summaryrefslogtreecommitdiffstats
path: root/image/Decoder.cpp
blob: 300fd9940b17569db47f79bee8aac0cab511dac2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "Decoder.h"

#include "DecodePool.h"
#include "GeckoProfiler.h"
#include "IDecodingTask.h"
#include "ISurfaceProvider.h"
#include "gfxPlatform.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/gfx/Point.h"
#include "mozilla/Telemetry.h"
#include "nsComponentManagerUtils.h"
#include "nsProxyRelease.h"
#include "nsServiceManagerUtils.h"

using mozilla::gfx::IntPoint;
using mozilla::gfx::IntRect;
using mozilla::gfx::IntSize;
using mozilla::gfx::SurfaceFormat;

namespace mozilla {
namespace image {

class MOZ_STACK_CLASS AutoRecordDecoderTelemetry final {
 public:
  explicit AutoRecordDecoderTelemetry(Decoder* aDecoder) : mDecoder(aDecoder) {
    MOZ_ASSERT(mDecoder);

    // Begin recording telemetry data.
    mStartTime = TimeStamp::Now();
  }

  ~AutoRecordDecoderTelemetry() {
    // Finish telemetry.
    mDecoder->mDecodeTime += (TimeStamp::Now() - mStartTime);
  }

 private:
  Decoder* mDecoder;
  TimeStamp mStartTime;
};

Decoder::Decoder(RasterImage* aImage)
    : mInProfile(nullptr),
      mTransform(nullptr),
      mImageData(nullptr),
      mImageDataLength(0),
      mCMSMode(gfxPlatform::GetCMSMode()),
      mImage(aImage),
      mFrameRecycler(nullptr),
      mProgress(NoProgress),
      mFrameCount(0),
      mLoopLength(FrameTimeout::Zero()),
      mDecoderFlags(DefaultDecoderFlags()),
      mSurfaceFlags(DefaultSurfaceFlags()),
      mInitialized(false),
      mMetadataDecode(false),
      mHaveExplicitOutputSize(false),
      mInFrame(false),
      mFinishedNewFrame(false),
      mHasFrameToTake(false),
      mReachedTerminalState(false),
      mDecodeDone(false),
      mError(false),
      mShouldReportError(false),
      mFinalizeFrames(true) {}

Decoder::~Decoder() {
  MOZ_ASSERT(mProgress == NoProgress || !mImage,
             "Destroying Decoder without taking all its progress changes");
  MOZ_ASSERT(mInvalidRect.IsEmpty() || !mImage,
             "Destroying Decoder without taking all its invalidations");
  mInitialized = false;

  if (mInProfile) {
    // mTransform belongs to us only if mInProfile is non-null
    if (mTransform) {
      qcms_transform_release(mTransform);
    }
    qcms_profile_release(mInProfile);
  }

  if (mImage && !NS_IsMainThread()) {
    // Dispatch mImage to main thread to prevent it from being destructed by the
    // decode thread.
    SurfaceCache::ReleaseImageOnMainThread(mImage.forget());
  }
}

void Decoder::SetSurfaceFlags(SurfaceFlags aSurfaceFlags) {
  MOZ_ASSERT(!mInitialized);
  mSurfaceFlags = aSurfaceFlags;
  if (mSurfaceFlags & SurfaceFlags::NO_COLORSPACE_CONVERSION) {
    mCMSMode = eCMSMode_Off;
  }
}

qcms_profile* Decoder::GetCMSOutputProfile() const {
  if (mSurfaceFlags & SurfaceFlags::TO_SRGB_COLORSPACE) {
    return gfxPlatform::GetCMSsRGBProfile();
  }
  return gfxPlatform::GetCMSOutputProfile();
}

qcms_transform* Decoder::GetCMSsRGBTransform(SurfaceFormat aFormat) const {
  if (mSurfaceFlags & SurfaceFlags::TO_SRGB_COLORSPACE) {
    // We want a transform to convert from sRGB to device space, but we are
    // already using sRGB as our device space. That means we can skip
    // color management entirely.
    return nullptr;
  }

  switch (aFormat) {
    case SurfaceFormat::B8G8R8A8:
    case SurfaceFormat::B8G8R8X8:
      return gfxPlatform::GetCMSBGRATransform();
    case SurfaceFormat::R8G8B8A8:
    case SurfaceFormat::R8G8B8X8:
      return gfxPlatform::GetCMSRGBATransform();
    case SurfaceFormat::R8G8B8:
      return gfxPlatform::GetCMSRGBTransform();
    default:
      MOZ_ASSERT_UNREACHABLE("Unsupported surface format!");
      return nullptr;
  }
}

/*
 * Common implementation of the decoder interface.
 */

nsresult Decoder::Init() {
  // No re-initializing
  MOZ_ASSERT(!mInitialized, "Can't re-initialize a decoder!");

  // All decoders must have a SourceBufferIterator.
  MOZ_ASSERT(mIterator);

  // Metadata decoders must not set an output size.
  MOZ_ASSERT_IF(mMetadataDecode, !mHaveExplicitOutputSize);

  // All decoders must be anonymous except for metadata decoders.
  // XXX(seth): Soon that exception will be removed.
  MOZ_ASSERT_IF(mImage, IsMetadataDecode());

  // Implementation-specific initialization.
  nsresult rv = InitInternal();

  mInitialized = true;

  return rv;
}

LexerResult Decoder::Decode(IResumable* aOnResume /* = nullptr */) {
  MOZ_ASSERT(mInitialized, "Should be initialized here");
  MOZ_ASSERT(mIterator, "Should have a SourceBufferIterator");

  // If we're already done, don't attempt to keep decoding.
  if (GetDecodeDone()) {
    return LexerResult(HasError() ? TerminalState::FAILURE
                                  : TerminalState::SUCCESS);
  }

  LexerResult lexerResult(TerminalState::FAILURE);
  {
    AUTO_PROFILER_LABEL_CATEGORY_PAIR(GRAPHICS_ImageDecoding);
    AutoRecordDecoderTelemetry telemetry(this);

    lexerResult = DoDecode(*mIterator, aOnResume);
  };

  if (lexerResult.is<Yield>()) {
    // We either need more data to continue (in which case either @aOnResume or
    // the caller will reschedule us to run again later), or the decoder is
    // yielding to allow the caller access to some intermediate output.
    return lexerResult;
  }

  // We reached a terminal state; we're now done decoding.
  MOZ_ASSERT(lexerResult.is<TerminalState>());
  mReachedTerminalState = true;

  // If decoding failed, record that fact.
  if (lexerResult.as<TerminalState>() == TerminalState::FAILURE) {
    PostError();
  }

  // Perform final cleanup.
  CompleteDecode();

  return LexerResult(HasError() ? TerminalState::FAILURE
                                : TerminalState::SUCCESS);
}

LexerResult Decoder::TerminateFailure() {
  PostError();

  // Perform final cleanup if need be.
  if (!mReachedTerminalState) {
    mReachedTerminalState = true;
    CompleteDecode();
  }

  return LexerResult(TerminalState::FAILURE);
}

bool Decoder::ShouldSyncDecode(size_t aByteLimit) {
  MOZ_ASSERT(aByteLimit > 0);
  MOZ_ASSERT(mIterator, "Should have a SourceBufferIterator");

  return mIterator->RemainingBytesIsNoMoreThan(aByteLimit);
}

void Decoder::CompleteDecode() {
  // Implementation-specific finalization.
  nsresult rv = BeforeFinishInternal();
  if (NS_FAILED(rv)) {
    PostError();
  }

  rv = HasError() ? FinishWithErrorInternal() : FinishInternal();
  if (NS_FAILED(rv)) {
    PostError();
  }

  if (IsMetadataDecode()) {
    // If this was a metadata decode and we never got a size, the decode failed.
    if (!HasSize()) {
      PostError();
    }
    return;
  }

  // If the implementation left us mid-frame, finish that up. Note that it may
  // have left us transparent.
  if (mInFrame) {
    PostHasTransparency();
    PostFrameStop();
  }

  // If PostDecodeDone() has not been called, we may need to send teardown
  // notifications if it is unrecoverable.
  if (!mDecodeDone) {
    // We should always report an error to the console in this case.
    mShouldReportError = true;

    if (GetCompleteFrameCount() > 0) {
      // We're usable if we have at least one complete frame, so do exactly
      // what we should have when the decoder completed.
      PostHasTransparency();
      PostDecodeDone();
    } else {
      // We're not usable. Record some final progress indicating the error.
      mProgress |= FLAG_DECODE_COMPLETE | FLAG_HAS_ERROR;
    }
  }

  if (mDecodeDone) {
    MOZ_ASSERT(HasError() || mCurrentFrame, "Should have an error or a frame");

    // If this image wasn't animated and isn't a transient image, mark its frame
    // as optimizable. We don't support optimizing animated images and
    // optimizing transient images isn't worth it.
    if (!HasAnimation() &&
        !(mDecoderFlags & DecoderFlags::IMAGE_IS_TRANSIENT) && mCurrentFrame) {
      mCurrentFrame->SetOptimizable();
    }
  }
}

void Decoder::SetOutputSize(const gfx::IntSize& aSize) {
  mOutputSize = Some(aSize);
  mHaveExplicitOutputSize = true;
}

Maybe<gfx::IntSize> Decoder::ExplicitOutputSize() const {
  MOZ_ASSERT_IF(mHaveExplicitOutputSize, mOutputSize);
  return mHaveExplicitOutputSize ? mOutputSize : Nothing();
}

Maybe<uint32_t> Decoder::TakeCompleteFrameCount() {
  const bool finishedNewFrame = mFinishedNewFrame;
  mFinishedNewFrame = false;
  return finishedNewFrame ? Some(GetCompleteFrameCount()) : Nothing();
}

DecoderFinalStatus Decoder::FinalStatus() const {
  return DecoderFinalStatus(IsMetadataDecode(), GetDecodeDone(), HasError(),
                            ShouldReportError());
}

DecoderTelemetry Decoder::Telemetry() const {
  MOZ_ASSERT(mIterator);
  return DecoderTelemetry(SpeedHistogram(),
                          mIterator ? mIterator->ByteCount() : 0,
                          mIterator ? mIterator->ChunkCount() : 0, mDecodeTime);
}

nsresult Decoder::AllocateFrame(const gfx::IntSize& aOutputSize,
                                gfx::SurfaceFormat aFormat,
                                const Maybe<AnimationParams>& aAnimParams) {
  mCurrentFrame = AllocateFrameInternal(aOutputSize, aFormat, aAnimParams,
                                        std::move(mCurrentFrame));

  if (mCurrentFrame) {
    mHasFrameToTake = true;

    // Gather the raw pointers the decoders will use.
    mCurrentFrame->GetImageData(&mImageData, &mImageDataLength);

    // We should now be on |aFrameNum|. (Note that we're comparing the frame
    // number, which is zero-based, with the frame count, which is one-based.)
    MOZ_ASSERT_IF(aAnimParams, aAnimParams->mFrameNum + 1 == mFrameCount);

    // If we're past the first frame, PostIsAnimated() should've been called.
    MOZ_ASSERT_IF(mFrameCount > 1, HasAnimation());

    // Update our state to reflect the new frame.
    MOZ_ASSERT(!mInFrame, "Starting new frame but not done with old one!");
    mInFrame = true;
  }

  return mCurrentFrame ? NS_OK : NS_ERROR_FAILURE;
}

RawAccessFrameRef Decoder::AllocateFrameInternal(
    const gfx::IntSize& aOutputSize, SurfaceFormat aFormat,
    const Maybe<AnimationParams>& aAnimParams,
    RawAccessFrameRef&& aPreviousFrame) {
  if (HasError()) {
    return RawAccessFrameRef();
  }

  uint32_t frameNum = aAnimParams ? aAnimParams->mFrameNum : 0;
  if (frameNum != mFrameCount) {
    MOZ_ASSERT_UNREACHABLE("Allocating frames out of order");
    return RawAccessFrameRef();
  }

  if (aOutputSize.width <= 0 || aOutputSize.height <= 0) {
    NS_WARNING("Trying to add frame with zero or negative size");
    return RawAccessFrameRef();
  }

  if (frameNum == 1) {
    MOZ_ASSERT(aPreviousFrame, "Must provide a previous frame when animated");
    aPreviousFrame->SetRawAccessOnly();
  }

  if (frameNum > 0) {
    if (aPreviousFrame->GetDisposalMethod() !=
        DisposalMethod::RESTORE_PREVIOUS) {
      // If the new restore frame is the direct previous frame, then we know
      // the dirty rect is composed only of the current frame's blend rect and
      // the restore frame's clear rect (if applicable) which are handled in
      // filters.
      mRestoreFrame = std::move(aPreviousFrame);
      mRestoreDirtyRect.SetBox(0, 0, 0, 0);
    } else {
      // We only need the previous frame's dirty rect, because while there may
      // have been several frames between us and mRestoreFrame, the only areas
      // that changed are the restore frame's clear rect, the current frame
      // blending rect, and the previous frame's blending rect. All else is
      // forgotten due to us restoring the same frame again.
      mRestoreDirtyRect = aPreviousFrame->GetBoundedBlendRect();
    }
  }

  RawAccessFrameRef ref;

  // If we have a frame recycler, it must be for an animated image producing
  // full frames. If the higher layers are discarding frames because of the
  // memory footprint, then the recycler will allow us to reuse the buffers.
  // Each frame should be the same size and have mostly the same properties.
  if (mFrameRecycler) {
    MOZ_ASSERT(aAnimParams);

    ref = mFrameRecycler->RecycleFrame(mRecycleRect);
    if (ref) {
      // If the recycled frame is actually the current restore frame, we cannot
      // use it. If the next restore frame is the new frame we are creating, in
      // theory we could reuse it, but we would need to store the restore frame
      // animation parameters elsewhere. For now we just drop it.
      bool blocked = ref.get() == mRestoreFrame.get();
      if (!blocked) {
        blocked = NS_FAILED(ref->InitForDecoderRecycle(aAnimParams.ref()));
      }

      if (blocked) {
        ref.reset();
      }
    }
  }

  // Either the recycler had nothing to give us, or we don't have a recycler.
  // Produce a new frame to store the data.
  if (!ref) {
    // There is no underlying data to reuse, so reset the recycle rect to be
    // the full frame, to ensure the restore frame is fully copied.
    mRecycleRect = IntRect(IntPoint(0, 0), aOutputSize);

    bool nonPremult = bool(mSurfaceFlags & SurfaceFlags::NO_PREMULTIPLY_ALPHA);
    auto frame = MakeNotNull<RefPtr<imgFrame>>();
    if (NS_FAILED(frame->InitForDecoder(aOutputSize, aFormat, nonPremult,
                                        aAnimParams, bool(mFrameRecycler)))) {
      NS_WARNING("imgFrame::Init should succeed");
      return RawAccessFrameRef();
    }

    ref = frame->RawAccessRef();
    if (!ref) {
      frame->Abort();
      return RawAccessFrameRef();
    }

    if (frameNum > 0) {
      frame->SetRawAccessOnly();
    }
  }

  mFrameCount++;

  return ref;
}

/*
 * Hook stubs. Override these as necessary in decoder implementations.
 */

nsresult Decoder::InitInternal() { return NS_OK; }
nsresult Decoder::BeforeFinishInternal() { return NS_OK; }
nsresult Decoder::FinishInternal() { return NS_OK; }

nsresult Decoder::FinishWithErrorInternal() {
  MOZ_ASSERT(!mInFrame);
  return NS_OK;
}

/*
 * Progress Notifications
 */

void Decoder::PostSize(int32_t aWidth, int32_t aHeight,
                       Orientation aOrientation /* = Orientation()*/) {
  // Validate.
  MOZ_ASSERT(aWidth >= 0, "Width can't be negative!");
  MOZ_ASSERT(aHeight >= 0, "Height can't be negative!");

  // Set our intrinsic size.
  mImageMetadata.SetSize(aWidth, aHeight, aOrientation);

  // Verify it is the expected size, if given. Note that this is only used by
  // the ICO decoder for embedded image types, so only its subdecoders are
  // required to handle failures in PostSize.
  if (!IsExpectedSize()) {
    PostError();
    return;
  }

  // Set our output size if it's not already set.
  if (!mOutputSize) {
    mOutputSize = Some(IntSize(aWidth, aHeight));
  }

  MOZ_ASSERT(mOutputSize->width <= aWidth && mOutputSize->height <= aHeight,
             "Output size will result in upscaling");

  // Record this notification.
  mProgress |= FLAG_SIZE_AVAILABLE;
}

void Decoder::PostHasTransparency() { mProgress |= FLAG_HAS_TRANSPARENCY; }

void Decoder::PostIsAnimated(FrameTimeout aFirstFrameTimeout) {
  mProgress |= FLAG_IS_ANIMATED;
  mImageMetadata.SetHasAnimation();
  mImageMetadata.SetFirstFrameTimeout(aFirstFrameTimeout);
}

void Decoder::PostFrameStop(Opacity aFrameOpacity) {
  // We should be mid-frame
  MOZ_ASSERT(!IsMetadataDecode(), "Stopping frame during metadata decode");
  MOZ_ASSERT(mInFrame, "Stopping frame when we didn't start one");
  MOZ_ASSERT(mCurrentFrame, "Stopping frame when we don't have one");

  // Update our state.
  mInFrame = false;
  mFinishedNewFrame = true;

  mCurrentFrame->Finish(aFrameOpacity, mFinalizeFrames);

  mProgress |= FLAG_FRAME_COMPLETE;

  mLoopLength += mCurrentFrame->GetTimeout();

  if (mFrameCount == 1) {
    // If we're not sending partial invalidations, then we send an invalidation
    // here when the first frame is complete.
    if (!ShouldSendPartialInvalidations()) {
      mInvalidRect.UnionRect(mInvalidRect, IntRect(IntPoint(), Size()));
    }

    // If we dispose of the first frame by clearing it, then the first frame's
    // refresh area is all of itself. RESTORE_PREVIOUS is invalid (assumed to
    // be DISPOSE_CLEAR).
    switch (mCurrentFrame->GetDisposalMethod()) {
      default:
        MOZ_FALLTHROUGH_ASSERT("Unexpected DisposalMethod");
      case DisposalMethod::CLEAR:
      case DisposalMethod::CLEAR_ALL:
      case DisposalMethod::RESTORE_PREVIOUS:
        mFirstFrameRefreshArea = IntRect(IntPoint(), Size());
        break;
      case DisposalMethod::KEEP:
      case DisposalMethod::NOT_SPECIFIED:
        break;
    }
  } else {
    // Some GIFs are huge but only have a small area that they animate. We only
    // need to refresh that small area when frame 0 comes around again.
    mFirstFrameRefreshArea.UnionRect(mFirstFrameRefreshArea,
                                     mCurrentFrame->GetBoundedBlendRect());
  }
}

void Decoder::PostInvalidation(const gfx::IntRect& aRect,
                               const Maybe<gfx::IntRect>& aRectAtOutputSize
                               /* = Nothing() */) {
  // We should be mid-frame
  MOZ_ASSERT(mInFrame, "Can't invalidate when not mid-frame!");
  MOZ_ASSERT(mCurrentFrame, "Can't invalidate when not mid-frame!");

  // Record this invalidation, unless we're not sending partial invalidations
  // or we're past the first frame.
  if (ShouldSendPartialInvalidations() && mFrameCount == 1) {
    mInvalidRect.UnionRect(mInvalidRect, aRect);
    mCurrentFrame->ImageUpdated(aRectAtOutputSize.valueOr(aRect));
  }
}

void Decoder::PostDecodeDone(int32_t aLoopCount /* = 0 */) {
  MOZ_ASSERT(!IsMetadataDecode(), "Done with decoding in metadata decode");
  MOZ_ASSERT(!mInFrame, "Can't be done decoding if we're mid-frame!");
  MOZ_ASSERT(!mDecodeDone, "Decode already done!");
  mDecodeDone = true;

  mImageMetadata.SetLoopCount(aLoopCount);

  // Some metadata that we track should take into account every frame in the
  // image. If this is a first-frame-only decode, our accumulated loop length
  // and first frame refresh area only includes the first frame, so it's not
  // correct and we don't record it.
  if (!IsFirstFrameDecode()) {
    mImageMetadata.SetLoopLength(mLoopLength);
    mImageMetadata.SetFirstFrameRefreshArea(mFirstFrameRefreshArea);
  }

  mProgress |= FLAG_DECODE_COMPLETE;
}

void Decoder::PostError() {
  mError = true;

  if (mInFrame) {
    MOZ_ASSERT(mCurrentFrame);
    MOZ_ASSERT(mFrameCount > 0);
    mCurrentFrame->Abort();
    mInFrame = false;
    --mFrameCount;
    mHasFrameToTake = false;
  }
}

}  // namespace image
}  // namespace mozilla