)
                .and_then(|r| {
                    r.intersection(&self.local_clip_rect)
                });

            if let Some(backdrop_rect) = backdrop_rect {
                let world_backdrop_rect = map_pic_to_world
                    .map(&backdrop_rect)
                    .expect("bug: unable to map backdrop to world space");

                // Since we register the entire backdrop rect, use the opaque z-id for the
                // picture cache slice.
                frame_state.composite_state.register_occluder(
                    self.z_id_opaque,
                    world_backdrop_rect,
                );
            }
        }

        // Register any external compositor surfaces as potential occluders. This
        // is especially useful when viewing video in full-screen mode, as it is
        // able to occlude every background tile (avoiding allocation, rasterizion
        // and compositing).
        for external_surface in &self.external_surfaces {
            let local_surface_rect = external_surface.local_rect
                .intersection(&external_surface.local_clip_rect)
                .and_then(|r| {
                    r.intersection(&self.local_clip_rect)
                });

            if let Some(local_surface_rect) = local_surface_rect {
                let world_surface_rect = map_pic_to_world
                    .map(&local_surface_rect)
                    .expect("bug: unable to map external surface to world space");

                frame_state.composite_state.register_occluder(
                    external_surface.z_id,
                    world_surface_rect,
                );
            }
        }

        // A simple GC of the native external surface cache, to remove and free any
        // surfaces that were not referenced during the update_prim_dependencies pass.
        self.external_native_surface_cache.retain(|_, surface| {
            if !surface.used_this_frame {
                frame_state.resource_cache.destroy_compositor_surface(surface.native_surface_id);
            }

            surface.used_this_frame
        });

        // Detect if the picture cache was scrolled or scaled. In this case,
        // the device space dirty rects aren't applicable (until we properly
        // integrate with OS compositors that can handle scrolling slices).
        let root_transform = frame_context
            .spatial_tree
            .get_relative_transform(
                self.spatial_node_index,
                ROOT_SPATIAL_NODE_INDEX,
            );
        let root_transform = match root_transform {
            CoordinateSpaceMapping::Local => ScaleOffset::identity(),
            CoordinateSpaceMapping::ScaleOffset(scale_offset) => scale_offset,
            CoordinateSpaceMapping::Transform(..) => panic!("bug: picture caches don't support complex transforms"),
        };
        const EPSILON: f32 = 0.001;
        let root_translation_changed =
            !root_transform.offset.x.approx_eq_eps(&self.root_transform.offset.x, &EPSILON) ||
            !root_transform.offset.y.approx_eq_eps(&self.root_transform.offset.y, &EPSILON);
        let root_scale_changed =
            !root_transform.scale.x.approx_eq_eps(&self.root_transform.scale.x, &EPSILON) ||
            !root_transform.scale.y.approx_eq_eps(&self.root_transform.scale.y, &EPSILON);

        if root_translation_changed || root_scale_changed || frame_context.config.force_invalidation {
            self.root_transform = root_transform;
            frame_state.composite_state.dirty_rects_are_valid = false;
        }

        let pic_to_world_mapper = SpaceMapper::new_with_target(
            ROOT_SPATIAL_NODE_INDEX,
            self.spatial_node_index,
            frame_context.global_screen_world_rect,
            frame_context.spatial_tree,
        );

        // All compositor surfaces have allocated a z_id, so reserve a z_id for alpha tiles.
        let z_id_alpha = frame_state.composite_state.z_generator.next();

        let ctx = TilePostUpdateContext {
            pic_to_world_mapper,
            global_device_pixel_scale: frame_context.global_device_pixel_scale,
            local_clip_rect: self.local_clip_rect,
            backdrop: self.backdrop,
            opacity_bindings: &self.opacity_bindings,
            color_bindings: &self.color_bindings,
            current_tile_size: self.current_tile_size,
            local_rect: self.local_rect,
            external_surfaces: &self.external_surfaces,
            z_id_opaque: self.z_id_opaque,
            z_id_alpha,
            invalidate_all: root_scale_changed || frame_context.config.force_invalidation,
        };

        let mut state = TilePostUpdateState {
            resource_cache: frame_state.resource_cache,
            composite_state: frame_state.composite_state,
            compare_cache: &mut self.compare_cache,
            spatial_node_comparer: &mut self.spatial_node_comparer,
        };

        // Step through each tile and invalidate if the dependencies have changed. Determine
        // the current opacity setting and whether it's changed.
        for tile in self.tiles.values_mut() {
            tile.post_update(&ctx, &mut state, frame_context);
        }
    }
}

pub struct PictureScratchBuffer {
    surface_stack: Vec<SurfaceIndex>,
    picture_stack: Vec<PictureInfo>,
    clip_chain_ids: Vec<ClipChainId>,
}

impl Default for PictureScratchBuffer {
    fn default() -> Self {
        PictureScratchBuffer {
            surface_stack: Vec::new(),
            picture_stack: Vec::new(),
            clip_chain_ids: Vec::new(),
        }
    }
}

impl PictureScratchBuffer {
    pub fn begin_frame(&mut self) {
        self.surface_stack.clear();
        self.picture_stack.clear();
        self.clip_chain_ids.clear();
    }

    pub fn recycle(&mut self, recycler: &mut Recycler) {
        recycler.recycle_vec(&mut self.surface_stack);
        recycler.recycle_vec(&mut self.picture_stack);
    }
 }

/// Maintains a stack of picture and surface information, that
/// is used during the initial picture traversal.
pub struct PictureUpdateState<'a> {
    surfaces: &'a mut Vec<SurfaceInfo>,
    surface_stack: Vec<SurfaceIndex>,
    picture_stack: Vec<PictureInfo>,
}

impl<'a> PictureUpdateState<'a> {
    pub fn update_all(
        buffers: &mut PictureScratchBuffer,
        surfaces: &'a mut Vec<SurfaceInfo>,
        pic_index: PictureIndex,
        picture_primitives: &mut [PicturePrimitive],
        frame_context: &FrameBuildingContext,
        gpu_cache: &mut GpuCache,
        clip_store: &ClipStore,
        data_stores: &mut DataStores,
    ) {
        profile_scope!("UpdatePictures");
        profile_marker!("UpdatePictures");

        let mut state = PictureUpdateState {
            surfaces,
            surface_stack: buffers.surface_stack.take().cleared(),
            picture_stack: buffers.picture_stack.take().cleared(),
        };

        state.surface_stack.push(SurfaceIndex(0));

        state.update(
            pic_index,
            picture_primitives,
            frame_context,
            gpu_cache,
            clip_store,
            data_stores,
        );

        buffers.surface_stack = state.surface_stack.take();
        buffers.picture_stack = state.picture_stack.take();
    }

    /// Return the current surface
    fn current_surface(&self) -> &SurfaceInfo {
        &self.surfaces[self.surface_stack.last().unwrap().0]
    }

    /// Return the current surface (mutable)
    fn current_surface_mut(&mut self) -> &mut SurfaceInfo {
        &mut self.surfaces[self.surface_stack.last().unwrap().0]
    }

    /// Push a new surface onto the update stack.
    fn push_surface(
        &mut self,
        surface: SurfaceInfo,
    ) -> SurfaceIndex {
        let surface_index = SurfaceIndex(self.surfaces.len());
        self.surfaces.push(surface);
        self.surface_stack.push(surface_index);
        surface_index
    }

    /// Pop a surface on the way up the picture traversal
    fn pop_surface(&mut self) -> SurfaceIndex{
        self.surface_stack.pop().unwrap()
    }

    /// Push information about a picture on the update stack
    fn push_picture(
        &mut self,
        info: PictureInfo,
    ) {
        self.picture_stack.push(info);
    }

    /// Pop the picture info off, on the way up the picture traversal
    fn pop_picture(
        &mut self,
    ) -> PictureInfo {
        self.picture_stack.pop().unwrap()
    }

    /// Update a picture, determining surface configuration,
    /// rasterization roots, and (in future) whether there
    /// are cached surfaces that can be used by this picture.
    fn update(
        &mut self,
        pic_index: PictureIndex,
        picture_primitives: &mut [PicturePrimitive],
        frame_context: &FrameBuildingContext,
        gpu_cache: &mut GpuCache,
        clip_store: &ClipStore,
        data_stores: &mut DataStores,
    ) {
        if let Some(prim_list) = picture_primitives[pic_index.0].pre_update(
            self,
            frame_context,
        ) {
            for cluster in &prim_list.clusters {
                if !cluster.flags.contains(ClusterFlags::IS_PICTURE) {
                    continue;
                }
                for prim_instance in &prim_list.prim_instances[cluster.prim_range()] {
                    let child_pic_index = match prim_instance.kind {
                        PrimitiveInstanceKind::Picture { pic_index, .. } => pic_index,
                        _ => unreachable!(),
                    };

                    self.update(
                        child_pic_index,
                        picture_primitives,
                        frame_context,
                        gpu_cache,
                        clip_store,
                        data_stores,
                    );
                }
            }

            picture_primitives[pic_index.0].post_update(
                prim_list,
                self,
                frame_context,
                data_stores,
            );
        }
    }
}

#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct SurfaceIndex(pub usize);

pub const ROOT_SURFACE_INDEX: SurfaceIndex = SurfaceIndex(0);

/// Describes the render task configuration for a picture surface.
#[derive(Debug)]
pub enum SurfaceRenderTasks {
    /// The common type of surface is a single render task
    Simple(RenderTaskId),
    /// Some surfaces draw their content, and then have further tasks applied
    /// to that input (such as blur passes for shadows). These tasks have a root
    /// (the output of the surface), and a port (for attaching child task dependencies
    /// to the content).
    Chained { root_task_id: RenderTaskId, port_task_id: RenderTaskId },
    /// Picture caches are a single surface consisting of multiple render
    /// tasks, one per tile with dirty content.
    Tiled(Vec<RenderTaskId>),
}

/// Information about an offscreen surface. For now,
/// it contains information about the size and coordinate
/// system of the surface. In the future, it will contain
/// information about the contents of the surface, which
/// will allow surfaces to be cached / retained between
/// frames and display lists.
#[derive(Debug)]
pub struct SurfaceInfo {
    /// A local rect defining the size of this surface, in the
    /// coordinate system of the surface itself.
    pub rect: PictureRect,
    /// Part of the surface that we know to be opaque.
    pub opaque_rect: PictureRect,
    /// Helper structs for mapping local rects in different
    /// coordinate systems into the surface coordinates.
    pub map_local_to_surface: SpaceMapper<LayoutPixel, PicturePixel>,
    /// Defines the positioning node for the surface itself,
    /// and the rasterization root for this surface.
    pub raster_spatial_node_index: SpatialNodeIndex,
    pub surface_spatial_node_index: SpatialNodeIndex,
    /// This is set when the render task is created.
    pub render_tasks: Option<SurfaceRenderTasks>,
    /// How much the local surface rect should be inflated (for blur radii).
    pub inflation_factor: f32,
    /// The device pixel ratio specific to this surface.
    pub device_pixel_scale: DevicePixelScale,
    /// The scale factors of the surface to raster transform.
    pub scale_factors: (f32, f32),
}

impl SurfaceInfo {
    pub fn new(
        surface_spatial_node_index: SpatialNodeIndex,
        raster_spatial_node_index: SpatialNodeIndex,
        inflation_factor: f32,
        world_rect: WorldRect,
        spatial_tree: &SpatialTree,
        device_pixel_scale: DevicePixelScale,
        scale_factors: (f32, f32),
    ) -> Self {
        let map_surface_to_world = SpaceMapper::new_with_target(
            ROOT_SPATIAL_NODE_INDEX,
            surface_spatial_node_index,
            world_rect,
            spatial_tree,
        );

        let pic_bounds = map_surface_to_world
            .unmap(&map_surface_to_world.bounds)
            .unwrap_or_else(PictureRect::max_rect);

        let map_local_to_surface = SpaceMapper::new(
            surface_spatial_node_index,
            pic_bounds,
        );

        SurfaceInfo {
            rect: PictureRect::zero(),
            opaque_rect: PictureRect::zero(),
            map_local_to_surface,
            render_tasks: None,
            raster_spatial_node_index,
            surface_spatial_node_index,
            inflation_factor,
            device_pixel_scale,
            scale_factors,
        }
    }
}

#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct RasterConfig {
    /// How this picture should be composited into
    /// the parent surface.
    pub composite_mode: PictureCompositeMode,
    /// Index to the surface descriptor for this
    /// picture.
    pub surface_index: SurfaceIndex,
    /// Whether this picture establishes a rasterization root.
    pub establishes_raster_root: bool,
    /// Scaling factor applied to fit within MAX_SURFACE_SIZE when
    /// establishing a raster root.
    /// Most code doesn't need to know about it, since it is folded
    /// into device_pixel_scale when the rendertask is set up.
    /// However e.g. text rasterization uses it to ensure consistent
    /// on-screen font size.
    pub root_scaling_factor: f32,
    /// The world rect of this picture clipped to the current culling
    /// rect. This is used for determining the size of the render
    /// target rect for this surface, and calculating raster scale
    /// factors.
    pub clipped_bounding_rect: WorldRect,
}

bitflags! {
    /// A set of flags describing why a picture may need a backing surface.
    #[cfg_attr(feature = "capture", derive(Serialize))]
    pub struct BlitReason: u32 {
        /// Mix-blend-mode on a child that requires isolation.
        const ISOLATE = 1;
        /// Clip node that _might_ require a surface.
        const CLIP = 2;
        /// Preserve-3D requires a surface for plane-splitting.
        const PRESERVE3D = 4;
        /// A backdrop that is reused which requires a surface.
        const BACKDROP = 8;
    }
}

/// Specifies how this Picture should be composited
/// onto the target it belongs to.
#[allow(dead_code)]
#[derive(Debug, Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
pub enum PictureCompositeMode {
    /// Apply CSS mix-blend-mode effect.
    MixBlend(MixBlendMode),
    /// Apply a CSS filter (except component transfer).
    Filter(Filter),
    /// Apply a component transfer filter.
    ComponentTransferFilter(FilterDataHandle),
    /// Draw to intermediate surface, copy straight across. This
    /// is used for CSS isolation, and plane splitting.
    Blit(BlitReason),
    /// Used to cache a picture as a series of tiles.
    TileCache {
        slice_id: SliceId,
    },
    /// Apply an SVG filter
    SvgFilter(Vec<FilterPrimitive>, Vec<SFilterData>),
}

impl PictureCompositeMode {
    pub fn inflate_picture_rect(&self, picture_rect: PictureRect, scale_factors: (f32, f32)) -> PictureRect {
        let mut result_rect = picture_rect;
        match self {
            PictureCompositeMode::Filter(filter) => match filter {
                Filter::Blur(width, height) => {
                    let width_factor = clamp_blur_radius(*width, scale_factors).ceil() * BLUR_SAMPLE_SCALE;
                    let height_factor = clamp_blur_radius(*height, scale_factors).ceil() * BLUR_SAMPLE_SCALE;
                    result_rect = picture_rect.inflate(width_factor, height_factor);
                },
                Filter::DropShadows(shadows) => {
                    let mut max_inflation: f32 = 0.0;
                    for shadow in shadows {
                        max_inflation = max_inflation.max(shadow.blur_radius);
                    }
                    max_inflation = clamp_blur_radius(max_inflation, scale_factors).ceil() * BLUR_SAMPLE_SCALE;
                    result_rect = picture_rect.inflate(max_inflation, max_inflation);
                },
                _ => {}
            }
            PictureCompositeMode::SvgFilter(primitives, _) => {
                let mut output_rects = Vec::with_capacity(primitives.len());
                for (cur_index, primitive) in primitives.iter().enumerate() {
                    let output_rect = match primitive.kind {
                        FilterPrimitiveKind::Blur(ref primitive) => {
                            let input = primitive.input.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect);
                            let width_factor = primitive.width.round() * BLUR_SAMPLE_SCALE;
                            let height_factor = primitive.height.round() * BLUR_SAMPLE_SCALE;
                            input.inflate(width_factor, height_factor)
                        }
                        FilterPrimitiveKind::DropShadow(ref primitive) => {
                            let inflation_factor = primitive.shadow.blur_radius.ceil() * BLUR_SAMPLE_SCALE;
                            let input = primitive.input.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect);
                            let shadow_rect = input.inflate(inflation_factor, inflation_factor);
                            input.union(&shadow_rect.translate(primitive.shadow.offset * Scale::new(1.0)))
                        }
                        FilterPrimitiveKind::Blend(ref primitive) => {
                            primitive.input1.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect)
                                .union(&primitive.input2.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect))
                        }
                        FilterPrimitiveKind::Composite(ref primitive) => {
                            primitive.input1.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect)
                                .union(&primitive.input2.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect))
                        }
                        FilterPrimitiveKind::Identity(ref primitive) =>
                            primitive.input.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect),
                        FilterPrimitiveKind::Opacity(ref primitive) =>
                            primitive.input.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect),
                        FilterPrimitiveKind::ColorMatrix(ref primitive) =>
                            primitive.input.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect),
                        FilterPrimitiveKind::ComponentTransfer(ref primitive) =>
                            primitive.input.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect),
                        FilterPrimitiveKind::Offset(ref primitive) => {
                            let input_rect = primitive.input.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect);
                            input_rect.translate(primitive.offset * Scale::new(1.0))
                        },

                        FilterPrimitiveKind::Flood(..) => picture_rect,
                    };
                    output_rects.push(output_rect);
                    result_rect = result_rect.union(&output_rect);
                }
            }
            _ => {},
        }
        result_rect
    }
}

/// Enum value describing the place of a picture in a 3D context.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
pub enum Picture3DContext<C> {
    /// The picture is not a part of 3D context sub-hierarchy.
    Out,
    /// The picture is a part of 3D context.
    In {
        /// Additional data per child for the case of this a root of 3D hierarchy.
        root_data: Option<Vec<C>>,
        /// The spatial node index of an "ancestor" element, i.e. one
        /// that establishes the transformed element's containing block.
        ///
        /// See CSS spec draft for more details:
        /// https://drafts.csswg.org/css-transforms-2/#accumulated-3d-transformation-matrix-computation
        ancestor_index: SpatialNodeIndex,
    },
}

/// Information about a preserve-3D hierarchy child that has been plane-split
/// and ordered according to the view direction.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct OrderedPictureChild {
    pub anchor: PlaneSplitAnchor,
    pub spatial_node_index: SpatialNodeIndex,
    pub gpu_address: GpuCacheAddress,
}

bitflags! {
    /// A set of flags describing why a picture may need a backing surface.
    #[cfg_attr(feature = "capture", derive(Serialize))]
    pub struct ClusterFlags: u32 {
        /// This cluster is a picture
        const IS_PICTURE = 1;
        /// Whether this cluster is visible when the position node is a backface.
        const IS_BACKFACE_VISIBLE = 2;
        /// This flag is set during the first pass picture traversal, depending on whether
        /// the cluster is visible or not. It's read during the second pass when primitives
        /// consult their owning clusters to see if the primitive itself is visible.
        const IS_VISIBLE = 4;
        /// Is a backdrop-filter cluster that requires special handling during post_update.
        const IS_BACKDROP_FILTER = 8;
    }
}

/// Descriptor for a cluster of primitives. For now, this is quite basic but will be
/// extended to handle more spatial clustering of primitives.
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct PrimitiveCluster {
    /// The positioning node for this cluster.
    pub spatial_node_index: SpatialNodeIndex,
    /// The bounding rect of the cluster, in the local space of the spatial node.
    /// This is used to quickly determine the overall bounding rect for a picture
    /// during the first picture traversal, which is needed for local scale
    /// determination, and render task size calculations.
    bounding_rect: LayoutRect,
    /// a part of the cluster that we know to be opaque if any. Does not always
    /// describe the entire opaque region, but all content within that rect must
    /// be opaque.
    pub opaque_rect: LayoutRect,
    /// The range of primitive instance indices associated with this cluster.
    pub prim_range: Range<usize>,
    /// Various flags / state for this cluster.
    pub flags: ClusterFlags,
}

impl PrimitiveCluster {
    /// Construct a new primitive cluster for a given positioning node.
    fn new(
        spatial_node_index: SpatialNodeIndex,
        flags: ClusterFlags,
        first_instance_index: usize,
    ) -> Self {
        PrimitiveCluster {
            bounding_rect: LayoutRect::zero(),
            opaque_rect: LayoutRect::zero(),
            spatial_node_index,
            flags,
            prim_range: first_instance_index..first_instance_index
        }
    }

    /// Return true if this cluster is compatible with the given params
    pub fn is_compatible(
        &self,
        spatial_node_index: SpatialNodeIndex,
        flags: ClusterFlags,
    ) -> bool {
        self.flags == flags && self.spatial_node_index == spatial_node_index
    }

    pub fn prim_range(&self) -> Range<usize> {
        self.prim_range.clone()
    }

    /// Add a primitive instance to this cluster, at the start or end
    fn add_instance(
        &mut self,
        culling_rect: &LayoutRect,
        instance_index: usize,
    ) {
        debug_assert_eq!(instance_index, self.prim_range.end);
        self.bounding_rect = self.bounding_rect.union(culling_rect);
        self.prim_range.end += 1;
    }
}

/// A list of primitive instances that are added to a picture
/// This ensures we can keep a list of primitives that
/// are pictures, for a fast initial traversal of the picture
/// tree without walking the instance list.
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct PrimitiveList {
    /// List of primitives grouped into clusters.
    pub clusters: Vec<PrimitiveCluster>,
    pub prim_instances: Vec<PrimitiveInstance>,
}

impl PrimitiveList {
    /// Construct an empty primitive list. This is
    /// just used during the take_context / restore_context
    /// borrow check dance, which will be removed as the
    /// picture traversal pass is completed.
    pub fn empty() -> Self {
        PrimitiveList {
            clusters: Vec::new(),
            prim_instances: Vec::new(),
        }
    }

    /// Add a primitive instance to the end of the list
    pub fn add_prim(
        &mut self,
        prim_instance: PrimitiveInstance,
        prim_rect: LayoutRect,
        spatial_node_index: SpatialNodeIndex,
        prim_flags: PrimitiveFlags,
    ) {
        let mut flags = ClusterFlags::empty();

        // Pictures are always put into a new cluster, to make it faster to
        // iterate all pictures in a given primitive list.
        match prim_instance.kind {
            PrimitiveInstanceKind::Picture { .. } => {
                flags.insert(ClusterFlags::IS_PICTURE);
            }
            PrimitiveInstanceKind::Backdrop { .. } => {
                flags.insert(ClusterFlags::IS_BACKDROP_FILTER);
            }
            _ => {}
        }

        if prim_flags.contains(PrimitiveFlags::IS_BACKFACE_VISIBLE) {
            flags.insert(ClusterFlags::IS_BACKFACE_VISIBLE);
        }

        let culling_rect = prim_instance.clip_set.local_clip_rect
            .intersection(&prim_rect)
            .unwrap_or_else(LayoutRect::zero);

        // Primitive lengths aren't evenly distributed among primitive lists:
        // We often have a large amount of single primitive lists, a
        // few below 20~30 primitives, and even fewer lists (maybe a couple)
        // in the multiple hundreds with nothing in between.
        // We can see in profiles that reallocating vectors while pushing
        // primitives is taking a large amount of the total scene build time,
        // so we take advantage of what we know about the length distributions
        // to go for an adapted vector growth pattern that avoids over-allocating
        // for the many small allocations while avoiding a lot of reallocation by
        // quickly converging to the common sizes.
        // Rust's default vector growth strategy (when pushing elements one by one)
        // is to double the capacity every time.
        let prims_len = self.prim_instances.len();
        if prims_len == self.prim_instances.capacity() {
            let next_alloc = match prims_len {
                1 ..= 31 => 32 - prims_len,
                32 ..= 256 => 512 - prims_len,
                _ => prims_len * 2,
            };

            self.prim_instances.reserve(next_alloc);
        }

        let instance_index = prims_len;
        self.prim_instances.push(prim_instance);

        if let Some(cluster) = self.clusters.last_mut() {
            if cluster.is_compatible(spatial_node_index, flags) {
                cluster.add_instance(&culling_rect, instance_index);
                return;
            }
        }

        // Same idea with clusters, using a different distribution.
        let clusters_len = self.clusters.len();
        if clusters_len == self.clusters.capacity() {
            let next_alloc = match clusters_len {
                1 ..= 15 => 16 - clusters_len,
                16 ..= 127 => 128 - clusters_len,
                _ => clusters_len * 2,
            };

            self.clusters.reserve(next_alloc);
        }

        let mut cluster = PrimitiveCluster::new(
            spatial_node_index,
            flags,
            instance_index,
        );

        cluster.add_instance(&culling_rect, instance_index);
        self.clusters.push(cluster);
    }

    /// Returns true if there are no clusters (and thus primitives)
    pub fn is_empty(&self) -> bool {
        self.clusters.is_empty()
    }
}

/// Defines configuration options for a given picture primitive.
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct PictureOptions {
    /// If true, WR should inflate the bounding rect of primitives when
    /// using a filter effect that requires inflation.
    pub inflate_if_required: bool,
}

impl Default for PictureOptions {
    fn default() -> Self {
        PictureOptions {
            inflate_if_required: true,
        }
    }
}

#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct PicturePrimitive {
    /// List of primitives, and associated info for this picture.
    pub prim_list: PrimitiveList,

    #[cfg_attr(feature = "capture", serde(skip))]
    pub state: Option<PictureState>,

    /// If true, apply the local clip rect to primitive drawn
    /// in this picture.
    pub apply_local_clip_rect: bool,
    /// If false and transform ends up showing the back of the picture,
    /// it will be considered invisible.
    pub is_backface_visible: bool,

    // If a mix-blend-mode, contains the render task for
    // the readback of the framebuffer that we use to sample
    // from in the mix-blend-mode shader.
    // For drop-shadow filter, this will store the original
    // picture task which would be rendered on screen after
    // blur pass.
    pub secondary_render_task_id: Option<RenderTaskId>,
    /// How this picture should be composited.
    /// If None, don't composite - just draw directly on parent surface.
    pub requested_composite_mode: Option<PictureCompositeMode>,

    pub raster_config: Option<RasterConfig>,
    pub context_3d: Picture3DContext<OrderedPictureChild>,

    // Optional cache handles for storing extra data
    // in the GPU cache, depending on the type of
    // picture.
    pub extra_gpu_data_handles: SmallVec<[GpuCacheHandle; 1]>,

    /// The spatial node index of this picture when it is
    /// composited into the parent picture.
    pub spatial_node_index: SpatialNodeIndex,

    /// The conservative local rect of this picture. It is
    /// built dynamically during the first picture traversal.
    /// It is composed of already snapped primitives.
    pub estimated_local_rect: LayoutRect,

    /// The local rect of this picture. It is built
    /// dynamically during the frame visibility update. It
    /// differs from the estimated_local_rect because it
    /// will not contain culled primitives, takes into
    /// account surface inflation and the whole clip chain.
    /// It is frequently the same, but may be quite
    /// different depending on how much was culled.
    pub precise_local_rect: LayoutRect,

    /// Store the state of the previous precise local rect
    /// for this picture. We need this in order to know when
    /// to invalidate segments / drop-shadow gpu cache handles.
    pub prev_precise_local_rect: LayoutRect,

    /// If false, this picture needs to (re)build segments
    /// if it supports segment rendering. This can occur
    /// if the local rect of the picture changes due to
    /// transform animation and/or scrolling.
    pub segments_are_valid: bool,

    /// The config options for this picture.
    pub options: PictureOptions,

    /// Set to true if we know for sure the picture is fully opaque.
    pub is_opaque: bool,
}

impl PicturePrimitive {
    pub fn print<T: PrintTreePrinter>(
        &self,
        pictures: &[Self],
        self_index: PictureIndex,
        pt: &mut T,
    ) {
        pt.new_level(format!("{:?}", self_index));
        pt.add_item(format!("cluster_count: {:?}", self.prim_list.clusters.len()));
        pt.add_item(format!("estimated_local_rect: {:?}", self.estimated_local_rect));
        pt.add_item(format!("precise_local_rect: {:?}", self.precise_local_rect));
        pt.add_item(format!("spatial_node_index: {:?}", self.spatial_node_index));
        pt.add_item(format!("raster_config: {:?}", self.raster_config));
        pt.add_item(format!("requested_composite_mode: {:?}", self.requested_composite_mode));

        for cluster in &self.prim_list.clusters {
            if !cluster.flags.contains(ClusterFlags::IS_PICTURE) {
                continue;
            }
            for instance in &self.prim_list.prim_instances[cluster.prim_range()] {
                let index = match instance.kind {
                    PrimitiveInstanceKind::Picture { pic_index, .. } => pic_index,
                    _ => unreachable!(),
                };
                pictures[index.0].print(pictures, index, pt);
            }
        }

        pt.end_level();
    }

    /// Returns true if this picture supports segmented rendering.
    pub fn can_use_segments(&self) -> bool {
        match self.raster_config {
            // TODO(gw): Support brush segment rendering for filter and mix-blend
            //           shaders. It's possible this already works, but I'm just
            //           applying this optimization to Blit mode for now.
            Some(RasterConfig { composite_mode: PictureCompositeMode::MixBlend(..), .. }) |
            Some(RasterConfig { composite_mode: PictureCompositeMode::Filter(..), .. }) |
            Some(RasterConfig { composite_mode: PictureCompositeMode::ComponentTransferFilter(..), .. }) |
            Some(RasterConfig { composite_mode: PictureCompositeMode::TileCache { .. }, .. }) |
            Some(RasterConfig { composite_mode: PictureCompositeMode::SvgFilter(..), .. }) |
            None => {
                false
            }
            Some(RasterConfig { composite_mode: PictureCompositeMode::Blit(reason), ..}) => {
                reason == BlitReason::CLIP
            }
        }
    }

    fn resolve_scene_properties(&mut self, properties: &SceneProperties) -> bool {
        match self.requested_composite_mode {
            Some(PictureCompositeMode::Filter(ref mut filter)) => {
                match *filter {
                    Filter::Opacity(ref binding, ref mut value) => {
                        *value = properties.resolve_float(binding);
                    }
                    _ => {}
                }

                filter.is_visible()
            }
            _ => true,
        }
    }

    pub fn is_visible(&self) -> bool {
        match self.requested_composite_mode {
            Some(PictureCompositeMode::Filter(ref filter)) => {
                filter.is_visible()
            }
            _ => true,
        }
    }

    // TODO(gw): We have the PictureOptions struct available. We
    //           should move some of the parameter list in this
    //           method to be part of the PictureOptions, and
    //           avoid adding new parameters here.
    pub fn new_image(
        requested_composite_mode: Option<PictureCompositeMode>,
        context_3d: Picture3DContext<OrderedPictureChild>,
        apply_local_clip_rect: bool,
        flags: PrimitiveFlags,
        prim_list: PrimitiveList,
        spatial_node_index: SpatialNodeIndex,
        options: PictureOptions,
    ) -> Self {
        PicturePrimitive {
            prim_list,
            state: None,
            secondary_render_task_id: None,
            requested_composite_mode,
            raster_config: None,
            context_3d,
            extra_gpu_data_handles: SmallVec::new(),
            apply_local_clip_rect,
            is_backface_visible: flags.contains(PrimitiveFlags::IS_BACKFACE_VISIBLE),
            spatial_node_index,
            estimated_local_rect: LayoutRect::zero(),
            precise_local_rect: LayoutRect::zero(),
            prev_precise_local_rect: LayoutRect::zero(),
            options,
            segments_are_valid: false,
            is_opaque: false,
        }
    }

    pub fn take_context(
        &mut self,
        pic_index: PictureIndex,
        surface_spatial_node_index: SpatialNodeIndex,
        raster_spatial_node_index: SpatialNodeIndex,
        parent_surface_index: SurfaceIndex,
        parent_subpixel_mode: &SubpixelMode,
        frame_state: &mut FrameBuildingState,
        frame_context: &FrameBuildingContext,
        scratch: &mut PrimitiveScratchBuffer,
        tile_cache_logger: &mut TileCacheLogger,
        tile_caches: &mut FastHashMap<SliceId, Box<TileCacheInstance>>,
    ) -> Option<(PictureContext, PictureState, PrimitiveList)> {
        if !self.is_visible() {
            return None;
        }

        profile_scope!("take_context");

        // Extract the raster and surface spatial nodes from the raster
        // config, if this picture establishes a surface. Otherwise just
        // pass in the spatial node indices from the parent context.
        let (raster_spatial_node_index, surface_spatial_node_index, surface_index, inflation_factor) = match self.raster_config {
            Some(ref raster_config) => {
                let surface = &frame_state.surfaces[raster_config.surface_index.0];

                (
                    surface.raster_spatial_node_index,
                    self.spatial_node_index,
                    raster_config.surface_index,
                    surface.inflation_factor,
                )
            }
            None => {
                (
                    raster_spatial_node_index,
                    surface_spatial_node_index,
                    parent_surface_index,
                    0.0,
                )
            }
        };

        let map_pic_to_world = SpaceMapper::new_with_target(
            ROOT_SPATIAL_NODE_INDEX,
            surface_spatial_node_index,
            frame_context.global_screen_world_rect,
            frame_context.spatial_tree,
        );

        let pic_bounds = map_pic_to_world.unmap(&map_pic_to_world.bounds)
                                         .unwrap_or_else(PictureRect::max_rect);

        let map_local_to_pic = SpaceMapper::new(
            surface_spatial_node_index,
            pic_bounds,
        );

        let (map_raster_to_world, map_pic_to_raster) = create_raster_mappers(
            surface_spatial_node_index,
            raster_spatial_node_index,
            frame_context.global_screen_world_rect,
            frame_context.spatial_tree,
        );

        let plane_splitter = match self.context_3d {
            Picture3DContext::Out => {
                None
            }
            Picture3DContext::In { root_data: Some(_), .. } => {
                Some(PlaneSplitter::new())
            }
            Picture3DContext::In { root_data: None, .. } => {
                None
            }
        };

        match self.raster_config {
            Some(RasterConfig { surface_index, composite_mode: PictureCompositeMode::TileCache { slice_id }, .. }) => {
                let tile_cache = tile_caches.get_mut(&slice_id).unwrap();
                let mut debug_info = SliceDebugInfo::new();
                let mut surface_tasks = Vec::with_capacity(tile_cache.tiles.len());
                let device_pixel_scale = frame_state
                    .surfaces[surface_index.0]
                    .device_pixel_scale;

                // Get the overall world space rect of the picture cache. Used to clip
                // the tile rects below for occlusion testing to the relevant area.
                let world_clip_rect = map_pic_to_world
                    .map(&tile_cache.local_clip_rect)
                    .expect("bug: unable to map clip rect");
                let device_clip_rect = (world_clip_rect * frame_context.global_device_pixel_scale).round();

                for tile in tile_cache.tiles.values_mut() {

                    if tile.is_visible {
                        // Get the world space rect that this tile will actually occupy on screem
                        let device_draw_rect = device_clip_rect.intersection(&tile.device_valid_rect);

                        // If that draw rect is occluded by some set of tiles in front of it,
                        // then mark it as not visible and skip drawing. When it's not occluded
                        // it will fail this test, and get rasterized by the render task setup
                        // code below.
                        match device_draw_rect {
                            Some(device_draw_rect) => {
                                // Only check for occlusion on visible tiles that are fixed position.
                                if tile_cache.spatial_node_index == ROOT_SPATIAL_NODE_INDEX &&
                                   frame_state.composite_state.occluders.is_tile_occluded(tile.z_id, device_draw_rect) {
                                    // If this tile has an allocated native surface, free it, since it's completely
                                    // occluded. We will need to re-allocate this surface if it becomes visible,
                                    // but that's likely to be rare (e.g. when there is no content display list
                                    // for a frame or two during a tab switch).
                                    let surface = tile.surface.as_mut().expect("no tile surface set!");

                                    if let TileSurface::Texture { descriptor: SurfaceTextureDescriptor::Native { id, .. }, .. } = surface {
                                        if let Some(id) = id.take() {
                                            frame_state.resource_cache.destroy_compositor_tile(id);
                                        }
                                    }

                                    tile.is_visible = false;

                                    if frame_context.fb_config.testing {
                                        debug_info.tiles.insert(
                                            tile.tile_offset,
                                            TileDebugInfo::Occluded,
                                        );
                                    }

                                    continue;
                                }
                            }
                            None => {
                                tile.is_visible = false;
                            }
                        }
                    }

                    // If we get here, we want to ensure that the surface remains valid in the texture
                    // cache, _even if_ it's not visible due to clipping or being scrolled off-screen.
                    // This ensures that we retain valid tiles that are off-screen, but still in the
                    // display port of this tile cache instance.
                    if let Some(TileSurface::Texture { descriptor, .. }) = tile.surface.as_ref() {
                        if let SurfaceTextureDescriptor::TextureCache { ref handle, .. } = descriptor {
                            frame_state.resource_cache.texture_cache.request(
                                handle,
                                frame_state.gpu_cache,
                            );
                        }
                    }

                    // If the tile has been found to be off-screen / clipped, skip any further processing.
                    if !tile.is_visible {
                        if frame_context.fb_config.testing {
                            debug_info.tiles.insert(
                                tile.tile_offset,
                                TileDebugInfo::Culled,
                            );
                        }

                        continue;
                    }

                    if frame_context.debug_flags.contains(DebugFlags::PICTURE_CACHING_DBG) {
                        tile.root.draw_debug_rects(
                            &map_pic_to_world,
                            tile.is_opaque,
                            tile.current_descriptor.local_valid_rect,
                            scratch,
                            frame_context.global_device_pixel_scale,
                        );

                        let label_offset = DeviceVector2D::new(20.0, 30.0);
                        let tile_device_rect = tile.world_tile_rect * frame_context.global_device_pixel_scale;
                        if tile_device_rect.size.height >= label_offset.y {
                            let surface = tile.surface.as_ref().expect("no tile surface set!");

                            scratch.push_debug_string(
                                tile_device_rect.origin + label_offset,
                                debug_colors::RED,
                                format!("{:?}: s={} is_opaque={} surface={}",
                                        tile.id,
                                        tile_cache.slice,
                                        tile.is_opaque,
                                        surface.kind(),
                                ),
                            );
                        }
                    }

                    if let TileSurface::Texture { descriptor, .. } = tile.surface.as_mut().unwrap() {
                        match descriptor {
                            SurfaceTextureDescriptor::TextureCache { ref handle, .. } => {
                                // Invalidate if the backing texture was evicted.
                                if frame_state.resource_cache.texture_cache.is_allocated(handle) {
                                    // Request the backing texture so it won't get evicted this frame.
                                    // We specifically want to mark the tile texture as used, even
                                    // if it's detected not visible below and skipped. This is because
                                    // we maintain the set of tiles we care about based on visibility
                                    // during pre_update. If a tile still exists after that, we are
                                    // assuming that it's either visible or we want to retain it for
                                    // a while in case it gets scrolled back onto screen soon.
                                    // TODO(gw): Consider switching to manual eviction policy?
                                    frame_state.resource_cache.texture_cache.request(handle, frame_state.gpu_cache);
                                } else {
                                    // If the texture was evicted on a previous frame, we need to assume
                                    // that the entire tile rect is dirty.
                                    tile.invalidate(None, InvalidationReason::NoTexture);
                                }
                            }
                            SurfaceTextureDescriptor::Native { id, .. } => {
                                if id.is_none() {
                                    // There is no current surface allocation, so ensure the entire tile is invalidated
                                    tile.invalidate(None, InvalidationReason::NoSurface);
                                }
                            }
                        }
                    }

                    // Ensure that the dirty rect doesn't extend outside the local valid rect.
                    tile.local_dirty_rect = tile.local_dirty_rect
                        .intersection(&tile.current_descriptor.local_valid_rect)
                        .unwrap_or_else(PictureRect::zero);

                    // Update the world/device dirty rect
                    let world_dirty_rect = map_pic_to_world.map(&tile.local_dirty_rect).expect("bug");

                    let device_rect = (tile.world_tile_rect * frame_context.global_device_pixel_scale).round();
                    tile.device_dirty_rect = (world_dirty_rect * frame_context.global_device_pixel_scale)
                        .round_out()
                        .intersection(&device_rect)
                        .unwrap_or_else(DeviceRect::zero);

                    if tile.is_valid {
                        if frame_context.fb_config.testing {
                            debug_info.tiles.insert(
                                tile.tile_offset,
                                TileDebugInfo::Valid,
                            );
                        }

                        continue;
                    }

                    // Get the visibility mask bit(s) for this tile from the dirty region tracker. This must be done
                    // outside the if statement below, so that we include in the dirty region tiles that are handled
                    // by a background color only (no surface allocation).
                    let tile_vis_mask = tile_cache.dirty_region.add_dirty_region(
                        tile.local_dirty_rect,
                        frame_context.spatial_tree,
                    );

                    // Ensure that this texture is allocated.
                    if let TileSurface::Texture { ref mut descriptor, ref mut visibility_mask } = tile.surface.as_mut().unwrap() {
                        *visibility_mask = tile_vis_mask;

                        match descriptor {
                            SurfaceTextureDescriptor::TextureCache { ref mut handle } => {
                                if !frame_state.resource_cache.texture_cache.is_allocated(handle) {
                                    frame_state.resource_cache.texture_cache.update_picture_cache(
                                        tile_cache.current_tile_size,
                                        handle,
                                        frame_state.gpu_cache,
                                    );
                                }
                            }
                            SurfaceTextureDescriptor::Native { id } => {
                                if id.is_none() {
                                    // Allocate a native surface id if we're in native compositing mode,
                                    // and we don't have a surface yet (due to first frame, or destruction
                                    // due to tile size changing etc).
                                    if tile_cache.native_surface.is_none() {
                                        let opaque = frame_state
                                            .resource_cache
                                            .create_compositor_surface(
                                                tile_cache.virtual_offset,
                                                tile_cache.current_tile_size,
                                                true,
                                            );

                                        let alpha = frame_state
                                            .resource_cache
                                            .create_compositor_surface(
                                                tile_cache.virtual_offset,
                                                tile_cache.current_tile_size,
                                                false,
                                            );

                                        tile_cache.native_surface = Some(NativeSurface {
                                            opaque,
                                            alpha,
                                        });
                                    }

                                    // Create the tile identifier and allocate it.
                                    let surface_id = if tile.is_opaque {
                                        tile_cache.native_surface.as_ref().unwrap().opaque
                                    } else {
                                        tile_cache.native_surface.as_ref().unwrap().alpha
                                    };

                                    let tile_id = NativeTileId {
                                        surface_id,
                                        x: tile.tile_offset.x,
                                        y: tile.tile_offset.y,
                                    };

                                    frame_state.resource_cache.create_compositor_tile(tile_id);

                                    *id = Some(tile_id);
                                }
                            }
                        }

                        let content_origin_f = tile.world_tile_rect.origin * device_pixel_scale;
                        let content_origin = content_origin_f.round();
                        debug_assert!((content_origin_f.x - content_origin.x).abs() < 0.01);
                        debug_assert!((content_origin_f.y - content_origin.y).abs() < 0.01);

                        let surface = descriptor.resolve(
                            frame_state.resource_cache,
                            tile_cache.current_tile_size,
                        );

                        let scissor_rect = tile.device_dirty_rect
                            .translate(-device_rect.origin.to_vector())
                            .round()
                            .to_i32();

                        let valid_rect = tile.device_valid_rect
                            .translate(-device_rect.origin.to_vector())
                            .round()
                            .to_i32();

                        let task_size = tile_cache.current_tile_size;

                        let render_task_id = frame_state.rg_builder.add().init(
                            RenderTask::new(
                                RenderTaskLocation::Static {
                                    surface: StaticRenderTaskSurface::PictureCache {
                                        surface,
                                    },
                                    rect: task_size.into(),
                                },
                                RenderTaskKind::new_picture(
                                    task_size,
                                    tile_cache.current_tile_size.to_f32(),
                                    pic_index,
                                    content_origin,
                                    UvRectKind::Rect,
                                    surface_spatial_node_index,
                                    device_pixel_scale,
                                    *visibility_mask,
                                    Some(scissor_rect),
                                    Some(valid_rect),
                                )
                            ),
                        );

                        surface_tasks.push(render_task_id);
                    }

                    if frame_context.fb_config.testing {
                        debug_info.tiles.insert(
                            tile.tile_offset,
                            TileDebugInfo::Dirty(DirtyTileDebugInfo {
                                local_valid_rect: tile.current_descriptor.local_valid_rect,
                                local_dirty_rect: tile.local_dirty_rect,
                            }),
                        );
                    }

                    // If the entire tile valid region is dirty, we can update the fract offset
                    // at which the tile was rendered.
                    if tile.device_dirty_rect.contains_rect(&tile.device_valid_rect) {
                        tile.device_fract_offset = tile_cache.device_fract_offset;
                    }

                    // Now that the tile is valid, reset the dirty rect.
                    tile.local_dirty_rect = PictureRect::zero();
                    tile.is_valid = true;
                }

                // If invalidation debugging is enabled, dump the picture cache state to a tree printer.
                if frame_context.debug_flags.contains(DebugFlags::INVALIDATION_DBG) {
                    tile_cache.print();
                }

                // If testing mode is enabled, write some information about the current state
                // of this picture cache (made available in RenderResults).
                if frame_context.fb_config.testing {
                    frame_state.composite_state
                        .picture_cache_debug
                        .slices
                        .insert(
                            tile_cache.slice,
                            debug_info,
                        );
                }

                frame_state.init_surface_tiled(
                    surface_index,
                    surface_tasks,
                );
            }
            Some(ref mut raster_config) => {
                let pic_rect = self.precise_local_rect.cast_unit();

                let mut device_pixel_scale = frame_state
                    .surfaces[raster_config.surface_index.0]
                    .device_pixel_scale;

                let scale_factors = frame_state
                    .surfaces[raster_config.surface_index.0]
                    .scale_factors;

                // If the primitive has a filter that can sample with an offset, the clip rect has
                // to take it into account.
                let clip_inflation = match raster_config.composite_mode {
                    PictureCompositeMode::Filter(Filter::DropShadows(ref shadows)) => {
                        let mut max_offset = vec2(0.0, 0.0);
                        let mut min_offset = vec2(0.0, 0.0);
                        for shadow in shadows {
                            let offset = layout_vector_as_picture_vector(shadow.offset);
                            max_offset = max_offset.max(offset);
                            min_offset = min_offset.min(offset);
                        }

                        // Get the shadow offsets in world space.
                        let raster_min = map_pic_to_raster.map_vector(min_offset);
                        let raster_max = map_pic_to_raster.map_vector(max_offset);
                        let world_min = map_raster_to_world.map_vector(raster_min);
                        let world_max = map_raster_to_world.map_vector(raster_max);

                        // Grow the clip in the opposite direction of the shadow's offset.
                        SideOffsets2D::from_vectors_outer(
                            -world_max.max(vec2(0.0, 0.0)),
                            -world_min.min(vec2(0.0, 0.0)),
                        )
                    }
                    _ => SideOffsets2D::zero(),
                };

                let (mut clipped, mut unclipped) = match get_raster_rects(
                    pic_rect,
                    &map_pic_to_raster,
                    &map_raster_to_world,
                    raster_config.clipped_bounding_rect.outer_rect(clip_inflation),
                    device_pixel_scale,
                ) {
                    Some(info) => info,
                    None => {
                        return None
                    }
                };
                let transform = map_pic_to_raster.get_transform();

                /// If the picture (raster_config) establishes a raster root,
                /// its requested resolution won't be clipped by the parent or
                /// viewport; so we need to make sure the requested resolution is
                /// "reasonable", ie. <= MAX_SURFACE_SIZE.  If not, scale the
                /// picture down until it fits that limit.  This results in a new
                /// device_rect, a new unclipped rect, and a new device_pixel_scale.
                ///
                /// Since the adjusted device_pixel_scale is passed into the
                /// RenderTask (and then the shader via RenderTaskData) this mostly
                /// works transparently, reusing existing support for variable DPI
                /// support.  The on-the-fly scaling can be seen as on-the-fly,
                /// per-task DPI adjustment.  Logical pixels are unaffected.
                ///
                /// The scaling factor is returned to the caller; blur radius,
                /// font size, etc. need to be scaled accordingly.
                fn adjust_scale_for_max_surface_size(
                    raster_config: &RasterConfig,
                    max_target_size: i32,
                    pic_rect: PictureRect,
                    map_pic_to_raster: &SpaceMapper<PicturePixel, RasterPixel>,
                    map_raster_to_world: &SpaceMapper<RasterPixel, WorldPixel>,
                    clipped_prim_bounding_rect: WorldRect,
                    device_pixel_scale : &mut DevicePixelScale,
                    device_rect: &mut DeviceRect,
                    unclipped: &mut DeviceRect) -> Option<f32>
                {
                    let limit = if raster_config.establishes_raster_root {
                        MAX_SURFACE_SIZE
                    } else {
                        max_target_size as f32
                    };
                    if device_rect.size.width > limit || device_rect.size.height > limit {
                        // round_out will grow by 1 integer pixel if origin is on a
                        // fractional position, so keep that margin for error with -1:
                        let scale = (limit as f32 - 1.0) /
                                    (f32::max(device_rect.size.width, device_rect.size.height));
                        *device_pixel_scale = *device_pixel_scale * Scale::new(scale);
                        let new_device_rect = device_rect.to_f32() * Scale::new(scale);
                        *device_rect = new_device_rect.round_out();

                        *unclipped = match get_raster_rects(
                            pic_rect,
                            &map_pic_to_raster,
                            &map_raster_to_world,
                            clipped_prim_bounding_rect,
                            *device_pixel_scale
                        ) {
                            Some(info) => info.1,
                            None => {
                                return None
                            }
                        };
                        Some(scale)
                    }
                    else
                    {
                        None
                    }
                }

                match raster_config.composite_mode {
                    PictureCompositeMode::TileCache { .. } => {
                        unreachable!("handled above");
                    }
                    PictureCompositeMode::Filter(Filter::Blur(width, height)) => {
                        let width_std_deviation = clamp_blur_radius(width, scale_factors) * device_pixel_scale.0;
                        let height_std_deviation = clamp_blur_radius(height, scale_factors) * device_pixel_scale.0;
                        let mut blur_std_deviation = DeviceSize::new(
                            width_std_deviation * scale_factors.0,
                            height_std_deviation * scale_factors.1
                        );
                        let mut device_rect = if self.options.inflate_if_required {
                            let inflation_factor = frame_state.surfaces[raster_config.surface_index.0].inflation_factor;
                            let inflation_factor = inflation_factor * device_pixel_scale.0;

                            // The clipped field is the part of the picture that is visible
                            // on screen. The unclipped field is the screen-space rect of
                            // the complete picture, if no screen / clip-chain was applied
                            // (this includes the extra space for blur region). To ensure
                            // that we draw a large enough part of the picture to get correct
                            // blur results, inflate that clipped area by the blur range, and
                            // then intersect with the total screen rect, to minimize the
                            // allocation size.
                            clipped
                                .inflate(inflation_factor * scale_factors.0, inflation_factor * scale_factors.1)
                                .intersection(&unclipped)
                                .unwrap()
                        } else {
                            clipped
                        };

                        let mut original_size = device_rect.size;

                        // Adjust the size to avoid introducing sampling errors during the down-scaling passes.
                        // what would be even better is to rasterize the picture at the down-scaled size
                        // directly.
                        device_rect.size = BlurTask::adjusted_blur_source_size(
                            device_rect.size,
                            blur_std_deviation,
                        );

                        if let Some(scale) = adjust_scale_for_max_surface_size(
                            raster_config, frame_context.fb_config.max_target_size,
                            pic_rect, &map_pic_to_raster, &map_raster_to_world,
                            raster_config.clipped_bounding_rect,
                            &mut device_pixel_scale, &mut device_rect, &mut unclipped,
                        ) {
                            blur_std_deviation = blur_std_deviation * scale;
                            original_size = original_size.to_f32() * scale;
                            raster_config.root_scaling_factor = scale;
                        }

                        let uv_rect_kind = calculate_uv_rect_kind(
                            &pic_rect,
                            &transform,
                            &device_rect,
                            device_pixel_scale,
                        );

                        let task_size = device_rect.size.to_i32();

                        let picture_task_id = frame_state.rg_builder.add().init(
                            RenderTask::new_dynamic(
                                task_size,
                                RenderTaskKind::new_picture(
                                    task_size,
                                    unclipped.size,
                                    pic_index,
                                    device_rect.origin,
                                    uv_rect_kind,
                                    surface_spatial_node_index,
                                    device_pixel_scale,
                                    PrimitiveVisibilityMask::all(),
                                    None,
                                    None,
                                )
                            )
                        );

                        let blur_render_task_id = RenderTask::new_blur(
                            blur_std_deviation,
                            picture_task_id,
                            frame_state.rg_builder,
                            RenderTargetKind::Color,
                            None,
                            original_size.to_i32(),
                        );

                        frame_state.init_surface_chain(
                            raster_config.surface_index,
                            blur_render_task_id,
                            picture_task_id,
                            parent_surface_index,
                        );
                    }
                    PictureCompositeMode::Filter(Filter::DropShadows(ref shadows)) => {
                        let mut max_std_deviation = 0.0;
                        for shadow in shadows {
                            max_std_deviation = f32::max(max_std_deviation, shadow.blur_radius);
                        }
                        max_std_deviation = clamp_blur_radius(max_std_deviation, scale_factors) * device_pixel_scale.0;
                        let max_blur_range = max_std_deviation * BLUR_SAMPLE_SCALE;

                        // We cast clipped to f32 instead of casting unclipped to i32
                        // because unclipped can overflow an i32.
                        let mut device_rect = clipped
                                .inflate(max_blur_range * scale_factors.0, max_blur_range * scale_factors.1)
                                .intersection(&unclipped)
                                .unwrap();

                        device_rect.size = BlurTask::adjusted_blur_source_size(
                            device_rect.size,
                            DeviceSize::new(
                                max_std_deviation * scale_factors.0,
                                max_std_deviation * scale_factors.1
                            ),
                        );

                        if let Some(scale) = adjust_scale_for_max_surface_size(
                            raster_config, frame_context.fb_config.max_target_size,
                            pic_rect, &map_pic_to_raster, &map_raster_to_world,
                            raster_config.clipped_bounding_rect,
                            &mut device_pixel_scale, &mut device_rect, &mut unclipped,
                        ) {
                            // std_dev adjusts automatically from using device_pixel_scale
                            raster_config.root_scaling_factor = scale;
                        }

                        let uv_rect_kind = calculate_uv_rect_kind(
                            &pic_rect,
                            &transform,
                            &device_rect,
                            device_pixel_scale,
                        );

                        let task_size = device_rect.size.to_i32();

                        let picture_task_id = frame_state.rg_builder.add().init(
                            RenderTask::new_dynamic(
                                task_size,
                                RenderTaskKind::new_picture(
                                    task_size,
                                    unclipped.size,
                                    pic_index,
                                    device_rect.origin,
                                    uv_rect_kind,
                                    surface_spatial_node_index,
                                    device_pixel_scale,
                                    PrimitiveVisibilityMask::all(),
                                    None,
                                    None,
                                ),
                            )
                        );

                        // Add this content picture as a dependency of the parent surface, to
                        // ensure it isn't free'd after the shadow uses it as an input.
                        frame_state.add_child_render_task(
                            parent_surface_index,
                            picture_task_id,
                        );

                        self.secondary_render_task_id = Some(picture_task_id);

                        let mut blur_tasks = BlurTaskCache::default();

                        self.extra_gpu_data_handles.resize(shadows.len(), GpuCacheHandle::new());

                        let mut blur_render_task_id = picture_task_id;
                        for shadow in shadows {
                            let blur_radius = clamp_blur_radius(shadow.blur_radius, scale_factors) * device_pixel_scale.0;
                            blur_render_task_id = RenderTask::new_blur(
                                DeviceSize::new(
                                    blur_radius * scale_factors.0,
                                    blur_radius * scale_factors.1,
                                ),
                                picture_task_id,
                                frame_state.rg_builder,
                                RenderTargetKind::Color,
                                Some(&mut blur_tasks),
                                device_rect.size.to_i32(),
                            );
                        }

                        // TODO(nical) the second one should to be the blur's task id but we have several blurs now
                        frame_state.init_surface_chain(
                            raster_config.surface_index,
                            blur_render_task_id,
                            picture_task_id,
                            parent_surface_index,
                        );
                    }
                    PictureCompositeMode::MixBlend(..) if !frame_context.fb_config.gpu_supports_advanced_blend => {
                        if let Some(scale) = adjust_scale_for_max_surface_size(
                            raster_config, frame_context.fb_config.max_target_size,
                            pic_rect, &map_pic_to_raster, &map_raster_to_world,
                            raster_config.clipped_bounding_rect,
                            &mut device_pixel_scale, &mut clipped, &mut unclipped,
                        ) {
                            raster_config.root_scaling_factor = scale;
                        }

                        let uv_rect_kind = calculate_uv_rect_kind(
                            &pic_rect,
                            &transform,
                            &clipped,
                            device_pixel_scale,
                        );

                        let readback_task_id = frame_state.rg_builder.add().init(
                            RenderTask::new_dynamic(
                                clipped.size.to_i32(),
                                RenderTaskKind::new_readback(),
                            )
                        );

                        frame_state.add_child_render_task(
                            parent_surface_index,
                            readback_task_id,
                        );

                        self.secondary_render_task_id = Some(readback_task_id);

                        let task_size = clipped.size.to_i32();

                        let render_task_id = frame_state.rg_builder.add().init(
                            RenderTask::new_dynamic(
                                task_size,
                                RenderTaskKind::new_picture(
                                    task_size,
                                    unclipped.size,
                                    pic_index,
                                    clipped.origin,
                                    uv_rect_kind,
                                    surface_spatial_node_index,
                                    device_pixel_scale,
                                    PrimitiveVisibilityMask::all(),
                                    None,
                                    None,
                                )
                            )
                        );

                        frame_state.init_surface(
                            raster_config.surface_index,
                            render_task_id,
                            parent_surface_index,
                        );
                    }
                    PictureCompositeMode::Filter(..) => {

                        if let Some(scale) = adjust_scale_for_max_surface_size(
                            raster_config, frame_context.fb_config.max_target_size,
                            pic_rect, &map_pic_to_raster, &map_raster_to_world,
                            raster_config.clipped_bounding_rect,
                            &mut device_pixel_scale, &mut clipped, &mut unclipped,
                        ) {
                            raster_config.root_scaling_factor = scale;
                        }

                        let uv_rect_kind = calculate_uv_rect_kind(
                            &pic_rect,
                            &transform,
                            &clipped,
                            device_pixel_scale,
                        );

                        let task_size = clipped.size.to_i32();

                        let render_task_id = frame_state.rg_builder.add().init(
                            RenderTask::new_dynamic(
                                task_size,
                                RenderTaskKind::new_picture(
                                    task_size,
                                    unclipped.size,
                                    pic_index,
                                    clipped.origin,
                                    uv_rect_kind,
                                    surface_spatial_node_index,
                                    device_pixel_scale,
                                    PrimitiveVisibilityMask::all(),
                                    None,
                                    None,
                                )
                            )
                        );

                        frame_state.init_surface(
                            raster_config.surface_index,
                            render_task_id,
                            parent_surface_index,
                        );
                    }
                    PictureCompositeMode::ComponentTransferFilter(..) => {
                        if let Some(scale) = adjust_scale_for_max_surface_size(
                            raster_config, frame_context.fb_config.max_target_size,
                            pic_rect, &map_pic_to_raster, &map_raster_to_world,
                            raster_config.clipped_bounding_rect,
                            &mut device_pixel_scale, &mut clipped, &mut unclipped,
                        ) {
                            raster_config.root_scaling_factor = scale;
                        }

                        let uv_rect_kind = calculate_uv_rect_kind(
                            &pic_rect,
                            &transform,
                            &clipped,
                            device_pixel_scale,
                        );

                        let task_size = clipped.size.to_i32();

                        let render_task_id = frame_state.rg_builder.add().init(
                            RenderTask::new_dynamic(
                                task_size,
                                RenderTaskKind::new_picture(
                                    task_size,
                                    unclipped.size,
                                    pic_index,
                                    clipped.origin,
                                    uv_rect_kind,
                                    surface_spatial_node_index,
                                    device_pixel_scale,
                                    PrimitiveVisibilityMask::all(),
                                    None,
                                    None,
                                )
                            )
                        );

                        frame_state.init_surface(
                            raster_config.surface_index,
                            render_task_id,
                            parent_surface_index,
                        );
                    }
                    PictureCompositeMode::MixBlend(..) |
                    PictureCompositeMode::Blit(_) => {
                        if let Some(scale) = adjust_scale_for_max_surface_size(
                            raster_config, frame_context.fb_config.max_target_size,
                            pic_rect, &map_pic_to_raster, &map_raster_to_world,
                            raster_config.clipped_bounding_rect,
                            &mut device_pixel_scale, &mut clipped, &mut unclipped,
                        ) {
                            raster_config.root_scaling_factor = scale;
                        }

                        let uv_rect_kind = calculate_uv_rect_kind(
                            &pic_rect,
                            &transform,
                            &clipped,
                            device_pixel_scale,
                        );

                        let task_size = clipped.size.to_i32();

                        let render_task_id = frame_state.rg_builder.add().init(
                            RenderTask::new_dynamic(
                                task_size,
                                RenderTaskKind::new_picture(
                                    task_size,
                                    unclipped.size,
                                    pic_index,
                                    clipped.origin,
                                    uv_rect_kind,
                                    surface_spatial_node_index,
                                    device_pixel_scale,
                                    PrimitiveVisibilityMask::all(),
                                    None,
                                    None,
                                )
                            )
                        );

                        frame_state.init_surface(
                            raster_config.surface_index,
                            render_task_id,
                            parent_surface_index,
                        );
                    }
                    PictureCompositeMode::SvgFilter(ref primitives, ref filter_datas) => {

                        if let Some(scale) = adjust_scale_for_max_surface_size(
                            raster_config, frame_context.fb_config.max_target_size,
                            pic_rect, &map_pic_to_raster, &map_raster_to_world,
                            raster_config.clipped_bounding_rect,
                            &mut device_pixel_scale, &mut clipped, &mut unclipped,
                        ) {
                            raster_config.root_scaling_factor = scale;
                        }

                        let uv_rect_kind = calculate_uv_rect_kind(
                            &pic_rect,
                            &transform,
                            &clipped,
                            device_pixel_scale,
                        );

                        let task_size = clipped.size.to_i32();

                        let picture_task_id = frame_state.rg_builder.add().init(
                            RenderTask::new_dynamic(
                                task_size,
                                RenderTaskKind::new_picture(
                                    task_size,
                                    unclipped.size,
                                    pic_index,
                                    clipped.origin,
                                    uv_rect_kind,
                                    surface_spatial_node_index,
                                    device_pixel_scale,
                                    PrimitiveVisibilityMask::all(),
                                    None,
                                    None,
                                )
                            )
                        );

                        let filter_task_id = RenderTask::new_svg_filter(
                            primitives,
                            filter_datas,
                            frame_state.rg_builder,
                            clipped.size.to_i32(),
                            uv_rect_kind,
                            picture_task_id,
                            device_pixel_scale,
                        );

                        frame_state.init_surface_chain(
                            raster_config.surface_index,
                            filter_task_id,
                            picture_task_id,
                            parent_surface_index,
                        );
                    }
                }
            }
            None => {}
        };

        #[cfg(feature = "capture")]
        {
            if frame_context.debug_flags.contains(DebugFlags::TILE_CACHE_LOGGING_DBG) {
                if let Some(PictureCompositeMode::TileCache { slice_id }) = self.requested_composite_mode {
                    if let Some(ref tile_cache) = tile_caches.get(&slice_id) {
                        // extract just the fields that we're interested in
                        let mut tile_cache_tiny = TileCacheInstanceSerializer {
                            slice: tile_cache.slice,
                            tiles: FastHashMap::default(),
                            background_color: tile_cache.background_color,
                            fract_offset: tile_cache.fract_offset
                        };
                        for (key, tile) in &tile_cache.tiles {
                            tile_cache_tiny.tiles.insert(*key, TileSerializer {
                                rect: tile.local_tile_rect,
                                current_descriptor: tile.current_descriptor.clone(),
                                device_fract_offset: tile.device_fract_offset,
                                id: tile.id,
                                root: tile.root.clone(),
                                background_color: tile.background_color,
                                invalidation_reason: tile.invalidation_reason.clone()
                            });
                        }
                        let text = ron::ser::to_string_pretty(&tile_cache_tiny, Default::default()).unwrap();
                        tile_cache_logger.add(text, map_pic_to_world.get_transform());
                    }
                }
            }
        }
        #[cfg(not(feature = "capture"))]
        {
            let _tile_cache_logger = tile_cache_logger;   // unused variable fix
        }

        let state = PictureState {
            //TODO: check for MAX_CACHE_SIZE here?
            map_local_to_pic,
            map_pic_to_world,
            map_pic_to_raster,
            map_raster_to_world,
            plane_splitter,
        };

        let mut dirty_region_count = 0;

        // If this is a picture cache, push the dirty region to ensure any
        // child primitives are culled and clipped to the dirty rect(s).
        if let Some(RasterConfig { composite_mode: PictureCompositeMode::TileCache { slice_id }, .. }) = self.raster_config {
            let dirty_region = tile_caches[&slice_id].dirty_region.clone();
            frame_state.push_dirty_region(dirty_region);
            dirty_region_count += 1;
        }

        if inflation_factor > 0.0 {
            let inflated_region = frame_state.current_dirty_region().inflate(
                inflation_factor,
                frame_context.spatial_tree,
            );
            frame_state.push_dirty_region(inflated_region);
            dirty_region_count += 1;
        }

        // Disallow subpixel AA if an intermediate surface is needed.
        // TODO(lsalzman): allow overriding parent if intermediate surface is opaque
        let (is_passthrough, subpixel_mode) = match self.raster_config {
            Some(RasterConfig { ref composite_mode, .. }) => {
                let subpixel_mode = match composite_mode {
                    PictureCompositeMode::TileCache { slice_id } => {
                        tile_caches[&slice_id].subpixel_mode.clone()
                    }
                    PictureCompositeMode::Blit(..) |
                    PictureCompositeMode::ComponentTransferFilter(..) |
                    PictureCompositeMode::Filter(..) |
                    PictureCompositeMode::MixBlend(..) |
                    PictureCompositeMode::SvgFilter(..) => {
                        // TODO(gw): We can take advantage of the same logic that
                        //           exists in the opaque rect detection for tile
                        //           caches, to allow subpixel text on other surfaces
                        //           that can be detected as opaque.
                        SubpixelMode::Deny
                    }
                };

                (false, subpixel_mode)
            }
            None => {
                (true, SubpixelMode::Allow)
            }
        };

        // Still disable subpixel AA if parent forbids it
        let subpixel_mode = match (parent_subpixel_mode, subpixel_mode) {
            (SubpixelMode::Allow, SubpixelMode::Allow) => {
                // Both parent and this surface unconditionally allow subpixel AA
                SubpixelMode::Allow
            }
            (SubpixelMode::Allow, SubpixelMode::Conditional { allowed_rect, excluded_rects }) => {
                // Parent allows, but we are conditional subpixel AA
                SubpixelMode::Conditional {
                    allowed_rect,
                    excluded_rects,
                }
            }
            (SubpixelMode::Conditional { allowed_rect, excluded_rects }, SubpixelMode::Allow) => {
                // Propagate conditional subpixel mode to child pictures that allow subpixel AA
                SubpixelMode::Conditional {
                    allowed_rect: *allowed_rect,
                    excluded_rects: excluded_rects.clone(),
                }
            }
            (SubpixelMode::Conditional { .. }, SubpixelMode::Conditional { ..}) => {
                unreachable!("bug: only top level picture caches have conditional subpixel");
            }
            (SubpixelMode::Deny, _) | (_, SubpixelMode::Deny) => {
                // Either parent or this surface explicitly deny subpixel, these take precedence
                SubpixelMode::Deny
            }
        };

        let context = PictureContext {
            pic_index,
            apply_local_clip_rect: self.apply_local_clip_rect,
            is_passthrough,
            raster_spatial_node_index,
            surface_spatial_node_index,
            surface_index,
            dirty_region_count,
            subpixel_mode,
        };

        let prim_list = mem::replace(&mut self.prim_list, PrimitiveList::empty());

        Some((context, state, prim_list))
    }

    pub fn restore_context(
        &mut self,
        prim_list: PrimitiveList,
        context: PictureContext,
        state: PictureState,
        frame_state: &mut FrameBuildingState,
    ) {
        // Pop any dirty regions this picture set
        for _ in 0 .. context.dirty_region_count {
            frame_state.pop_dirty_region();
        }

        self.prim_list = prim_list;
        self.state = Some(state);
    }

    pub fn take_state(&mut self) -> PictureState {
        self.state.take().expect("bug: no state present!")
    }

    /// Add a primitive instance to the plane splitter. The function would generate
    /// an appropriate polygon, clip it against the frustum, and register with the
    /// given plane splitter.
    pub fn add_split_plane(
        splitter: &mut PlaneSplitter,
        spatial_tree: &SpatialTree,
        prim_spatial_node_index: SpatialNodeIndex,
        original_local_rect: LayoutRect,
        combined_local_clip_rect: &LayoutRect,
        world_rect: WorldRect,
        plane_split_anchor: PlaneSplitAnchor,
    ) -> bool {
        let transform = spatial_tree
            .get_world_transform(prim_spatial_node_index);
        let matrix = transform.clone().into_transform().cast();

        // Apply the local clip rect here, before splitting. This is
        // because the local clip rect can't be applied in the vertex
        // shader for split composites, since we are drawing polygons
        // rather that rectangles. The interpolation still works correctly
        // since we determine the UVs by doing a bilerp with a factor
        // from the original local rect.
        let local_rect = match original_local_rect
            .intersection(combined_local_clip_rect)
        {
            Some(rect) => rect.cast(),
            None => return false,
        };
        let world_rect = world_rect.cast();

        match transform {
            CoordinateSpaceMapping::Local => {
                let polygon = Polygon::from_rect(
                    local_rect * Scale::new(1.0),
                    plane_split_anchor,
                );
                splitter.add(polygon);
            }
            CoordinateSpaceMapping::ScaleOffset(scale_offset) if scale_offset.scale == Vector2D::new(1.0, 1.0) => {
                let inv_matrix = scale_offset.inverse().to_transform().cast();
                let polygon = Polygon::from_transformed_rect_with_inverse(
                    local_rect,
                    &matrix,
                    &inv_matrix,
                    plane_split_anchor,
                ).unwrap();
                splitter.add(polygon);
            }
            CoordinateSpaceMapping::ScaleOffset(_) |
            CoordinateSpaceMapping::Transform(_) => {
                let mut clipper = Clipper::new();
                let results = clipper.clip_transformed(
                    Polygon::from_rect(
                        local_rect,
                        plane_split_anchor,
                    ),
                    &matrix,
                    Some(world_rect),
                );
                if let Ok(results) = results {
                    for poly in results {
                        splitter.add(poly);
                    }
                }
            }
        }

        true
    }

    pub fn resolve_split_planes(
        &mut self,
        splitter: &mut PlaneSplitter,
        gpu_cache: &mut GpuCache,
        spatial_tree: &SpatialTree,
    ) {
        let ordered = match self.context_3d {
            Picture3DContext::In { root_data: Some(ref mut list), .. } => list,
            _ => panic!("Expected to find 3D context root"),
        };
        ordered.clear();

        // Process the accumulated split planes and order them for rendering.
        // Z axis is directed at the screen, `sort` is ascending, and we need back-to-front order.
        let sorted = splitter.sort(vec3(0.0, 0.0, 1.0));
        ordered.reserve(sorted.len());
        for poly in sorted {
            let cluster = &self.prim_list.clusters[poly.anchor.cluster_index];
            let spatial_node_index = cluster.spatial_node_index;
            let transform = match spatial_tree
                .get_world_transform(spatial_node_index)
                .inverse()
            {
                Some(transform) => transform.into_transform(),
                // logging this would be a bit too verbose
                None => continue,
            };

            let local_points = [
                transform.transform_point3d(poly.points[0].cast()),
                transform.transform_point3d(poly.points[1].cast()),
                transform.transform_point3d(poly.points[2].cast()),
                transform.transform_point3d(poly.points[3].cast()),
            ];

            // If any of the points are un-transformable, just drop this
            // plane from drawing.
            if local_points.iter().any(|p| p.is_none()) {
                continue;
            }

            let p0 = local_points[0].unwrap();
            let p1 = local_points[1].unwrap();
            let p2 = local_points[2].unwrap();
            let p3 = local_points[3].unwrap();
            let gpu_blocks = [
                [p0.x, p0.y, p1.x, p1.y].into(),
                [p2.x, p2.y, p3.x, p3.y].into(),
            ];
            let gpu_handle = gpu_cache.push_per_frame_blocks(&gpu_blocks);
            let gpu_address = gpu_cache.get_address(&gpu_handle);

            ordered.push(OrderedPictureChild {
                anchor: poly.anchor,
                spatial_node_index,
                gpu_address,
            });
        }
    }

    /// Called during initial picture traversal, before we know the
    /// bounding rect of children. It is possible to determine the
    /// surface / raster config now though.
    fn pre_update(
        &mut self,
        state: &mut PictureUpdateState,
        frame_context: &FrameBuildingContext,
    ) -> Option<PrimitiveList> {
        // Reset raster config in case we early out below.
        self.raster_config = None;

        // Resolve animation properties, and early out if the filter
        // properties make this picture invisible.
        if !self.resolve_scene_properties(frame_context.scene_properties) {
            return None;
        }

        // For out-of-preserve-3d pictures, the backface visibility is determined by
        // the local transform only.
        // Note: we aren't taking the transform relativce to the parent picture,
        // since picture tree can be more dense than the corresponding spatial tree.
        if !self.is_backface_visible {
            if let Picture3DContext::Out = self.context_3d {
                match frame_context.spatial_tree.get_local_visible_face(self.spatial_node_index) {
                    VisibleFace::Front => {}
                    VisibleFace::Back => return None,
                }
            }
        }

        // Push information about this pic on stack for children to read.
        state.push_picture(PictureInfo {
            _spatial_node_index: self.spatial_node_index,
        });

        // See if this picture actually needs a surface for compositing.
        // TODO(gw): FPC: Remove the actual / requested composite mode distinction.
        let actual_composite_mode = self.requested_composite_mode.clone();

        if let Some(composite_mode) = actual_composite_mode {
            // Retrieve the positioning node information for the parent surface.
            let parent_raster_node_index = state.current_surface().raster_spatial_node_index;
            let parent_device_pixel_scale = state.current_surface().device_pixel_scale;
            let surface_spatial_node_index = self.spatial_node_index;

            // Filters must be applied before transforms, to do this, we can mark this picture as establishing a raster root.
            let has_svg_filter = if let PictureCompositeMode::SvgFilter(..) = composite_mode {
                true
            } else {
                false
            };

            let surface_to_parent_transform = frame_context.spatial_tree
                .get_relative_transform(surface_spatial_node_index, parent_raster_node_index);

            // Check if there is perspective or if an SVG filter is applied, and thus whether a new
            // rasterization root should be established.
            let establishes_raster_root = has_svg_filter || surface_to_parent_transform.is_perspective();

            let (raster_spatial_node_index, device_pixel_scale) = if establishes_raster_root {
                // If a raster root is established, this surface should be scaled based on the scale factors of the surface raster to parent raster transform.
                // This scaling helps ensure that the content in this surface does not become blurry or pixelated when composited in the parent surface.
                let scale_factors = surface_to_parent_transform.scale_factors();

                // Pick the largest scale factor of the transform for the scaling factor.
                // Currently, we ensure that the scaling factor is >= 1.0 as a smaller scale factor can result in blurry output.
                let scaling_factor = scale_factors.0.max(scale_factors.1).max(1.0);

                let device_pixel_scale = parent_device_pixel_scale * Scale::new(scaling_factor);
                (surface_spatial_node_index, device_pixel_scale)
            } else {
                (parent_raster_node_index, parent_device_pixel_scale)
            };

            let scale_factors = frame_context
                    .spatial_tree
                    .get_relative_transform(surface_spatial_node_index, raster_spatial_node_index)
                    .scale_factors();

            // This inflation factor is to be applied to all primitives within the surface.
            // Only inflate if the caller hasn't already inflated the bounding rects for this filter.
            let mut inflation_factor = 0.0;
            if self.options.inflate_if_required {
                match composite_mode {
                    PictureCompositeMode::Filter(Filter::Blur(width, height)) => {
                        let blur_radius = f32::max(clamp_blur_radius(width, scale_factors), clamp_blur_radius(height, scale_factors));
                        // The amount of extra space needed for primitives inside
                        // this picture to ensure the visibility check is correct.
                        inflation_factor = blur_radius * BLUR_SAMPLE_SCALE;
                    }
                    PictureCompositeMode::SvgFilter(ref primitives, _) => {
                        let mut max = 0.0;
                        for primitive in primitives {
                            if let FilterPrimitiveKind::Blur(ref blur) = primitive.kind {
                                max = f32::max(max, blur.width);
                                max = f32::max(max, blur.height);
                            }
                        }
                        inflation_factor = clamp_blur_radius(max, scale_factors) * BLUR_SAMPLE_SCALE;
                    }
                    PictureCompositeMode::Filter(Filter::DropShadows(ref shadows)) => {
                        // TODO(gw): This is incorrect, since we don't consider the drop shadow
                        //           offset. However, fixing that is a larger task, so this is
                        //           an improvement on the current case (this at least works where
                        //           the offset of the drop-shadow is ~0, which is often true).

                        // Can't use max_by_key here since f32 isn't Ord
                        let mut max_blur_radius: f32 = 0.0;
                        for shadow in shadows {
                            max_blur_radius = max_blur_radius.max(shadow.blur_radius);
                        }

                        inflation_factor = clamp_blur_radius(max_blur_radius, scale_factors) * BLUR_SAMPLE_SCALE;
                    }
                    _ => {}
                }
            }

            let surface = SurfaceInfo::new(
                surface_spatial_node_index,
                raster_spatial_node_index,
                inflation_factor,
                frame_context.global_screen_world_rect,
                &frame_context.spatial_tree,
                device_pixel_scale,
                scale_factors,
            );

            self.raster_config = Some(RasterConfig {
                composite_mode,
                establishes_raster_root,
                surface_index: state.push_surface(surface),
                root_scaling_factor: 1.0,
                clipped_bounding_rect: WorldRect::zero(),
            });
        }

        Some(mem::replace(&mut self.prim_list, PrimitiveList::empty()))
    }

    /// Called after updating child pictures during the initial
    /// picture traversal.
    fn post_update(
        &mut self,
        prim_list: PrimitiveList,
        state: &mut PictureUpdateState,
        frame_context: &FrameBuildingContext,
        data_stores: &mut DataStores,
    ) {
        // Restore the pictures list used during recursion.
        self.prim_list = prim_list;

        // Pop the state information about this picture.
        state.pop_picture();

        let surface = state.current_surface_mut();

        for cluster in &mut self.prim_list.clusters {
            cluster.flags.remove(ClusterFlags::IS_VISIBLE);

            // Skip the cluster if backface culled.
            if !cluster.flags.contains(ClusterFlags::IS_BACKFACE_VISIBLE) {
                // For in-preserve-3d primitives and pictures, the backface visibility is
                // evaluated relative to the containing block.
                if let Picture3DContext::In { ancestor_index, .. } = self.context_3d {
                    let mut face = VisibleFace::Front;
                    frame_context.spatial_tree.get_relative_transform_with_face(
                        cluster.spatial_node_index,
                        ancestor_index,
                        Some(&mut face),
                    );
                    if face == VisibleFace::Back {
                        continue
                    }
                }
            }

            // No point including this cluster if it can't be transformed
            let spatial_node = &frame_context
                .spatial_tree
                .spatial_nodes[cluster.spatial_node_index.0 as usize];
            if !spatial_node.invertible {
                continue;
            }

            // Update any primitives/cluster bounding rects that can only be done
            // with information available during frame building.
            if cluster.flags.contains(ClusterFlags::IS_BACKDROP_FILTER) {
                let backdrop_to_world_mapper = SpaceMapper::new_with_target(
                    ROOT_SPATIAL_NODE_INDEX,
                    cluster.spatial_node_index,
                    LayoutRect::max_rect(),
                    frame_context.spatial_tree,
                );

                for prim_instance in &mut self.prim_list.prim_instances[cluster.prim_range()] {
                    match prim_instance.kind {
                        PrimitiveInstanceKind::Backdrop { data_handle, .. } => {
                            // The actual size and clip rect of this primitive are determined by computing the bounding
                            // box of the projected rect of the backdrop-filter element onto the backdrop.
                            let prim_data = &mut data_stores.backdrop[data_handle];
                            let spatial_node_index = prim_data.kind.spatial_node_index;

                            // We cannot use the relative transform between the backdrop and the element because
                            // that doesn't take into account any projection transforms that both spatial nodes are children of.
                            // Instead, we first project from the element to the world space and get a flattened 2D bounding rect
                            // in the screen space, we then map this rect from the world space to the backdrop space to get the
                            // proper bounding box where the backdrop-filter needs to be processed.

                            let prim_to_world_mapper = SpaceMapper::new_with_target(
                                ROOT_SPATIAL_NODE_INDEX,
                                spatial_node_index,
                                LayoutRect::max_rect(),
                                frame_context.spatial_tree,
                            );

                            // First map to the screen and get a flattened rect
                            let prim_rect = prim_to_world_mapper.map(&prim_data.kind.border_rect).unwrap_or_else(LayoutRect::zero);
                            // Backwards project the flattened rect onto the backdrop
                            let prim_rect = backdrop_to_world_mapper.unmap(&prim_rect).unwrap_or_else(LayoutRect::zero);

                            // TODO(aosmond): Is this safe? Updating the primitive size during
                            // frame building is usually problematic since scene building will cache
                            // the primitive information in the GPU already.
                            prim_data.common.prim_rect = prim_rect;
                            prim_instance.clip_set.local_clip_rect = prim_rect;

                            // Update the cluster bounding rect now that we have the backdrop rect.
                            cluster.bounding_rect = cluster.bounding_rect.union(&prim_rect);
                        }
                        _ => {
                            panic!("BUG: unexpected deferred primitive kind for cluster updates");
                        }
                    }
                }
            }

            // Map the cluster bounding rect into the space of the surface, and
            // include it in the surface bounding rect. 
            surface.map_local_to_surface.set_target_spatial_node(
                cluster.spatial_node_index,
                frame_context.spatial_tree,
            );

            // Mark the cluster visible, since it passed the invertible and
            // backface checks.
            cluster.flags.insert(ClusterFlags::IS_VISIBLE);
            if let Some(cluster_rect) = surface.map_local_to_surface.map(&cluster.bounding_rect) {
                surface.rect = surface.rect.union(&cluster_rect);
            }
        }

        // If this picture establishes a surface, then map the surface bounding
        // rect into the parent surface coordinate space, and propagate that up
        // to the parent.
        if let Some(ref mut raster_config) = self.raster_config {
            let surface = state.current_surface_mut();
            // Inflate the local bounding rect if required by the filter effect.
            // This inflaction factor is to be applied to the surface itself.
            if self.options.inflate_if_required {
                surface.rect = raster_config.composite_mode.inflate_picture_rect(surface.rect, surface.scale_factors);

                // The picture's local rect is calculated as the union of the
                // snapped primitive rects, which should result in a snapped
                // local rect, unless it was inflated. This is also done during
                // update visibility when calculating the picture's precise
                // local rect.
                let snap_surface_to_raster = SpaceSnapper::new_with_target(
                    surface.raster_spatial_node_index,
                    self.spatial_node_index,
                    surface.device_pixel_scale,
                    frame_context.spatial_tree,
                );

                surface.rect = snap_surface_to_raster.snap_rect(&surface.rect);
            }

            let mut surface_rect = surface.rect * Scale::new(1.0);

            // Pop this surface from the stack
            let surface_index = state.pop_surface();
            debug_assert_eq!(surface_index, raster_config.surface_index);

            // Set the estimated and precise local rects. The precise local rect
            // may be changed again during frame visibility.
            self.estimated_local_rect = surface_rect;
            self.precise_local_rect = surface_rect;

            // Drop shadows draw both a content and shadow rect, so need to expand the local
            // rect of any surfaces to be composited in parent surfaces correctly.
            match raster_config.composite_mode {
                PictureCompositeMode::Filter(Filter::DropShadows(ref shadows)) => {
                    for shadow in shadows {
                        let shadow_rect = self.estimated_local_rect.translate(shadow.offset);
                        surface_rect = surface_rect.union(&shadow_rect);
                    }
                }
                _ => {}
            }

            // Propagate up to parent surface, now that we know this surface's static rect
            let parent_surface = state.current_surface_mut();
            parent_surface.map_local_to_surface.set_target_spatial_node(
                self.spatial_node_index,
                frame_context.spatial_tree,
            );
            if let Some(parent_surface_rect) = parent_surface
                .map_local_to_surface
                .map(&surface_rect)
            {
                parent_surface.rect = parent_surface.rect.union(&parent_surface_rect);
            }
        }
    }

    pub fn prepare_for_render(
        &mut self,
        frame_context: &FrameBuildingContext,
        frame_state: &mut FrameBuildingState,
        data_stores: &mut DataStores,
    ) -> bool {
        let mut pic_state_for_children = self.take_state();

        if let Some(ref mut splitter) = pic_state_for_children.plane_splitter {
            self.resolve_split_planes(
                splitter,
                &mut frame_state.gpu_cache,
                &frame_context.spatial_tree,
            );
        }

        let raster_config = match self.raster_config {
            Some(ref mut raster_config) => raster_config,
            None => {
                return true
            }
        };

        // TODO(gw): Almost all of the Picture types below use extra_gpu_cache_data
        //           to store the same type of data. The exception is the filter
        //           with a ColorMatrix, which stores the color matrix here. It's
        //           probably worth tidying this code up to be a bit more consistent.
        //           Perhaps store the color matrix after the common data, even though
        //           it's not used by that shader.

        match raster_config.composite_mode {
            PictureCompositeMode::TileCache { .. } => {}
            PictureCompositeMode::Filter(Filter::Blur(..)) => {}
            PictureCompositeMode::Filter(Filter::DropShadows(ref shadows)) => {
                self.extra_gpu_data_handles.resize(shadows.len(), GpuCacheHandle::new());
                for (shadow, extra_handle) in shadows.iter().zip(self.extra_gpu_data_handles.iter_mut()) {
                    if let Some(mut request) = frame_state.gpu_cache.request(extra_handle) {
                        // Basic brush primitive header is (see end of prepare_prim_for_render_inner in prim_store.rs)
                        //  [brush specific data]
                        //  [segment_rect, segment data]
                        let shadow_rect = self.precise_local_rect.translate(shadow.offset);

                        // ImageBrush colors
                        request.push(shadow.color.premultiplied());
                        request.push(PremultipliedColorF::WHITE);
                        request.push([
                            self.precise_local_rect.size.width,
                            self.precise_local_rect.size.height,
                            0.0,
                            0.0,
                        ]);

                        // segment rect / extra data
                        request.push(shadow_rect);
                        request.push([0.0, 0.0, 0.0, 0.0]);
                    }
                }
            }
            PictureCompositeMode::MixBlend(..) if !frame_context.fb_config.gpu_supports_advanced_blend => {}
            PictureCompositeMode::Filter(ref filter) => {
                match *filter {
                    Filter::ColorMatrix(ref m) => {
                        if self.extra_gpu_data_handles.is_empty() {
                            self.extra_gpu_data_handles.push(GpuCacheHandle::new());
                        }
                        if let Some(mut request) = frame_state.gpu_cache.request(&mut self.extra_gpu_data_handles[0]) {
                            for i in 0..5 {
                                request.push([m[i*4], m[i*4+1], m[i*4+2], m[i*4+3]]);
                            }
                        }
                    }
                    Filter::Flood(ref color) => {
                        if self.extra_gpu_data_handles.is_empty() {
                            self.extra_gpu_data_handles.push(GpuCacheHandle::new());
                        }
                        if let Some(mut request) = frame_state.gpu_cache.request(&mut self.extra_gpu_data_handles[0]) {
                            request.push(color.to_array());
                        }
                    }
                    _ => {}
                }
            }
            PictureCompositeMode::ComponentTransferFilter(handle) => {
                let filter_data = &mut data_stores.filter_data[handle];
                filter_data.update(frame_state);
            }
            PictureCompositeMode::MixBlend(..) |
            PictureCompositeMode::Blit(_) |
            PictureCompositeMode::SvgFilter(..) => {}
        }

        true
    }
}

// Calculate a single homogeneous screen-space UV for a picture.
fn calculate_screen_uv(
    local_pos: &PicturePoint,
    transform: &PictureToRasterTransform,
    rendered_rect: &DeviceRect,
    device_pixel_scale: DevicePixelScale,
) -> DeviceHomogeneousVector {
    let raster_pos = transform.transform_point2d_homogeneous(*local_pos);

    DeviceHomogeneousVector::new(
        (raster_pos.x * device_pixel_scale.0 - rendered_rect.origin.x * raster_pos.w) / rendered_rect.size.width,
        (raster_pos.y * device_pixel_scale.0 - rendered_rect.origin.y * raster_pos.w) / rendered_rect.size.height,
        0.0,
        raster_pos.w,
    )
}

// Calculate a UV rect within an image based on the screen space
// vertex positions of a picture.
fn calculate_uv_rect_kind(
    pic_rect: &PictureRect,
    transform: &PictureToRasterTransform,
    rendered_rect: &DeviceRect,
    device_pixel_scale: DevicePixelScale,
) -> UvRectKind {
    let top_left = calculate_screen_uv(
        &pic_rect.origin,
        transform,
        &rendered_rect,
        device_pixel_scale,
    );

    let top_right = calculate_screen_uv(
        &pic_rect.top_right(),
        transform,
        &rendered_rect,
        device_pixel_scale,
    );

    let bottom_left = calculate_screen_uv(
        &pic_rect.bottom_left(),
        transform,
        &rendered_rect,
        device_pixel_scale,
    );

    let bottom_right = calculate_screen_uv(
        &pic_rect.bottom_right(),
        transform,
        &rendered_rect,
        device_pixel_scale,
    );

    UvRectKind::Quad {
        top_left,
        top_right,
        bottom_left,
        bottom_right,
    }
}

fn create_raster_mappers(
    surface_spatial_node_index: SpatialNodeIndex,
    raster_spatial_node_index: SpatialNodeIndex,
    world_rect: WorldRect,
    spatial_tree: &SpatialTree,
) -> (SpaceMapper<RasterPixel, WorldPixel>, SpaceMapper<PicturePixel, RasterPixel>) {
    let map_raster_to_world = SpaceMapper::new_with_target(
        ROOT_SPATIAL_NODE_INDEX,
        raster_spatial_node_index,
        world_rect,
        spatial_tree,
    );

    let raster_bounds = map_raster_to_world.unmap(&world_rect)
                                           .unwrap_or_else(RasterRect::max_rect);

    let map_pic_to_raster = SpaceMapper::new_with_target(
        raster_spatial_node_index,
        surface_spatial_node_index,
        raster_bounds,
        spatial_tree,
    );

    (map_raster_to_world, map_pic_to_raster)
}

fn get_transform_key(
    spatial_node_index: SpatialNodeIndex,
    cache_spatial_node_index: SpatialNodeIndex,
    spatial_tree: &SpatialTree,
) -> TransformKey {
    // Note: this is the only place where we don't know beforehand if the tile-affecting
    // spatial node is below or above the current picture.
    let transform = if cache_spatial_node_index >= spatial_node_index {
        spatial_tree
            .get_relative_transform(
                cache_spatial_node_index,
                spatial_node_index,
            )
    } else {
        spatial_tree
            .get_relative_transform(
                spatial_node_index,
                cache_spatial_node_index,
            )
    };
    transform.into()
}

/// A key for storing primitive comparison results during tile dependency tests.
#[derive(Debug, Copy, Clone, Eq, Hash, PartialEq)]
struct PrimitiveComparisonKey {
    prev_index: PrimitiveDependencyIndex,
    curr_index: PrimitiveDependencyIndex,
}

/// Information stored an image dependency
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ImageDependency {
    pub key: ImageKey,
    pub generation: ImageGeneration,
}

impl ImageDependency {
    pub const INVALID: ImageDependency = ImageDependency {
        key: ImageKey::DUMMY,
        generation: ImageGeneration::INVALID,
    };
}

/// A helper struct to compare a primitive and all its sub-dependencies.
struct PrimitiveComparer<'a> {
    clip_comparer: CompareHelper<'a, ItemUid>,
    transform_comparer: CompareHelper<'a, SpatialNodeKey>,
    image_comparer: CompareHelper<'a, ImageDependency>,
    opacity_comparer: CompareHelper<'a, OpacityBinding>,
    color_comparer: CompareHelper<'a, ColorBinding>,
    resource_cache: &'a ResourceCache,
    spatial_node_comparer: &'a mut SpatialNodeComparer,
    opacity_bindings: &'a FastHashMap<PropertyBindingId, OpacityBindingInfo>,
    color_bindings: &'a FastHashMap<PropertyBindingId, ColorBindingInfo>,
}

impl<'a> PrimitiveComparer<'a> {
    fn new(
        prev: &'a TileDescriptor,
        curr: &'a TileDescriptor,
        resource_cache: &'a ResourceCache,
        spatial_node_comparer: &'a mut SpatialNodeComparer,
        opacity_bindings: &'a FastHashMap<PropertyBindingId, OpacityBindingInfo>,
        color_bindings: &'a FastHashMap<PropertyBindingId, ColorBindingInfo>,
    ) -> Self {
        let clip_comparer = CompareHelper::new(
            &prev.clips,
            &curr.clips,
        );

        let transform_comparer = CompareHelper::new(
            &prev.transforms,
            &curr.transforms,
        );

        let image_comparer = CompareHelper::new(
            &prev.images,
            &curr.images,
        );

        let opacity_comparer = CompareHelper::new(
            &prev.opacity_bindings,
            &curr.opacity_bindings,
        );

        let color_comparer = CompareHelper::new(
            &prev.color_bindings,
            &curr.color_bindings,
        );

        PrimitiveComparer {
            clip_comparer,
            transform_comparer,
            image_comparer,
            opacity_comparer,
            color_comparer,
            resource_cache,
            spatial_node_comparer,
            opacity_bindings,
            color_bindings,
        }
    }

    fn reset(&mut self) {
        self.clip_comparer.reset();
        self.transform_comparer.reset();
        self.image_comparer.reset();
        self.opacity_comparer.reset();
        self.color_comparer.reset();
    }

    fn advance_prev(&mut self, prim: &PrimitiveDescriptor) {
        self.clip_comparer.advance_prev(prim.clip_dep_count);
        self.transform_comparer.advance_prev(prim.transform_dep_count);
        self.image_comparer.advance_prev(prim.image_dep_count);
        self.opacity_comparer.advance_prev(prim.opacity_binding_dep_count);
        self.color_comparer.advance_prev(prim.color_binding_dep_count);
    }

    fn advance_curr(&mut self, prim: &PrimitiveDescriptor) {
        self.clip_comparer.advance_curr(prim.clip_dep_count);
        self.transform_comparer.advance_curr(prim.transform_dep_count);
        self.image_comparer.advance_curr(prim.image_dep_count);
        self.opacity_comparer.advance_curr(prim.opacity_binding_dep_count);
        self.color_comparer.advance_curr(prim.color_binding_dep_count);
    }

    /// Check if two primitive descriptors are the same.
    fn compare_prim(
        &mut self,
        prev: &PrimitiveDescriptor,
        curr: &PrimitiveDescriptor,
        opt_detail: Option<&mut PrimitiveCompareResultDetail>,
    ) -> PrimitiveCompareResult {
        let resource_cache = self.resource_cache;
        let spatial_node_comparer = &mut self.spatial_node_comparer;
        let opacity_bindings = self.opacity_bindings;
        let color_bindings = self.color_bindings;

        // Check equality of the PrimitiveDescriptor
        if prev != curr {
            if let Some(detail) = opt_detail {
                *detail = PrimitiveCompareResultDetail::Descriptor{ old: *prev, new: *curr };
            }
            return PrimitiveCompareResult::Descriptor;
        }

        // Check if any of the clips  this prim has are different.
        let mut clip_result = CompareHelperResult::Equal;
        if !self.clip_comparer.is_same(
            prev.clip_dep_count,
            curr.clip_dep_count,
            |prev, curr| {
                prev == curr
            },
            if opt_detail.is_some() { Some(&mut clip_result) } else { None }
        ) {
            if let Some(detail) = opt_detail { *detail = PrimitiveCompareResultDetail::Clip{ detail: clip_result }; }
            return PrimitiveCompareResult::Clip;
        }

        // Check if any of the transforms  this prim has are different.
        let mut transform_result = CompareHelperResult::Equal;
        if !self.transform_comparer.is_same(
            prev.transform_dep_count,
            curr.transform_dep_count,
            |prev, curr| {
                spatial_node_comparer.are_transforms_equivalent(prev, curr)
            },
            if opt_detail.is_some() { Some(&mut transform_result) } else { None },
        ) {
            if let Some(detail) = opt_detail {
                *detail = PrimitiveCompareResultDetail::Transform{ detail: transform_result };
            }
            return PrimitiveCompareResult::Transform;
        }

        // Check if any of the images this prim has are different.
        let mut image_result = CompareHelperResult::Equal;
        if !self.image_comparer.is_same(
            prev.image_dep_count,
            curr.image_dep_count,
            |prev, curr| {
                prev == curr &&
                resource_cache.get_image_generation(curr.key) == curr.generation
            },
            if opt_detail.is_some() { Some(&mut image_result) } else { None },
        ) {
            if let Some(detail) = opt_detail {
                *detail = PrimitiveCompareResultDetail::Image{ detail: image_result };
            }
            return PrimitiveCompareResult::Image;
        }

        // Check if any of the opacity bindings this prim has are different.
        let mut bind_result = CompareHelperResult::Equal;
        if !self.opacity_comparer.is_same(
            prev.opacity_binding_dep_count,
            curr.opacity_binding_dep_count,
            |prev, curr| {
                if prev != curr {
                    return false;
                }

                if let OpacityBinding::Binding(id) = curr {
                    if opacity_bindings
                        .get(id)
                        .map_or(true, |info| info.changed) {
                        return false;
                    }
                }

                true
            },
            if opt_detail.is_some() { Some(&mut bind_result) } else { None },
        ) {
            if let Some(detail) = opt_detail {
                *detail = PrimitiveCompareResultDetail::OpacityBinding{ detail: bind_result };
            }
            return PrimitiveCompareResult::OpacityBinding;
        }

        // Check if any of the color bindings this prim has are different.
        let mut bind_result = CompareHelperResult::Equal;
        if !self.color_comparer.is_same(
            prev.color_binding_dep_count,
            curr.color_binding_dep_count,
            |prev, curr| {
                if prev != curr {
                    return false;
                }

                if let ColorBinding::Binding(id) = curr {
                    if color_bindings
                        .get(id)
                        .map_or(true, |info| info.changed) {
                        return false;
                    }
                }

                true
            },
            if opt_detail.is_some() { Some(&mut bind_result) } else { None },
        ) {
            if let Some(detail) = opt_detail {
                *detail = PrimitiveCompareResultDetail::ColorBinding{ detail: bind_result };
            }
            return PrimitiveCompareResult::ColorBinding;
        }

        PrimitiveCompareResult::Equal
    }
}

/// Details for a node in a quadtree that tracks dirty rects for a tile.
#[cfg_attr(any(feature="capture",feature="replay"), derive(Clone))]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum TileNodeKind {
    Leaf {
        /// The index buffer of primitives that affected this tile previous frame
        #[cfg_attr(any(feature = "capture", feature = "replay"), serde(skip))]
        prev_indices: Vec<PrimitiveDependencyIndex>,
        /// The index buffer of primitives that affect this tile on this frame
        #[cfg_attr(any(feature = "capture", feature = "replay"), serde(skip))]
        curr_indices: Vec<PrimitiveDependencyIndex>,
        /// A bitset of which of the last 64 frames have been dirty for this leaf.
        #[cfg_attr(any(feature = "capture", feature = "replay"), serde(skip))]
        dirty_tracker: u64,
        /// The number of frames since this node split or merged.
        #[cfg_attr(any(feature = "capture", feature = "replay"), serde(skip))]
        frames_since_modified: usize,
    },
    Node {
        /// The four children of this node
        children: Vec<TileNode>,
    },
}

/// The kind of modification that a tile wants to do
#[derive(Copy, Clone, PartialEq, Debug)]
enum TileModification {
    Split,
    Merge,
}

/// A node in the dirty rect tracking quadtree.
#[cfg_attr(any(feature="capture",feature="replay"), derive(Clone))]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct TileNode {
    /// Leaf or internal node
    pub kind: TileNodeKind,
    /// Rect of this node in the same space as the tile cache picture
    pub rect: PictureBox2D,
}

impl TileNode {
    /// Construct a new leaf node, with the given primitive dependency index buffer
    fn new_leaf(curr_indices: Vec<PrimitiveDependencyIndex>) -> Self {
        TileNode {
            kind: TileNodeKind::Leaf {
                prev_indices: Vec::new(),
                curr_indices,
                dirty_tracker: 0,
                frames_since_modified: 0,
            },
            rect: PictureBox2D::zero(),
        }
    }

    /// Draw debug information about this tile node
    fn draw_debug_rects(
        &self,
        pic_to_world_mapper: &SpaceMapper<PicturePixel, WorldPixel>,
        is_opaque: bool,
        local_valid_rect: PictureRect,
        scratch: &mut PrimitiveScratchBuffer,
        global_device_pixel_scale: DevicePixelScale,
    ) {
        match self.kind {
            TileNodeKind::Leaf { dirty_tracker, .. } => {
                let color = if (dirty_tracker & 1) != 0 {
                    debug_colors::RED
                } else if is_opaque {
                    debug_colors::GREEN
                } else {
                    debug_colors::YELLOW
                };

                if let Some(local_rect) = local_valid_rect.intersection(&self.rect.to_rect()) {
                    let world_rect = pic_to_world_mapper
                        .map(&local_rect)
                        .unwrap();
                    let device_rect = world_rect * global_device_pixel_scale;

                    let outer_color = color.scale_alpha(0.3);
                    let inner_color = outer_color.scale_alpha(0.5);
                    scratch.push_debug_rect(
                        device_rect.inflate(-3.0, -3.0),
                        outer_color,
                        inner_color
                    );
                }
            }
            TileNodeKind::Node { ref children, .. } => {
                for child in children.iter() {
                    child.draw_debug_rects(
                        pic_to_world_mapper,
                        is_opaque,
                        local_valid_rect,
                        scratch,
                        global_device_pixel_scale,
                    );
                }
            }
        }
    }

    /// Calculate the four child rects for a given node
    fn get_child_rects(
        rect: &PictureBox2D,
        result: &mut [PictureBox2D; 4],
    ) {
        let p0 = rect.min;
        let p1 = rect.max;
        let pc = p0 + rect.size() * 0.5;

        *result = [
            PictureBox2D::new(
                p0,
                pc,
            ),
            PictureBox2D::new(
                PicturePoint::new(pc.x, p0.y),
                PicturePoint::new(p1.x, pc.y),
            ),
            PictureBox2D::new(
                PicturePoint::new(p0.x, pc.y),
                PicturePoint::new(pc.x, p1.y),
            ),
            PictureBox2D::new(
                pc,
                p1,
            ),
        ];
    }

    /// Called during pre_update, to clear the current dependencies
    fn clear(
        &mut self,
        rect: PictureBox2D,
    ) {
        self.rect = rect;

        match self.kind {
            TileNodeKind::Leaf { ref mut prev_indices, ref mut curr_indices, ref mut dirty_tracker, ref mut frames_since_modified } => {
                // Swap current dependencies to be the previous frame
                mem::swap(prev_indices, curr_indices);
                curr_indices.clear();
                // Note that another frame has passed in the dirty bit trackers
                *dirty_tracker = *dirty_tracker << 1;
                *frames_since_modified += 1;
            }
            TileNodeKind::Node { ref mut children, .. } => {
                let mut child_rects = [PictureBox2D::zero(); 4];
                TileNode::get_child_rects(&rect, &mut child_rects);
                assert_eq!(child_rects.len(), children.len());

                for (child, rect) in children.iter_mut().zip(child_rects.iter()) {
                    child.clear(*rect);
                }
            }
        }
    }

    /// Add a primitive dependency to this node
    fn add_prim(
        &mut self,
        index: PrimitiveDependencyIndex,
        prim_rect: &PictureBox2D,
    ) {
        match self.kind {
            TileNodeKind::Leaf { ref mut curr_indices, .. } => {
                curr_indices.push(index);
            }
            TileNodeKind::Node { ref mut children, .. } => {
                for child in children.iter_mut() {
                    if child.rect.intersects(prim_rect) {
                        child.add_prim(index, prim_rect);
                    }
                }
            }
        }
    }

    /// Apply a merge or split operation to this tile, if desired
    fn maybe_merge_or_split(
        &mut self,
        level: i32,
        curr_prims: &[PrimitiveDescriptor],
        max_split_levels: i32,
    ) {
        // Determine if this tile wants to split or merge
        let mut tile_mod = None;

        fn get_dirty_frames(
            dirty_tracker: u64,
            frames_since_modified: usize,
        ) -> Option<u32> {
            // Only consider splitting or merging at least 64 frames since we last changed
            if frames_since_modified > 64 {
                // Each bit in the tracker is a frame that was recently invalidated
                Some(dirty_tracker.count_ones())
            } else {
                None
            }
        }

        match self.kind {
            TileNodeKind::Leaf { dirty_tracker, frames_since_modified, .. } => {
                // Only consider splitting if the tree isn't too deep.
                if level < max_split_levels {
                    if let Some(dirty_frames) = get_dirty_frames(dirty_tracker, frames_since_modified) {
                        // If the tile has invalidated > 50% of the recent number of frames, split.
                        if dirty_frames > 32 {
                            tile_mod = Some(TileModification::Split);
                        }
                    }
                }
            }
            TileNodeKind::Node { ref children, .. } => {
                // There's two conditions that cause a node to merge its children:
                // (1) If _all_ the child nodes are constantly invalidating, then we are wasting
                //     CPU time tracking dependencies for each child, so merge them.
                // (2) If _none_ of the child nodes are recently invalid, then the page content
                //     has probably changed, and we no longer need to track fine grained dependencies here.

                let mut static_count = 0;
                let mut changing_count = 0;

                for child in children {
                    // Only consider merging nodes at the edge of the tree.
                    if let TileNodeKind::Leaf { dirty_tracker, frames_since_modified, .. } = child.kind {
                        if let Some(dirty_frames) = get_dirty_frames(dirty_tracker, frames_since_modified) {
                            if dirty_frames == 0 {
                                // Hasn't been invalidated for some time
                                static_count += 1;
                            } else if dirty_frames == 64 {
                                // Is constantly being invalidated
                                changing_count += 1;
                            }
                        }
                    }

                    // Only merge if all the child tiles are in agreement. Otherwise, we have some
                    // that are invalidating / static, and it's worthwhile tracking dependencies for
                    // them individually.
                    if static_count == 4 || changing_count == 4 {
                        tile_mod = Some(TileModification::Merge);
                    }
                }
            }
        }

        match tile_mod {
            Some(TileModification::Split) => {
                // To split a node, take the current dependency index buffer for this node, and
                // split it into child index buffers.
                let curr_indices = match self.kind {
                    TileNodeKind::Node { .. } => {
                        unreachable!("bug - only leaves can split");
                    }
                    TileNodeKind::Leaf { ref mut curr_indices, .. } => {
                        curr_indices.take()
                    }
                };

                let mut child_rects = [PictureBox2D::zero(); 4];
                TileNode::get_child_rects(&self.rect, &mut child_rects);

                let mut child_indices = [
                    Vec::new(),
                    Vec::new(),
                    Vec::new(),
                    Vec::new(),
                ];

                // Step through the index buffer, and add primitives to each of the children
                // that they intersect.
                for index in curr_indices {
                    let prim = &curr_prims[index.0 as usize];
                    for (child_rect, indices) in child_rects.iter().zip(child_indices.iter_mut()) {
                        if prim.prim_clip_box.intersects(child_rect) {
                            indices.push(index);
                        }
                    }
                }

                // Create the child nodes and switch from leaf -> node.
                let children = child_indices
                    .iter_mut()
                    .map(|i| TileNode::new_leaf(mem::replace(i, Vec::new())))
                    .collect();

                self.kind = TileNodeKind::Node {
                    children,
                };
            }
            Some(TileModification::Merge) => {
                // Construct a merged index buffer by collecting the dependency index buffers
                // from each child, and merging them into a de-duplicated index buffer.
                let merged_indices = match self.kind {
                    TileNodeKind::Node { ref mut children, .. } => {
                        let mut merged_indices = Vec::new();

                        for child in children.iter() {
                            let child_indices = match child.kind {
                                TileNodeKind::Leaf { ref curr_indices, .. } => {
                                    curr_indices
                                }
                                TileNodeKind::Node { .. } => {
                                    unreachable!("bug: child is not a leaf");
                                }
                            };
                            merged_indices.extend_from_slice(child_indices);
                        }

                        merged_indices.sort();
                        merged_indices.dedup();

                        merged_indices
                    }
                    TileNodeKind::Leaf { .. } => {
                        unreachable!("bug - trying to merge a leaf");
                    }
                };

                // Switch from a node to a leaf, with the combined index buffer
                self.kind = TileNodeKind::Leaf {
                    prev_indices: Vec::new(),
                    curr_indices: merged_indices,
                    dirty_tracker: 0,
                    frames_since_modified: 0,
                };
            }
            None => {
                // If this node didn't merge / split, then recurse into children
                // to see if they want to split / merge.
                if let TileNodeKind::Node { ref mut children, .. } = self.kind {
                    for child in children.iter_mut() {
                        child.maybe_merge_or_split(
                            level+1,
                            curr_prims,
                            max_split_levels,
                        );
                    }
                }
            }
        }
    }

    /// Update the dirty state of this node, building the overall dirty rect
    fn update_dirty_rects(
        &mut self,
        prev_prims: &[PrimitiveDescriptor],
        curr_prims: &[PrimitiveDescriptor],
        prim_comparer: &mut PrimitiveComparer,
        dirty_rect: &mut PictureBox2D,
        compare_cache: &mut FastHashMap<PrimitiveComparisonKey, PrimitiveCompareResult>,
        invalidation_reason: &mut Option<InvalidationReason>,
        frame_context: &FrameVisibilityContext,
    ) {
        match self.kind {
            TileNodeKind::Node { ref mut children, .. } => {
                for child in children.iter_mut() {
                    child.update_dirty_rects(
                        prev_prims,
                        curr_prims,
                        prim_comparer,
                        dirty_rect,
                        compare_cache,
                        invalidation_reason,
                        frame_context,
                    );
                }
            }
            TileNodeKind::Leaf { ref prev_indices, ref curr_indices, ref mut dirty_tracker, .. } => {
                // If the index buffers are of different length, they must be different
                if prev_indices.len() == curr_indices.len() {
                    let mut prev_i0 = 0;
                    let mut prev_i1 = 0;
                    prim_comparer.reset();

                    // Walk each index buffer, comparing primitives
                    for (prev_index, curr_index) in prev_indices.iter().zip(curr_indices.iter()) {
                        let i0 = prev_index.0 as usize;
                        let i1 = curr_index.0 as usize;

                        // Advance the dependency arrays for each primitive (this handles
                        // prims that may be skipped by these index buffers).
                        for i in prev_i0 .. i0 {
                            prim_comparer.advance_prev(&prev_prims[i]);
                        }
                        for i in prev_i1 .. i1 {
                            prim_comparer.advance_curr(&curr_prims[i]);
                        }

                        // Compare the primitives, caching the result in a hash map
                        // to save comparisons in other tree nodes.
                        let key = PrimitiveComparisonKey {
                            prev_index: *prev_index,
                            curr_index: *curr_index,
                        };

                        #[cfg(any(feature = "capture", feature = "replay"))]
                        let mut compare_detail = PrimitiveCompareResultDetail::Equal;
                        #[cfg(any(feature = "capture", feature = "replay"))]
                        let prim_compare_result_detail =
                            if frame_context.debug_flags.contains(DebugFlags::TILE_CACHE_LOGGING_DBG) {
                                Some(&mut compare_detail)
                            } else {
                                None
                            };

                        #[cfg(not(any(feature = "capture", feature = "replay")))]
                        let compare_detail = PrimitiveCompareResultDetail::Equal;
                        #[cfg(not(any(feature = "capture", feature = "replay")))]
                        let prim_compare_result_detail = None;

                        let prim_compare_result = *compare_cache
                            .entry(key)
                            .or_insert_with(|| {
                                let prev = &prev_prims[i0];
                                let curr = &curr_prims[i1];
                                prim_comparer.compare_prim(prev, curr, prim_compare_result_detail)
                            });

                        // If not the same, mark this node as dirty and update the dirty rect
                        if prim_compare_result != PrimitiveCompareResult::Equal {
                            if invalidation_reason.is_none() {
                                *invalidation_reason = Some(InvalidationReason::Content {
                                    prim_compare_result,
                                    prim_compare_result_detail: Some(compare_detail)
                                });
                            }
                            *dirty_rect = self.rect.union(dirty_rect);
                            *dirty_tracker = *dirty_tracker | 1;
                            break;
                        }

                        prev_i0 = i0;
                        prev_i1 = i1;
                    }
                } else {
                    if invalidation_reason.is_none() {
                        // if and only if tile logging is enabled, do the expensive step of
                        // converting indices back to ItemUids and allocating old and new vectors
                        // to store them in.
                        #[cfg(any(feature = "capture", feature = "replay"))]
                        {
                            if frame_context.debug_flags.contains(DebugFlags::TILE_CACHE_LOGGING_DBG) {
                                let old = prev_indices.iter().map( |i| prev_prims[i.0 as usize].prim_uid ).collect();
                                let new = curr_indices.iter().map( |i| curr_prims[i.0 as usize].prim_uid ).collect();
                                *invalidation_reason = Some(InvalidationReason::PrimCount {
                                                                old: Some(old),
                                                                new: Some(new) });
                            } else {
                                *invalidation_reason = Some(InvalidationReason::PrimCount {
                                                                old: None,
                                                                new: None });
                            }
                        }
                        #[cfg(not(any(feature = "capture", feature = "replay")))]
                        {
                            *invalidation_reason = Some(InvalidationReason::PrimCount {
                                                                old: None,
                                                                new: None });
                        }
                    }
                    *dirty_rect = self.rect.union(dirty_rect);
                    *dirty_tracker = *dirty_tracker | 1;
                }
            }
        }
    }
}

impl CompositeState {
    // A helper function to destroy all native surfaces for a given list of tiles
    pub fn destroy_native_tiles<'a, I: Iterator<Item = &'a mut Box<Tile>>>(
        &mut self,
        tiles_iter: I,
        resource_cache: &mut ResourceCache,
    ) {
        // Any old tiles that remain after the loop above are going to be dropped. For
        // simple composite mode, the texture cache handle will expire and be collected
        // by the texture cache. For native compositor mode, we need to explicitly
        // invoke a callback to the client to destroy that surface.
        if let CompositorKind::Native { .. } = self.compositor_kind {
            for tile in tiles_iter {
                // Only destroy native surfaces that have been allocated. It's
                // possible for display port tiles to be created that never
                // come on screen, and thus never get a native surface allocated.
                if let Some(TileSurface::Texture { descriptor: SurfaceTextureDescriptor::Native { ref mut id, .. }, .. }) = tile.surface {
                    if let Some(id) = id.take() {
                        resource_cache.destroy_compositor_tile(id);
                    }
                }
            }
        }
    }
}

pub fn get_raster_rects(
    pic_rect: PictureRect,
    map_to_raster: &SpaceMapper<PicturePixel, RasterPixel>,
    map_to_world: &SpaceMapper<RasterPixel, WorldPixel>,
    prim_bounding_rect: WorldRect,
    device_pixel_scale: DevicePixelScale,
) -> Option<(DeviceRect, DeviceRect)> {
    let unclipped_raster_rect = map_to_raster.map(&pic_rect)?;

    let unclipped = raster_rect_to_device_pixels(
        unclipped_raster_rect,
        device_pixel_scale,
    );

    let unclipped_world_rect = map_to_world.map(&unclipped_raster_rect)?;
    let clipped_world_rect = unclipped_world_rect.intersection(&prim_bounding_rect)?;

    // We don't have to be able to do the back-projection from world into raster.
    // Rendering only cares one way, so if that fails, we fall back to the full rect.
    let clipped_raster_rect = match map_to_world.unmap(&clipped_world_rect) {
        Some(rect) => rect.intersection(&unclipped_raster_rect)?,
        None => return Some((unclipped, unclipped)),
    };

    let clipped = raster_rect_to_device_pixels(
        clipped_raster_rect,
        device_pixel_scale,
    );

    // Ensure that we won't try to allocate a zero-sized clip render task.
    if clipped.is_empty() {
        return None;
    }

    Some((clipped, unclipped))
}