1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Screen capture infrastructure for the Gecko Profiler and Composition Recorder.
use std::collections::HashMap;
use api::{ImageFormat, ImageBufferKind};
use api::units::*;
use gleam::gl::GlType;
use crate::device::{Device, PBO, DrawTarget, ReadTarget, Texture, TextureFilter};
use crate::internal_types::RenderTargetInfo;
use crate::renderer::Renderer;
use crate::util::round_up_to_multiple;
/// A handle to a screenshot that is being asynchronously captured and scaled.
#[repr(C)]
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct AsyncScreenshotHandle(usize);
/// A handle to a recorded frame that was captured.
#[repr(C)]
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct RecordedFrameHandle(usize);
/// An asynchronously captured screenshot bound to a PBO which has not yet been mapped for copying.
struct AsyncScreenshot {
/// The PBO that will contain the screenshot data.
pbo: PBO,
/// The size of the screenshot.
screenshot_size: DeviceIntSize,
/// The stride of the data in the PBO.
buffer_stride: usize,
/// Thge image format of the screenshot.
image_format: ImageFormat,
}
/// How the `AsyncScreenshotGrabber` captures frames.
#[derive(Debug, Eq, PartialEq)]
enum AsyncScreenshotGrabberMode {
/// Capture screenshots for the Gecko profiler.
///
/// This mode will asynchronously scale the screenshots captured.
ProfilerScreenshots,
/// Capture screenshots for the CompositionRecorder.
///
/// This mode does not scale the captured screenshots.
CompositionRecorder,
}
/// Renderer infrastructure for capturing screenshots and scaling them asynchronously.
pub(in crate) struct AsyncScreenshotGrabber {
/// The textures used to scale screenshots.
scaling_textures: Vec<Texture>,
/// PBOs available to be used for screenshot readback.
available_pbos: Vec<PBO>,
/// PBOs containing screenshots that are awaiting readback.
awaiting_readback: HashMap<AsyncScreenshotHandle, AsyncScreenshot>,
/// The handle for the net PBO that will be inserted into `in_use_pbos`.
next_pbo_handle: usize,
/// The mode the grabber operates in.
mode: AsyncScreenshotGrabberMode,
}
impl Default for AsyncScreenshotGrabber {
fn default() -> Self {
AsyncScreenshotGrabber {
scaling_textures: Vec::new(),
available_pbos: Vec::new(),
awaiting_readback: HashMap::new(),
next_pbo_handle: 1,
mode: AsyncScreenshotGrabberMode::ProfilerScreenshots,
}
}
}
impl AsyncScreenshotGrabber {
/// Create a new AsyncScreenshotGrabber for the composition recorder.
pub fn new_composition_recorder() -> Self {
let mut recorder = Self::default();
recorder.mode = AsyncScreenshotGrabberMode::CompositionRecorder;
recorder
}
/// Deinitialize the allocated textures and PBOs.
pub fn deinit(self, device: &mut Device) {
for texture in self.scaling_textures {
device.delete_texture(texture);
}
for pbo in self.available_pbos {
device.delete_pbo(pbo);
}
for (_, async_screenshot) in self.awaiting_readback {
device.delete_pbo(async_screenshot.pbo);
}
}
/// Take a screenshot and scale it asynchronously.
///
/// The returned handle can be used to access the mapped screenshot data via
/// `map_and_recycle_screenshot`.
/// The returned size is the size of the screenshot.
pub fn get_screenshot(
&mut self,
device: &mut Device,
window_rect: DeviceIntRect,
buffer_size: DeviceIntSize,
image_format: ImageFormat,
) -> (AsyncScreenshotHandle, DeviceIntSize) {
let screenshot_size = match self.mode {
AsyncScreenshotGrabberMode::ProfilerScreenshots => {
assert_ne!(window_rect.size.width, 0);
assert_ne!(window_rect.size.height, 0);
let scale = (buffer_size.width as f32 / window_rect.size.width as f32)
.min(buffer_size.height as f32 / window_rect.size.height as f32);
(window_rect.size.to_f32() * scale).round().to_i32()
}
AsyncScreenshotGrabberMode::CompositionRecorder => {
assert_eq!(buffer_size, window_rect.size);
buffer_size
}
};
assert!(screenshot_size.width <= buffer_size.width);
assert!(screenshot_size.height <= buffer_size.height);
// To ensure that we hit the fast path when reading from a
// framebuffer we must ensure that the width of the area we read
// is a multiple of the device's optimal pixel-transfer stride.
// The read_size should therefore be the screenshot_size with the width
// increased to a suitable value. We will also pass this value to
// scale_screenshot() as the min_texture_size, to ensure the texture is
// large enough to read from. In CompositionRecorder mode we read
// directly from the default framebuffer so are unable choose this size.
let read_size = match self.mode {
AsyncScreenshotGrabberMode::ProfilerScreenshots => {
let stride = (screenshot_size.width * image_format.bytes_per_pixel()) as usize;
let rounded = round_up_to_multiple(stride, device.optimal_pbo_stride().num_bytes(image_format));
let optimal_width = rounded as i32 / image_format.bytes_per_pixel();
DeviceIntSize::new(
optimal_width,
screenshot_size.height,
)
}
AsyncScreenshotGrabberMode::CompositionRecorder => buffer_size,
};
let required_size = read_size.area() as usize * image_format.bytes_per_pixel() as usize;
// Find an available PBO with the required size, creating a new one if necessary.
let pbo = {
let mut reusable_pbo = None;
while let Some(pbo) = self.available_pbos.pop() {
if pbo.get_reserved_size() != required_size {
device.delete_pbo(pbo);
} else {
reusable_pbo = Some(pbo);
break;
}
};
reusable_pbo.unwrap_or_else(|| device.create_pbo_with_size(required_size))
};
assert_eq!(pbo.get_reserved_size(), required_size);
let read_target = match self.mode {
AsyncScreenshotGrabberMode::ProfilerScreenshots => {
self.scale_screenshot(
device,
ReadTarget::Default,
window_rect,
buffer_size,
read_size,
screenshot_size,
image_format,
0,
);
ReadTarget::from_texture(&self.scaling_textures[0], 0)
}
AsyncScreenshotGrabberMode::CompositionRecorder => ReadTarget::Default,
};
device.read_pixels_into_pbo(
read_target,
DeviceIntRect::new(DeviceIntPoint::new(0, 0), read_size),
image_format,
&pbo,
);
let handle = AsyncScreenshotHandle(self.next_pbo_handle);
self.next_pbo_handle += 1;
self.awaiting_readback.insert(
handle,
AsyncScreenshot {
pbo,
screenshot_size,
buffer_stride: (read_size.width * image_format.bytes_per_pixel()) as usize,
image_format,
},
);
(handle, screenshot_size)
}
/// Take the screenshot in the given `ReadTarget` and scale it to `dest_size` recursively.
///
/// Each scaling operation scales only by a factor of two to preserve quality.
///
/// Textures are scaled such that `scaling_textures[n]` is half the size of
/// `scaling_textures[n+1]`.
///
/// After the scaling completes, the final screenshot will be in
/// `scaling_textures[0]`.
///
/// The size of `scaling_textures[0]` will be increased to `min_texture_size`
/// so that an optimally-sized area can be read from it.
fn scale_screenshot(
&mut self,
device: &mut Device,
read_target: ReadTarget,
read_target_rect: DeviceIntRect,
buffer_size: DeviceIntSize,
min_texture_size: DeviceIntSize,
dest_size: DeviceIntSize,
image_format: ImageFormat,
level: usize,
) {
assert_eq!(self.mode, AsyncScreenshotGrabberMode::ProfilerScreenshots);
let texture_size = {
let size = buffer_size * (1 << level);
DeviceIntSize::new(
size.width.max(min_texture_size.width),
size.height.max(min_texture_size.height),
)
};
// If we haven't created a texture for this level, or the existing
// texture is the wrong size, then create a new one.
if level == self.scaling_textures.len() || self.scaling_textures[level].get_dimensions() != texture_size {
let texture = device.create_texture(
ImageBufferKind::Texture2D,
image_format,
texture_size.width,
texture_size.height,
TextureFilter::Linear,
Some(RenderTargetInfo { has_depth: false }),
1,
);
if level == self.scaling_textures.len() {
self.scaling_textures.push(texture);
} else {
let old_texture = std::mem::replace(&mut self.scaling_textures[level], texture);
device.delete_texture(old_texture);
}
}
assert_eq!(self.scaling_textures[level].get_dimensions(), texture_size);
let (read_target, read_target_rect) = if read_target_rect.size.width > 2 * dest_size.width {
self.scale_screenshot(
device,
read_target,
read_target_rect,
buffer_size,
min_texture_size,
dest_size * 2,
image_format,
level + 1,
);
(
ReadTarget::from_texture(&self.scaling_textures[level + 1], 0),
DeviceIntRect::new(DeviceIntPoint::new(0, 0), dest_size * 2),
)
} else {
(read_target, read_target_rect)
};
let draw_target = DrawTarget::from_texture(&self.scaling_textures[level], 0 as _, false);
let draw_target_rect = draw_target
.to_framebuffer_rect(DeviceIntRect::new(DeviceIntPoint::new(0, 0), dest_size));
let read_target_rect = device_rect_as_framebuffer_rect(&read_target_rect);
if level == 0 && !device.surface_origin_is_top_left() {
device.blit_render_target_invert_y(
read_target,
read_target_rect,
draw_target,
draw_target_rect,
);
} else {
device.blit_render_target(
read_target,
read_target_rect,
draw_target,
draw_target_rect,
TextureFilter::Linear,
);
}
}
/// Map the contents of the screenshot given by the handle and copy it into
/// the given buffer.
pub fn map_and_recycle_screenshot(
&mut self,
device: &mut Device,
handle: AsyncScreenshotHandle,
dst_buffer: &mut [u8],
dst_stride: usize,
) -> bool {
let AsyncScreenshot {
pbo,
screenshot_size,
buffer_stride,
image_format,
} = match self.awaiting_readback.remove(&handle) {
Some(screenshot) => screenshot,
None => return false,
};
let gl_type = device.gl().get_type();
let success = if let Some(bound_pbo) = device.map_pbo_for_readback(&pbo) {
let src_buffer = &bound_pbo.data;
let src_stride = buffer_stride;
let src_width =
screenshot_size.width as usize * image_format.bytes_per_pixel() as usize;
for (src_slice, dst_slice) in self
.iter_src_buffer_chunked(gl_type, src_buffer, src_stride)
.zip(dst_buffer.chunks_mut(dst_stride))
.take(screenshot_size.height as usize)
{
dst_slice[.. src_width].copy_from_slice(&src_slice[.. src_width]);
}
true
} else {
false
};
match self.mode {
AsyncScreenshotGrabberMode::ProfilerScreenshots => self.available_pbos.push(pbo),
AsyncScreenshotGrabberMode::CompositionRecorder => device.delete_pbo(pbo),
}
success
}
fn iter_src_buffer_chunked<'a>(
&self,
gl_type: GlType,
src_buffer: &'a [u8],
src_stride: usize,
) -> Box<dyn Iterator<Item = &'a [u8]> + 'a> {
use AsyncScreenshotGrabberMode::*;
let is_angle = cfg!(windows) && gl_type == GlType::Gles;
if self.mode == CompositionRecorder && !is_angle {
// This is a non-ANGLE configuration. in this case, the recorded frames were captured
// upside down, so we have to flip them right side up.
Box::new(src_buffer.chunks(src_stride).rev())
} else {
// This is either an ANGLE configuration in the `CompositionRecorder` mode or a
// non-ANGLE configuration in the `ProfilerScreenshots` mode. In either case, the
// captured frames are right-side up.
Box::new(src_buffer.chunks(src_stride))
}
}
}
// Screen-capture specific Renderer impls.
impl Renderer {
/// Record a frame for the Composition Recorder.
///
/// The returned handle can be passed to `map_recorded_frame` to copy it into
/// a buffer.
/// The returned size is the size of the frame.
pub fn record_frame(
&mut self,
image_format: ImageFormat,
) -> Option<(RecordedFrameHandle, DeviceIntSize)> {
let device_size = self.device_size()?;
self.device.begin_frame();
let (handle, _) = self
.async_frame_recorder
.get_or_insert_with(AsyncScreenshotGrabber::new_composition_recorder)
.get_screenshot(
&mut self.device,
DeviceIntRect::new(DeviceIntPoint::new(0, 0), device_size),
device_size,
image_format,
);
self.device.end_frame();
Some((RecordedFrameHandle(handle.0), device_size))
}
/// Map a frame captured for the composition recorder into the given buffer.
pub fn map_recorded_frame(
&mut self,
handle: RecordedFrameHandle,
dst_buffer: &mut [u8],
dst_stride: usize,
) -> bool {
if let Some(async_frame_recorder) = self.async_frame_recorder.as_mut() {
async_frame_recorder.map_and_recycle_screenshot(
&mut self.device,
AsyncScreenshotHandle(handle.0),
dst_buffer,
dst_stride,
)
} else {
false
}
}
/// Free the data structures used by the composition recorder.
pub fn release_composition_recorder_structures(&mut self) {
if let Some(async_frame_recorder) = self.async_frame_recorder.take() {
self.device.begin_frame();
async_frame_recorder.deinit(&mut self.device);
self.device.end_frame();
}
}
/// Take a screenshot and scale it asynchronously.
///
/// The returned handle can be used to access the mapped screenshot data via
/// `map_and_recycle_screenshot`.
///
/// The returned size is the size of the screenshot.
pub fn get_screenshot_async(
&mut self,
window_rect: DeviceIntRect,
buffer_size: DeviceIntSize,
image_format: ImageFormat,
) -> (AsyncScreenshotHandle, DeviceIntSize) {
self.device.begin_frame();
let handle = self
.async_screenshots
.get_or_insert_with(AsyncScreenshotGrabber::default)
.get_screenshot(&mut self.device, window_rect, buffer_size, image_format);
self.device.end_frame();
handle
}
/// Map the contents of the screenshot given by the handle and copy it into
/// the given buffer.
pub fn map_and_recycle_screenshot(
&mut self,
handle: AsyncScreenshotHandle,
dst_buffer: &mut [u8],
dst_stride: usize,
) -> bool {
if let Some(async_screenshots) = self.async_screenshots.as_mut() {
async_screenshots.map_and_recycle_screenshot(
&mut self.device,
handle,
dst_buffer,
dst_stride,
)
} else {
false
}
}
/// Release the screenshot grabbing structures that the profiler was using.
pub fn release_profiler_structures(&mut self) {
if let Some(async_screenshots) = self.async_screenshots.take() {
self.device.begin_frame();
async_screenshots.deinit(&mut self.device);
self.device.end_frame();
}
}
}
|