1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use api::{ExternalScrollId, PipelineId, PropertyBinding, PropertyBindingId, ReferenceFrameKind, ScrollClamping, ScrollLocation};
use api::{TransformStyle, ScrollSensitivity, StickyOffsetBounds};
use api::units::*;
use crate::spatial_tree::{CoordinateSystem, CoordinateSystemId, SpatialNodeIndex, TransformUpdateState};
use euclid::{Point2D, Vector2D, SideOffsets2D};
use crate::scene::SceneProperties;
use crate::util::{LayoutFastTransform, MatrixHelpers, ScaleOffset, TransformedRectKind, PointHelpers};
#[derive(Clone, Debug)]
pub enum SpatialNodeType {
/// A special kind of node that adjusts its position based on the position
/// of its parent node and a given set of sticky positioning offset bounds.
/// Sticky positioned is described in the CSS Positioned Layout Module Level 3 here:
/// https://www.w3.org/TR/css-position-3/#sticky-pos
StickyFrame(StickyFrameInfo),
/// Transforms it's content, but doesn't clip it. Can also be adjusted
/// by scroll events or setting scroll offsets.
ScrollFrame(ScrollFrameInfo),
/// A reference frame establishes a new coordinate space in the tree.
ReferenceFrame(ReferenceFrameInfo),
}
/// Contains information common among all types of SpatialTree nodes.
#[derive(Clone, Debug)]
pub struct SpatialNode {
/// The scale/offset of the viewport for this spatial node, relative to the
/// coordinate system. Includes any accumulated scrolling offsets from nodes
/// between our reference frame and this node.
pub viewport_transform: ScaleOffset,
/// Content scale/offset relative to the coordinate system.
pub content_transform: ScaleOffset,
/// Snapping scale/offset relative to the coordinate system. If None, then
/// we should not snap entities bound to this spatial node.
pub snapping_transform: Option<ScaleOffset>,
/// The axis-aligned coordinate system id of this node.
pub coordinate_system_id: CoordinateSystemId,
/// The current transform kind of this node.
pub transform_kind: TransformedRectKind,
/// Pipeline that this layer belongs to
pub pipeline_id: PipelineId,
/// Parent layer. If this is None, we are the root node.
pub parent: Option<SpatialNodeIndex>,
/// Child layers
pub children: Vec<SpatialNodeIndex>,
/// The type of this node and any data associated with that node type.
pub node_type: SpatialNodeType,
/// True if this node is transformed by an invertible transform. If not, display items
/// transformed by this node will not be displayed and display items not transformed by this
/// node will not be clipped by clips that are transformed by this node.
pub invertible: bool,
/// Whether this specific node is currently being async zoomed.
/// Should be set when a SetIsTransformAsyncZooming FrameMsg is received.
pub is_async_zooming: bool,
/// Whether this node or any of its ancestors is being pinch zoomed.
/// This is calculated in update(). This will be used to decide whether
/// to override corresponding picture's raster space as an optimisation.
pub is_ancestor_or_self_zooming: bool,
}
fn compute_offset_from(
mut current: Option<SpatialNodeIndex>,
external_id: ExternalScrollId,
previous_spatial_nodes: &[SpatialNode],
) -> LayoutVector2D {
let mut offset = LayoutVector2D::zero();
while let Some(parent_index) = current {
let ancestor = &previous_spatial_nodes[parent_index.0 as usize];
match ancestor.node_type {
SpatialNodeType::ReferenceFrame(..) => {
// We don't want to scroll across reference frames.
break;
},
SpatialNodeType::ScrollFrame(ref info) => {
if info.external_id == external_id {
break;
}
// External scroll offsets are not propagated across
// reference frame boundaries, so undo them here.
offset += info.offset + info.external_scroll_offset;
},
SpatialNodeType::StickyFrame(ref info) => {
offset += info.current_offset;
},
}
current = ancestor.parent;
}
offset
}
/// Snap an offset to be incorporated into a transform, where the local space
/// may be considered the world space. We convert from world space to device
/// space using the global device pixel scale, which may not always be correct
/// if there are intermediate surfaces used, however those are either cases
/// where snapping is not important (e.g. has perspective or is not axis
/// aligned), or an edge case (e.g. SVG filters) which we can accept
/// imperfection for now.
fn snap_offset<OffsetUnits, ScaleUnits>(
offset: Vector2D<f32, OffsetUnits>,
scale: Vector2D<f32, ScaleUnits>,
global_device_pixel_scale: DevicePixelScale,
) -> Vector2D<f32, OffsetUnits> {
let world_offset = Point2D::new(offset.x * scale.x, offset.y * scale.y);
let snapped_device_offset = (world_offset * global_device_pixel_scale).snap();
let snapped_world_offset = snapped_device_offset / global_device_pixel_scale;
Vector2D::new(
if scale.x != 0.0 { snapped_world_offset.x / scale.x } else { offset.x },
if scale.y != 0.0 { snapped_world_offset.y / scale.y } else { offset.y },
)
}
impl SpatialNode {
pub fn new(
pipeline_id: PipelineId,
parent_index: Option<SpatialNodeIndex>,
node_type: SpatialNodeType,
) -> Self {
SpatialNode {
viewport_transform: ScaleOffset::identity(),
content_transform: ScaleOffset::identity(),
snapping_transform: None,
coordinate_system_id: CoordinateSystemId(0),
transform_kind: TransformedRectKind::AxisAligned,
parent: parent_index,
children: Vec::new(),
pipeline_id,
node_type,
invertible: true,
is_async_zooming: false,
is_ancestor_or_self_zooming: false,
}
}
pub fn new_scroll_frame(
pipeline_id: PipelineId,
parent_index: SpatialNodeIndex,
external_id: ExternalScrollId,
frame_rect: &LayoutRect,
content_size: &LayoutSize,
scroll_sensitivity: ScrollSensitivity,
frame_kind: ScrollFrameKind,
external_scroll_offset: LayoutVector2D,
) -> Self {
let node_type = SpatialNodeType::ScrollFrame(ScrollFrameInfo::new(
*frame_rect,
scroll_sensitivity,
LayoutSize::new(
(content_size.width - frame_rect.size.width).max(0.0),
(content_size.height - frame_rect.size.height).max(0.0)
),
external_id,
frame_kind,
external_scroll_offset,
)
);
Self::new(pipeline_id, Some(parent_index), node_type)
}
pub fn new_reference_frame(
parent_index: Option<SpatialNodeIndex>,
transform_style: TransformStyle,
source_transform: PropertyBinding<LayoutTransform>,
kind: ReferenceFrameKind,
origin_in_parent_reference_frame: LayoutVector2D,
pipeline_id: PipelineId,
) -> Self {
let info = ReferenceFrameInfo {
transform_style,
source_transform,
kind,
origin_in_parent_reference_frame,
invertible: true,
};
Self::new(pipeline_id, parent_index, SpatialNodeType::ReferenceFrame(info))
}
pub fn new_sticky_frame(
parent_index: SpatialNodeIndex,
sticky_frame_info: StickyFrameInfo,
pipeline_id: PipelineId,
) -> Self {
Self::new(pipeline_id, Some(parent_index), SpatialNodeType::StickyFrame(sticky_frame_info))
}
pub fn add_child(&mut self, child: SpatialNodeIndex) {
self.children.push(child);
}
pub fn apply_old_scrolling_state(&mut self, old_scroll_info: &ScrollFrameInfo) {
match self.node_type {
SpatialNodeType::ScrollFrame(ref mut scrolling) => {
*scrolling = scrolling.combine_with_old_scroll_info(old_scroll_info);
}
_ if old_scroll_info.offset != LayoutVector2D::zero() => {
warn!("Tried to scroll a non-scroll node.")
}
_ => {}
}
}
pub fn set_scroll_origin(&mut self, origin: &LayoutPoint, clamp: ScrollClamping) -> bool {
let scrolling = match self.node_type {
SpatialNodeType::ScrollFrame(ref mut scrolling) => scrolling,
_ => {
warn!("Tried to scroll a non-scroll node.");
return false;
}
};
let normalized_offset = match clamp {
ScrollClamping::ToContentBounds => {
let scrollable_size = scrolling.scrollable_size;
let scrollable_width = scrollable_size.width;
let scrollable_height = scrollable_size.height;
if scrollable_height <= 0. && scrollable_width <= 0. {
return false;
}
let origin = LayoutPoint::new(origin.x.max(0.0), origin.y.max(0.0));
LayoutVector2D::new(
(-origin.x).max(-scrollable_width).min(0.0),
(-origin.y).max(-scrollable_height).min(0.0),
)
}
ScrollClamping::NoClamping => LayoutPoint::zero() - *origin,
};
let new_offset = normalized_offset - scrolling.external_scroll_offset;
if new_offset == scrolling.offset {
return false;
}
scrolling.offset = new_offset;
true
}
pub fn mark_uninvertible(
&mut self,
state: &TransformUpdateState,
) {
self.invertible = false;
self.viewport_transform = ScaleOffset::identity();
self.content_transform = ScaleOffset::identity();
self.coordinate_system_id = state.current_coordinate_system_id;
}
pub fn update(
&mut self,
state: &mut TransformUpdateState,
coord_systems: &mut Vec<CoordinateSystem>,
global_device_pixel_scale: DevicePixelScale,
scene_properties: &SceneProperties,
previous_spatial_nodes: &[SpatialNode],
) {
// If any of our parents was not rendered, we are not rendered either and can just
// quit here.
if !state.invertible {
self.mark_uninvertible(state);
return;
}
self.update_transform(state, coord_systems, global_device_pixel_scale, scene_properties, previous_spatial_nodes);
//TODO: remove the field entirely?
self.transform_kind = if self.coordinate_system_id.0 == 0 {
TransformedRectKind::AxisAligned
} else {
TransformedRectKind::Complex
};
let is_parent_zooming = match self.parent {
Some(parent) => previous_spatial_nodes[parent.0 as usize].is_ancestor_or_self_zooming,
_ => false,
};
self.is_ancestor_or_self_zooming = self.is_async_zooming | is_parent_zooming;
// If this node is a reference frame, we check if it has a non-invertible matrix.
// For non-reference-frames we assume that they will produce only additional
// translations which should be invertible.
match self.node_type {
SpatialNodeType::ReferenceFrame(info) if !info.invertible => {
self.mark_uninvertible(state);
}
_ => self.invertible = true,
}
}
pub fn update_transform(
&mut self,
state: &mut TransformUpdateState,
coord_systems: &mut Vec<CoordinateSystem>,
global_device_pixel_scale: DevicePixelScale,
scene_properties: &SceneProperties,
previous_spatial_nodes: &[SpatialNode],
) {
match self.node_type {
SpatialNodeType::ReferenceFrame(ref mut info) => {
let mut cs_scale_offset = ScaleOffset::identity();
if info.invertible {
// Resolve the transform against any property bindings.
let source_transform = LayoutFastTransform::from(
scene_properties.resolve_layout_transform(&info.source_transform)
);
// Do a change-basis operation on the perspective matrix using
// the scroll offset.
let source_transform = match info.kind {
ReferenceFrameKind::Perspective { scrolling_relative_to: Some(external_id) } => {
let scroll_offset = compute_offset_from(
self.parent,
external_id,
previous_spatial_nodes,
);
// Do a change-basis operation on the
// perspective matrix using the scroll offset.
source_transform
.pre_translate(scroll_offset)
.then_translate(-scroll_offset)
}
ReferenceFrameKind::Perspective { scrolling_relative_to: None } |
ReferenceFrameKind::Transform | ReferenceFrameKind::Zoom => source_transform,
};
let resolved_transform =
LayoutFastTransform::with_vector(info.origin_in_parent_reference_frame)
.pre_transform(&source_transform);
// The transformation for this viewport in world coordinates is the transformation for
// our parent reference frame, plus any accumulated scrolling offsets from nodes
// between our reference frame and this node. Finally, we also include
// whatever local transformation this reference frame provides.
let relative_transform = resolved_transform
.then_translate(snap_offset(state.parent_accumulated_scroll_offset, state.coordinate_system_relative_scale_offset.scale, global_device_pixel_scale))
.to_transform()
.with_destination::<LayoutPixel>();
let mut reset_cs_id = match info.transform_style {
TransformStyle::Preserve3D => !state.preserves_3d,
TransformStyle::Flat => state.preserves_3d,
};
// We reset the coordinate system upon either crossing the preserve-3d context boundary,
// or simply a 3D transformation.
if !reset_cs_id {
// Try to update our compatible coordinate system transform. If we cannot, start a new
// incompatible coordinate system.
match ScaleOffset::from_transform(&relative_transform) {
Some(ref scale_offset) => {
// We generally do not want to snap animated transforms as it causes jitter.
// However, we do want to snap the visual viewport offset when scrolling.
// Therefore only snap the transform for Zoom reference frames. This may still
// cause jitter when zooming, unfortunately.
let mut maybe_snapped = scale_offset.clone();
if info.kind == ReferenceFrameKind::Zoom {
maybe_snapped.offset = snap_offset(
scale_offset.offset,
state.coordinate_system_relative_scale_offset.scale,
global_device_pixel_scale
);
}
cs_scale_offset =
state.coordinate_system_relative_scale_offset.accumulate(&maybe_snapped);
}
None => reset_cs_id = true,
}
}
if reset_cs_id {
// If we break 2D axis alignment or have a perspective component, we need to start a
// new incompatible coordinate system with which we cannot share clips without masking.
let transform = relative_transform.then(
&state.coordinate_system_relative_scale_offset.to_transform()
);
// Push that new coordinate system and record the new id.
let coord_system = {
let parent_system = &coord_systems[state.current_coordinate_system_id.0 as usize];
let mut cur_transform = transform;
if parent_system.should_flatten {
cur_transform.flatten_z_output();
}
let world_transform = cur_transform.then(&parent_system.world_transform);
let determinant = world_transform.determinant();
info.invertible = determinant != 0.0 && !determinant.is_nan();
CoordinateSystem {
transform,
world_transform,
should_flatten: match (info.transform_style, info.kind) {
(TransformStyle::Flat, ReferenceFrameKind::Transform) => true,
(_, _) => false,
},
parent: Some(state.current_coordinate_system_id),
}
};
state.current_coordinate_system_id = CoordinateSystemId(coord_systems.len() as u32);
coord_systems.push(coord_system);
}
}
// Ensure that the current coordinate system ID is propagated to child
// nodes, even if we encounter a node that is not invertible. This ensures
// that the invariant in get_relative_transform is not violated.
self.coordinate_system_id = state.current_coordinate_system_id;
self.viewport_transform = cs_scale_offset;
self.content_transform = cs_scale_offset;
self.invertible = info.invertible;
}
_ => {
// We calculate this here to avoid a double-borrow later.
let sticky_offset = self.calculate_sticky_offset(
&state.nearest_scrolling_ancestor_offset,
&state.nearest_scrolling_ancestor_viewport,
);
// The transformation for the bounds of our viewport is the parent reference frame
// transform, plus any accumulated scroll offset from our parents, plus any offset
// provided by our own sticky positioning.
let accumulated_offset = state.parent_accumulated_scroll_offset + sticky_offset;
self.viewport_transform = state.coordinate_system_relative_scale_offset
.offset(snap_offset(accumulated_offset, state.coordinate_system_relative_scale_offset.scale, global_device_pixel_scale).to_untyped());
// The transformation for any content inside of us is the viewport transformation, plus
// whatever scrolling offset we supply as well.
let added_offset = accumulated_offset + self.scroll_offset();
self.content_transform = state.coordinate_system_relative_scale_offset
.offset(snap_offset(added_offset, state.coordinate_system_relative_scale_offset.scale, global_device_pixel_scale).to_untyped());
if let SpatialNodeType::StickyFrame(ref mut info) = self.node_type {
info.current_offset = sticky_offset;
}
self.coordinate_system_id = state.current_coordinate_system_id;
}
}
}
fn calculate_sticky_offset(
&self,
viewport_scroll_offset: &LayoutVector2D,
viewport_rect: &LayoutRect,
) -> LayoutVector2D {
let info = match self.node_type {
SpatialNodeType::StickyFrame(ref info) => info,
_ => return LayoutVector2D::zero(),
};
if info.margins.top.is_none() && info.margins.bottom.is_none() &&
info.margins.left.is_none() && info.margins.right.is_none() {
return LayoutVector2D::zero();
}
// The viewport and margins of the item establishes the maximum amount that it can
// be offset in order to keep it on screen. Since we care about the relationship
// between the scrolled content and unscrolled viewport we adjust the viewport's
// position by the scroll offset in order to work with their relative positions on the
// page.
let mut sticky_rect = info.frame_rect.translate(*viewport_scroll_offset);
let mut sticky_offset = LayoutVector2D::zero();
if let Some(margin) = info.margins.top {
let top_viewport_edge = viewport_rect.min_y() + margin;
if sticky_rect.min_y() < top_viewport_edge {
// If the sticky rect is positioned above the top edge of the viewport (plus margin)
// we move it down so that it is fully inside the viewport.
sticky_offset.y = top_viewport_edge - sticky_rect.min_y();
} else if info.previously_applied_offset.y > 0.0 &&
sticky_rect.min_y() > top_viewport_edge {
// However, if the sticky rect is positioned *below* the top edge of the viewport
// and there is already some offset applied to the sticky rect's position, then
// we need to move it up so that it remains at the correct position. This
// makes sticky_offset.y negative and effectively reduces the amount of the
// offset that was already applied. We limit the reduction so that it can, at most,
// cancel out the already-applied offset, but should never end up adjusting the
// position the other way.
sticky_offset.y = top_viewport_edge - sticky_rect.min_y();
sticky_offset.y = sticky_offset.y.max(-info.previously_applied_offset.y);
}
}
// If we don't have a sticky-top offset (sticky_offset.y + info.previously_applied_offset.y
// == 0), or if we have a previously-applied bottom offset (previously_applied_offset.y < 0)
// then we check for handling the bottom margin case. Note that the "don't have a sticky-top
// offset" case includes the case where we *had* a sticky-top offset but we reduced it to
// zero in the above block.
if sticky_offset.y + info.previously_applied_offset.y <= 0.0 {
if let Some(margin) = info.margins.bottom {
// If sticky_offset.y is nonzero that means we must have set it
// in the sticky-top handling code above, so this item must have
// both top and bottom sticky margins. We adjust the item's rect
// by the top-sticky offset, and then combine any offset from
// the bottom-sticky calculation into sticky_offset below.
sticky_rect.origin.y += sticky_offset.y;
// Same as the above case, but inverted for bottom-sticky items. Here
// we adjust items upwards, resulting in a negative sticky_offset.y,
// or reduce the already-present upward adjustment, resulting in a positive
// sticky_offset.y.
let bottom_viewport_edge = viewport_rect.max_y() - margin;
if sticky_rect.max_y() > bottom_viewport_edge {
sticky_offset.y += bottom_viewport_edge - sticky_rect.max_y();
} else if info.previously_applied_offset.y < 0.0 &&
sticky_rect.max_y() < bottom_viewport_edge {
sticky_offset.y += bottom_viewport_edge - sticky_rect.max_y();
sticky_offset.y = sticky_offset.y.min(-info.previously_applied_offset.y);
}
}
}
// Same as above, but for the x-axis.
if let Some(margin) = info.margins.left {
let left_viewport_edge = viewport_rect.min_x() + margin;
if sticky_rect.min_x() < left_viewport_edge {
sticky_offset.x = left_viewport_edge - sticky_rect.min_x();
} else if info.previously_applied_offset.x > 0.0 &&
sticky_rect.min_x() > left_viewport_edge {
sticky_offset.x = left_viewport_edge - sticky_rect.min_x();
sticky_offset.x = sticky_offset.x.max(-info.previously_applied_offset.x);
}
}
if sticky_offset.x + info.previously_applied_offset.x <= 0.0 {
if let Some(margin) = info.margins.right {
sticky_rect.origin.x += sticky_offset.x;
let right_viewport_edge = viewport_rect.max_x() - margin;
if sticky_rect.max_x() > right_viewport_edge {
sticky_offset.x += right_viewport_edge - sticky_rect.max_x();
} else if info.previously_applied_offset.x < 0.0 &&
sticky_rect.max_x() < right_viewport_edge {
sticky_offset.x += right_viewport_edge - sticky_rect.max_x();
sticky_offset.x = sticky_offset.x.min(-info.previously_applied_offset.x);
}
}
}
// The total "sticky offset" (which is the sum that was already applied by
// the calling code, stored in info.previously_applied_offset, and the extra amount we
// computed as a result of scrolling, stored in sticky_offset) needs to be
// clamped to the provided bounds.
let clamp_adjusted = |value: f32, adjust: f32, bounds: &StickyOffsetBounds| {
(value + adjust).max(bounds.min).min(bounds.max) - adjust
};
sticky_offset.y = clamp_adjusted(sticky_offset.y,
info.previously_applied_offset.y,
&info.vertical_offset_bounds);
sticky_offset.x = clamp_adjusted(sticky_offset.x,
info.previously_applied_offset.x,
&info.horizontal_offset_bounds);
sticky_offset
}
pub fn prepare_state_for_children(&self, state: &mut TransformUpdateState) {
if !self.invertible {
state.invertible = false;
return;
}
// The transformation we are passing is the transformation of the parent
// reference frame and the offset is the accumulated offset of all the nodes
// between us and the parent reference frame. If we are a reference frame,
// we need to reset both these values.
match self.node_type {
SpatialNodeType::StickyFrame(ref info) => {
// We don't translate the combined rect by the sticky offset, because sticky
// offsets actually adjust the node position itself, whereas scroll offsets
// only apply to contents inside the node.
state.parent_accumulated_scroll_offset += info.current_offset;
// We want nested sticky items to take into account the shift
// we applied as well.
state.nearest_scrolling_ancestor_offset += info.current_offset;
state.preserves_3d = false;
}
SpatialNodeType::ScrollFrame(ref scrolling) => {
state.parent_accumulated_scroll_offset += scrolling.offset;
state.nearest_scrolling_ancestor_offset = scrolling.offset;
state.nearest_scrolling_ancestor_viewport = scrolling.viewport_rect;
state.preserves_3d = false;
}
SpatialNodeType::ReferenceFrame(ref info) => {
state.preserves_3d = info.transform_style == TransformStyle::Preserve3D;
state.parent_accumulated_scroll_offset = LayoutVector2D::zero();
state.coordinate_system_relative_scale_offset = self.content_transform;
let translation = -info.origin_in_parent_reference_frame;
state.nearest_scrolling_ancestor_viewport =
state.nearest_scrolling_ancestor_viewport
.translate(translation);
}
}
}
pub fn scroll(&mut self, scroll_location: ScrollLocation) -> bool {
// TODO(gw): This scroll method doesn't currently support
// scroll nodes with non-zero external scroll
// offsets. However, it's never used by Gecko,
// which is the only client that requires
// non-zero external scroll offsets.
let scrolling = match self.node_type {
SpatialNodeType::ScrollFrame(ref mut scrolling) => scrolling,
_ => return false,
};
let delta = match scroll_location {
ScrollLocation::Delta(delta) => delta,
ScrollLocation::Start => {
if scrolling.offset.y.round() >= 0.0 {
// Nothing to do on this layer.
return false;
}
scrolling.offset.y = 0.0;
return true;
}
ScrollLocation::End => {
let end_pos = -scrolling.scrollable_size.height;
if scrolling.offset.y.round() <= end_pos {
// Nothing to do on this layer.
return false;
}
scrolling.offset.y = end_pos;
return true;
}
};
let scrollable_width = scrolling.scrollable_size.width;
let scrollable_height = scrolling.scrollable_size.height;
let original_layer_scroll_offset = scrolling.offset;
if scrollable_width > 0. {
scrolling.offset.x = (scrolling.offset.x + delta.x)
.min(0.0)
.max(-scrollable_width);
}
if scrollable_height > 0. {
scrolling.offset.y = (scrolling.offset.y + delta.y)
.min(0.0)
.max(-scrollable_height);
}
scrolling.offset != original_layer_scroll_offset
}
pub fn scroll_offset(&self) -> LayoutVector2D {
match self.node_type {
SpatialNodeType::ScrollFrame(ref scrolling) => scrolling.offset,
_ => LayoutVector2D::zero(),
}
}
pub fn matches_external_id(&self, external_id: ExternalScrollId) -> bool {
match self.node_type {
SpatialNodeType::ScrollFrame(info) if info.external_id == external_id => true,
_ => false,
}
}
/// Updates the snapping transform.
pub fn update_snapping(
&mut self,
parent: Option<&SpatialNode>,
) {
// Reset in case of an early return.
self.snapping_transform = None;
// We need to incorporate the parent scale/offset with the child.
// If the parent does not have a scale/offset, then we know we are
// not 2d axis aligned and thus do not need to snap its children
// either.
let parent_scale_offset = match parent {
Some(parent) => {
match parent.snapping_transform {
Some(scale_offset) => scale_offset,
None => return,
}
},
_ => ScaleOffset::identity(),
};
let scale_offset = match self.node_type {
SpatialNodeType::ReferenceFrame(ref info) => {
match info.source_transform {
PropertyBinding::Value(ref value) => {
// We can only get a ScaleOffset if the transform is 2d axis
// aligned.
match ScaleOffset::from_transform(value) {
Some(scale_offset) => {
let origin_offset = info.origin_in_parent_reference_frame;
ScaleOffset::from_offset(origin_offset.to_untyped())
.accumulate(&scale_offset)
}
None => return,
}
}
// Assume animations start at the identity transform for snapping purposes.
// We still want to incorporate the reference frame offset however.
// TODO(aosmond): Is there a better known starting point?
PropertyBinding::Binding(..) => {
let origin_offset = info.origin_in_parent_reference_frame;
ScaleOffset::from_offset(origin_offset.to_untyped())
}
}
}
_ => ScaleOffset::identity(),
};
self.snapping_transform = Some(parent_scale_offset.accumulate(&scale_offset));
}
/// Returns true for ReferenceFrames whose source_transform is
/// bound to the property binding id.
pub fn is_transform_bound_to_property(&self, id: PropertyBindingId) -> bool {
if let SpatialNodeType::ReferenceFrame(ref info) = self.node_type {
if let PropertyBinding::Binding(key, _) = info.source_transform {
id == key.id
} else {
false
}
} else {
false
}
}
}
/// Defines whether we have an implicit scroll frame for a pipeline root,
/// or an explicitly defined scroll frame from the display list.
#[derive(Copy, Clone, Debug)]
pub enum ScrollFrameKind {
PipelineRoot {
is_root_pipeline: bool,
},
Explicit,
}
#[derive(Copy, Clone, Debug)]
pub struct ScrollFrameInfo {
/// The rectangle of the viewport of this scroll frame. This is important for
/// positioning of items inside child StickyFrames.
pub viewport_rect: LayoutRect,
pub scroll_sensitivity: ScrollSensitivity,
/// Amount that this ScrollFrame can scroll in both directions.
pub scrollable_size: LayoutSize,
/// An external id to identify this scroll frame to API clients. This
/// allows setting scroll positions via the API without relying on ClipsIds
/// which may change between frames.
pub external_id: ExternalScrollId,
/// Stores whether this is a scroll frame added implicitly by WR when adding
/// a pipeline (either the root or an iframe). We need to exclude these
/// when searching for scroll roots we care about for picture caching.
/// TODO(gw): I think we can actually completely remove the implicit
/// scroll frame being added by WR, and rely on the embedder
/// to define scroll frames. However, that involves API changes
/// so we will use this as a temporary hack!
pub frame_kind: ScrollFrameKind,
/// Amount that visual components attached to this scroll node have been
/// pre-scrolled in their local coordinates.
pub external_scroll_offset: LayoutVector2D,
/// The negated scroll offset of this scroll node. including the
/// pre-scrolled amount. If, for example, a scroll node was pre-scrolled
/// to y=10 (10 pixels down from the initial unscrolled position), then
/// `external_scroll_offset` would be (0,10), and this `offset` field would
/// be (0,-10). If WebRender is then asked to change the scroll position by
/// an additional 10 pixels (without changing the pre-scroll amount in the
/// display list), `external_scroll_offset` would remain at (0,10) and
/// `offset` would change to (0,-20).
pub offset: LayoutVector2D,
}
/// Manages scrolling offset.
impl ScrollFrameInfo {
pub fn new(
viewport_rect: LayoutRect,
scroll_sensitivity: ScrollSensitivity,
scrollable_size: LayoutSize,
external_id: ExternalScrollId,
frame_kind: ScrollFrameKind,
external_scroll_offset: LayoutVector2D,
) -> ScrollFrameInfo {
ScrollFrameInfo {
viewport_rect,
offset: -external_scroll_offset,
scroll_sensitivity,
scrollable_size,
external_id,
frame_kind,
external_scroll_offset,
}
}
pub fn sensitive_to_input_events(&self) -> bool {
match self.scroll_sensitivity {
ScrollSensitivity::ScriptAndInputEvents => true,
ScrollSensitivity::Script => false,
}
}
pub fn combine_with_old_scroll_info(
self,
old_scroll_info: &ScrollFrameInfo
) -> ScrollFrameInfo {
ScrollFrameInfo {
viewport_rect: self.viewport_rect,
offset: old_scroll_info.offset,
scroll_sensitivity: self.scroll_sensitivity,
scrollable_size: self.scrollable_size,
external_id: self.external_id,
frame_kind: self.frame_kind,
external_scroll_offset: self.external_scroll_offset,
}
}
}
/// Contains information about reference frames.
#[derive(Copy, Clone, Debug)]
pub struct ReferenceFrameInfo {
/// The source transform and perspective matrices provided by the stacking context
/// that forms this reference frame. We maintain the property binding information
/// here so that we can resolve the animated transform and update the tree each
/// frame.
pub source_transform: PropertyBinding<LayoutTransform>,
pub transform_style: TransformStyle,
pub kind: ReferenceFrameKind,
/// The original, not including the transform and relative to the parent reference frame,
/// origin of this reference frame. This is already rolled into the `transform' property, but
/// we also store it here to properly transform the viewport for sticky positioning.
pub origin_in_parent_reference_frame: LayoutVector2D,
/// True if the resolved transform is invertible.
pub invertible: bool,
}
#[derive(Clone, Debug)]
pub struct StickyFrameInfo {
pub frame_rect: LayoutRect,
pub margins: SideOffsets2D<Option<f32>, LayoutPixel>,
pub vertical_offset_bounds: StickyOffsetBounds,
pub horizontal_offset_bounds: StickyOffsetBounds,
pub previously_applied_offset: LayoutVector2D,
pub current_offset: LayoutVector2D,
}
impl StickyFrameInfo {
pub fn new(
frame_rect: LayoutRect,
margins: SideOffsets2D<Option<f32>, LayoutPixel>,
vertical_offset_bounds: StickyOffsetBounds,
horizontal_offset_bounds: StickyOffsetBounds,
previously_applied_offset: LayoutVector2D
) -> StickyFrameInfo {
StickyFrameInfo {
frame_rect,
margins,
vertical_offset_bounds,
horizontal_offset_bounds,
previously_applied_offset,
current_offset: LayoutVector2D::zero(),
}
}
}
#[test]
fn test_cst_perspective_relative_scroll() {
// Verify that when computing the offset from a perspective transform
// to a relative scroll node that any external scroll offset is
// ignored. This is because external scroll offsets are not
// propagated across reference frame boundaries.
// It's not currently possible to verify this with a wrench reftest,
// since wrench doesn't understand external scroll ids. When wrench
// supports this, we could also verify with a reftest.
use crate::spatial_tree::SpatialTree;
use euclid::approxeq::ApproxEq;
let mut cst = SpatialTree::new();
let pipeline_id = PipelineId::dummy();
let ext_scroll_id = ExternalScrollId(1, pipeline_id);
let transform = LayoutTransform::perspective(100.0);
let root = cst.add_reference_frame(
None,
TransformStyle::Flat,
PropertyBinding::Value(LayoutTransform::identity()),
ReferenceFrameKind::Transform,
LayoutVector2D::zero(),
pipeline_id,
);
let scroll_frame_1 = cst.add_scroll_frame(
root,
ext_scroll_id,
pipeline_id,
&LayoutRect::new(LayoutPoint::zero(), LayoutSize::new(100.0, 100.0)),
&LayoutSize::new(100.0, 500.0),
ScrollSensitivity::Script,
ScrollFrameKind::Explicit,
LayoutVector2D::zero(),
);
let scroll_frame_2 = cst.add_scroll_frame(
scroll_frame_1,
ExternalScrollId(2, pipeline_id),
pipeline_id,
&LayoutRect::new(LayoutPoint::zero(), LayoutSize::new(100.0, 100.0)),
&LayoutSize::new(100.0, 500.0),
ScrollSensitivity::Script,
ScrollFrameKind::Explicit,
LayoutVector2D::new(0.0, 50.0),
);
let ref_frame = cst.add_reference_frame(
Some(scroll_frame_2),
TransformStyle::Preserve3D,
PropertyBinding::Value(transform),
ReferenceFrameKind::Perspective {
scrolling_relative_to: Some(ext_scroll_id),
},
LayoutVector2D::zero(),
pipeline_id,
);
cst.update_tree(WorldPoint::zero(), DevicePixelScale::new(1.0), &SceneProperties::new());
let scroll_offset = compute_offset_from(
cst.spatial_nodes[ref_frame.0 as usize].parent,
ext_scroll_id,
&cst.spatial_nodes,
);
assert!(scroll_offset.x.approx_eq(&0.0));
assert!(scroll_offset.y.approx_eq(&0.0));
}
|