summaryrefslogtreecommitdiffstats
path: root/ipc/glue/MessageChannel.cpp
blob: 7f90742b445cd42f3ed74a4ea9cbffa178ab792e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: sw=2 ts=4 et :
 */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mozilla/ipc/MessageChannel.h"

#include <math.h>

#include <utility>

#include "CrashAnnotations.h"
#include "mozilla/Assertions.h"
#include "mozilla/CycleCollectedJSContext.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Logging.h"
#include "mozilla/Mutex.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/Sprintf.h"
#include "mozilla/StaticMutex.h"
#include "mozilla/Telemetry.h"
#include "mozilla/TimeStamp.h"
#include "mozilla/UniquePtrExtensions.h"
#include "mozilla/dom/ScriptSettings.h"
#include "mozilla/ipc/ProcessChild.h"
#include "mozilla/ipc/ProtocolUtils.h"
#include "nsAppRunner.h"
#include "nsContentUtils.h"
#include "nsDataHashtable.h"
#include "nsDebug.h"
#include "nsExceptionHandler.h"
#include "nsIMemoryReporter.h"
#include "nsISupportsImpl.h"
#include "nsPrintfCString.h"

#ifdef OS_WIN
#  include "mozilla/gfx/Logging.h"
#endif

#ifdef MOZ_TASK_TRACER
#  include "GeckoTaskTracer.h"
using namespace mozilla::tasktracer;
#endif

// Undo the damage done by mozzconf.h
#undef compress

static mozilla::LazyLogModule sLogModule("ipc");
#define IPC_LOG(...) MOZ_LOG(sLogModule, LogLevel::Debug, (__VA_ARGS__))

/*
 * IPC design:
 *
 * There are three kinds of messages: async, sync, and intr. Sync and intr
 * messages are blocking.
 *
 * Terminology: To dispatch a message Foo is to run the RecvFoo code for
 * it. This is also called "handling" the message.
 *
 * Sync and async messages can sometimes "nest" inside other sync messages
 * (i.e., while waiting for the sync reply, we can dispatch the inner
 * message). Intr messages cannot nest.  The three possible nesting levels are
 * NOT_NESTED, NESTED_INSIDE_SYNC, and NESTED_INSIDE_CPOW.  The intended uses
 * are:
 *   NOT_NESTED - most messages.
 *   NESTED_INSIDE_SYNC - CPOW-related messages, which are always sync
 *                        and can go in either direction.
 *   NESTED_INSIDE_CPOW - messages where we don't want to dispatch
 *                        incoming CPOWs while waiting for the response.
 * These nesting levels are ordered: NOT_NESTED, NESTED_INSIDE_SYNC,
 * NESTED_INSIDE_CPOW.  Async messages cannot be NESTED_INSIDE_SYNC but they can
 * be NESTED_INSIDE_CPOW.
 *
 * To avoid jank, the parent process is not allowed to send NOT_NESTED sync
 * messages. When a process is waiting for a response to a sync message M0, it
 * will dispatch an incoming message M if:
 *   1. M has a higher nesting level than M0, or
 *   2. if M has the same nesting level as M0 and we're in the child, or
 *   3. if M has the same nesting level as M0 and it was sent by the other side
 *      while dispatching M0.
 * The idea is that messages with higher nesting should take precendence. The
 * purpose of rule 2 is to handle a race where both processes send to each other
 * simultaneously. In this case, we resolve the race in favor of the parent (so
 * the child dispatches first).
 *
 * Messages satisfy the following properties:
 *   A. When waiting for a response to a sync message, we won't dispatch any
 *      messages of nesting level.
 *   B. Messages of the same nesting level will be dispatched roughly in the
 *      order they were sent. The exception is when the parent and child send
 *      sync messages to each other simulataneously. In this case, the parent's
 *      message is dispatched first. While it is dispatched, the child may send
 *      further nested messages, and these messages may be dispatched before the
 *      child's original message. We can consider ordering to be preserved here
 *      because we pretend that the child's original message wasn't sent until
 *      after the parent's message is finished being dispatched.
 *
 * When waiting for a sync message reply, we dispatch an async message only if
 * it is NESTED_INSIDE_CPOW. Normally NESTED_INSIDE_CPOW async
 * messages are sent only from the child. However, the parent can send
 * NESTED_INSIDE_CPOW async messages when it is creating a bridged protocol.
 *
 * Intr messages are blocking and can nest, but they don't participate in the
 * nesting levels. While waiting for an intr response, all incoming messages are
 * dispatched until a response is received. When two intr messages race with
 * each other, a similar scheme is used to ensure that one side wins. The
 * winning side is chosen based on the message type.
 *
 * Intr messages differ from sync messages in that, while sending an intr
 * message, we may dispatch an async message. This causes some additional
 * complexity. One issue is that replies can be received out of order. It's also
 * more difficult to determine whether one message is nested inside
 * another. Consequently, intr handling uses mOutOfTurnReplies and
 * mRemoteStackDepthGuess, which are not needed for sync messages.
 */

using namespace mozilla;
using namespace mozilla::ipc;

using mozilla::MonitorAutoLock;
using mozilla::MonitorAutoUnlock;
using mozilla::dom::AutoNoJSAPI;

#define IPC_ASSERT(_cond, ...)                                           \
  do {                                                                   \
    if (!(_cond)) DebugAbort(__FILE__, __LINE__, #_cond, ##__VA_ARGS__); \
  } while (0)

static MessageChannel* gParentProcessBlocker;

namespace mozilla {
namespace ipc {

static const uint32_t kMinTelemetryMessageSize = 4096;

// Note: we round the time we spend to the nearest millisecond. So a min value
// of 1 ms actually captures from 500us and above.
static const uint32_t kMinTelemetryIPCWriteLatencyMs = 1;

// Note: we round the time we spend waiting for a response to the nearest
// millisecond. So a min value of 1 ms actually captures from 500us and above.
// This is used for both the sending and receiving side telemetry for sync IPC,
// (IPC_SYNC_MAIN_LATENCY_MS and IPC_SYNC_RECEIVE_MS).
static const uint32_t kMinTelemetrySyncIPCLatencyMs = 1;

const int32_t MessageChannel::kNoTimeout = INT32_MIN;

// static
bool MessageChannel::sIsPumpingMessages = false;

enum Direction { IN_MESSAGE, OUT_MESSAGE };

class MessageChannel::InterruptFrame {
 private:
  enum Semantics { INTR_SEMS, SYNC_SEMS, ASYNC_SEMS };

 public:
  InterruptFrame(Direction direction, const Message* msg)
      : mMessageName(msg->name()),
        mMessageRoutingId(msg->routing_id()),
        mMesageSemantics(msg->is_interrupt() ? INTR_SEMS
                         : msg->is_sync()    ? SYNC_SEMS
                                             : ASYNC_SEMS),
        mDirection(direction),
        mMoved(false) {
    MOZ_RELEASE_ASSERT(mMessageName);
  }

  InterruptFrame(InterruptFrame&& aOther) {
    MOZ_RELEASE_ASSERT(aOther.mMessageName);
    mMessageName = aOther.mMessageName;
    aOther.mMessageName = nullptr;
    mMoved = aOther.mMoved;
    aOther.mMoved = true;

    mMessageRoutingId = aOther.mMessageRoutingId;
    mMesageSemantics = aOther.mMesageSemantics;
    mDirection = aOther.mDirection;
  }

  ~InterruptFrame() { MOZ_RELEASE_ASSERT(mMessageName || mMoved); }

  InterruptFrame& operator=(InterruptFrame&& aOther) {
    MOZ_RELEASE_ASSERT(&aOther != this);
    this->~InterruptFrame();
    new (this) InterruptFrame(std::move(aOther));
    return *this;
  }

  bool IsInterruptIncall() const {
    return INTR_SEMS == mMesageSemantics && IN_MESSAGE == mDirection;
  }

  bool IsInterruptOutcall() const {
    return INTR_SEMS == mMesageSemantics && OUT_MESSAGE == mDirection;
  }

  bool IsOutgoingSync() const {
    return (mMesageSemantics == INTR_SEMS || mMesageSemantics == SYNC_SEMS) &&
           mDirection == OUT_MESSAGE;
  }

  void Describe(int32_t* id, const char** dir, const char** sems,
                const char** name) const {
    *id = mMessageRoutingId;
    *dir = (IN_MESSAGE == mDirection) ? "in" : "out";
    *sems = (INTR_SEMS == mMesageSemantics)   ? "intr"
            : (SYNC_SEMS == mMesageSemantics) ? "sync"
                                              : "async";
    *name = mMessageName;
  }

  int32_t GetRoutingId() const { return mMessageRoutingId; }

 private:
  const char* mMessageName;
  int32_t mMessageRoutingId;
  Semantics mMesageSemantics;
  Direction mDirection;
  bool mMoved;

  // Disable harmful methods.
  InterruptFrame(const InterruptFrame& aOther) = delete;
  InterruptFrame& operator=(const InterruptFrame&) = delete;
};

class MOZ_STACK_CLASS MessageChannel::CxxStackFrame {
 public:
  CxxStackFrame(MessageChannel& that, Direction direction, const Message* msg)
      : mThat(that) {
    mThat.AssertWorkerThread();

    if (mThat.mCxxStackFrames.empty()) mThat.EnteredCxxStack();

    if (!mThat.mCxxStackFrames.append(InterruptFrame(direction, msg)))
      MOZ_CRASH();

    const InterruptFrame& frame = mThat.mCxxStackFrames.back();

    if (frame.IsInterruptIncall()) mThat.EnteredCall();

    if (frame.IsOutgoingSync()) mThat.EnteredSyncSend();

    mThat.mSawInterruptOutMsg |= frame.IsInterruptOutcall();
  }

  ~CxxStackFrame() {
    mThat.AssertWorkerThread();

    MOZ_RELEASE_ASSERT(!mThat.mCxxStackFrames.empty());

    const InterruptFrame& frame = mThat.mCxxStackFrames.back();
    bool exitingSync = frame.IsOutgoingSync();
    bool exitingCall = frame.IsInterruptIncall();
    mThat.mCxxStackFrames.shrinkBy(1);

    bool exitingStack = mThat.mCxxStackFrames.empty();

    // According how lifetime is declared, mListener on MessageChannel
    // lives longer than MessageChannel itself.  Hence is expected to
    // be alive.  There is nothing to even assert here, there is no place
    // we would be nullifying mListener on MessageChannel.

    if (exitingCall) mThat.ExitedCall();

    if (exitingSync) mThat.ExitedSyncSend();

    if (exitingStack) mThat.ExitedCxxStack();
  }

 private:
  MessageChannel& mThat;

  // Disable harmful methods.
  CxxStackFrame() = delete;
  CxxStackFrame(const CxxStackFrame&) = delete;
  CxxStackFrame& operator=(const CxxStackFrame&) = delete;
};

class AutoEnterTransaction {
 public:
  explicit AutoEnterTransaction(MessageChannel* aChan, int32_t aMsgSeqno,
                                int32_t aTransactionID, int aNestedLevel)
      : mChan(aChan),
        mActive(true),
        mOutgoing(true),
        mNestedLevel(aNestedLevel),
        mSeqno(aMsgSeqno),
        mTransaction(aTransactionID),
        mNext(mChan->mTransactionStack) {
    mChan->mMonitor->AssertCurrentThreadOwns();
    mChan->mTransactionStack = this;
  }

  explicit AutoEnterTransaction(MessageChannel* aChan,
                                const IPC::Message& aMessage)
      : mChan(aChan),
        mActive(true),
        mOutgoing(false),
        mNestedLevel(aMessage.nested_level()),
        mSeqno(aMessage.seqno()),
        mTransaction(aMessage.transaction_id()),
        mNext(mChan->mTransactionStack) {
    mChan->mMonitor->AssertCurrentThreadOwns();

    if (!aMessage.is_sync()) {
      mActive = false;
      return;
    }

    mChan->mTransactionStack = this;
  }

  ~AutoEnterTransaction() {
    mChan->mMonitor->AssertCurrentThreadOwns();
    if (mActive) {
      mChan->mTransactionStack = mNext;
    }
  }

  void Cancel() {
    AutoEnterTransaction* cur = mChan->mTransactionStack;
    MOZ_RELEASE_ASSERT(cur == this);
    while (cur && cur->mNestedLevel != IPC::Message::NOT_NESTED) {
      // Note that, in the following situation, we will cancel multiple
      // transactions:
      // 1. Parent sends NESTED_INSIDE_SYNC message P1 to child.
      // 2. Child sends NESTED_INSIDE_SYNC message C1 to child.
      // 3. Child dispatches P1, parent blocks.
      // 4. Child cancels.
      // In this case, both P1 and C1 are cancelled. The parent will
      // remove C1 from its queue when it gets the cancellation message.
      MOZ_RELEASE_ASSERT(cur->mActive);
      cur->mActive = false;
      cur = cur->mNext;
    }

    mChan->mTransactionStack = cur;

    MOZ_RELEASE_ASSERT(IsComplete());
  }

  bool AwaitingSyncReply() const {
    MOZ_RELEASE_ASSERT(mActive);
    if (mOutgoing) {
      return true;
    }
    return mNext ? mNext->AwaitingSyncReply() : false;
  }

  int AwaitingSyncReplyNestedLevel() const {
    MOZ_RELEASE_ASSERT(mActive);
    if (mOutgoing) {
      return mNestedLevel;
    }
    return mNext ? mNext->AwaitingSyncReplyNestedLevel() : 0;
  }

  bool DispatchingSyncMessage() const {
    MOZ_RELEASE_ASSERT(mActive);
    if (!mOutgoing) {
      return true;
    }
    return mNext ? mNext->DispatchingSyncMessage() : false;
  }

  int DispatchingSyncMessageNestedLevel() const {
    MOZ_RELEASE_ASSERT(mActive);
    if (!mOutgoing) {
      return mNestedLevel;
    }
    return mNext ? mNext->DispatchingSyncMessageNestedLevel() : 0;
  }

  int NestedLevel() const {
    MOZ_RELEASE_ASSERT(mActive);
    return mNestedLevel;
  }

  int32_t SequenceNumber() const {
    MOZ_RELEASE_ASSERT(mActive);
    return mSeqno;
  }

  int32_t TransactionID() const {
    MOZ_RELEASE_ASSERT(mActive);
    return mTransaction;
  }

  void ReceivedReply(IPC::Message&& aMessage) {
    MOZ_RELEASE_ASSERT(aMessage.seqno() == mSeqno);
    MOZ_RELEASE_ASSERT(aMessage.transaction_id() == mTransaction);
    MOZ_RELEASE_ASSERT(!mReply);
    IPC_LOG("Reply received on worker thread: seqno=%d", mSeqno);
    mReply = MakeUnique<IPC::Message>(std::move(aMessage));
    MOZ_RELEASE_ASSERT(IsComplete());
  }

  void HandleReply(IPC::Message&& aMessage) {
    AutoEnterTransaction* cur = mChan->mTransactionStack;
    MOZ_RELEASE_ASSERT(cur == this);
    while (cur) {
      MOZ_RELEASE_ASSERT(cur->mActive);
      if (aMessage.seqno() == cur->mSeqno) {
        cur->ReceivedReply(std::move(aMessage));
        break;
      }
      cur = cur->mNext;
      MOZ_RELEASE_ASSERT(cur);
    }
  }

  bool IsComplete() { return !mActive || mReply; }

  bool IsOutgoing() { return mOutgoing; }

  bool IsCanceled() { return !mActive; }

  bool IsBottom() const { return !mNext; }

  bool IsError() {
    MOZ_RELEASE_ASSERT(mReply);
    return mReply->is_reply_error();
  }

  UniquePtr<IPC::Message> GetReply() { return std::move(mReply); }

 private:
  MessageChannel* mChan;

  // Active is true if this transaction is on the mChan->mTransactionStack
  // stack. Generally we're not on the stack if the transaction was canceled
  // or if it was for a message that doesn't require transactions (an async
  // message).
  bool mActive;

  // Is this stack frame for an outgoing message?
  bool mOutgoing;

  // Properties of the message being sent/received.
  int mNestedLevel;
  int32_t mSeqno;
  int32_t mTransaction;

  // Next item in mChan->mTransactionStack.
  AutoEnterTransaction* mNext;

  // Pointer the a reply received for this message, if one was received.
  UniquePtr<IPC::Message> mReply;
};

class PendingResponseReporter final : public nsIMemoryReporter {
  ~PendingResponseReporter() = default;

 public:
  NS_DECL_THREADSAFE_ISUPPORTS

  NS_IMETHOD
  CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData,
                 bool aAnonymize) override {
    MOZ_COLLECT_REPORT(
        "unresolved-ipc-responses", KIND_OTHER, UNITS_COUNT,
        MessageChannel::gUnresolvedResponses,
        "Outstanding IPC async message responses that are still not resolved.");
    return NS_OK;
  }
};

NS_IMPL_ISUPPORTS(PendingResponseReporter, nsIMemoryReporter)

class ChannelCountReporter final : public nsIMemoryReporter {
  ~ChannelCountReporter() = default;

  struct ChannelCounts {
    size_t mNow;
    size_t mMax;

    ChannelCounts() : mNow(0), mMax(0) {}

    void Inc() {
      ++mNow;
      if (mMax < mNow) {
        mMax = mNow;
      }
    }

    void Dec() {
      MOZ_ASSERT(mNow > 0);
      --mNow;
    }
  };

  using CountTable = nsDataHashtable<nsDepCharHashKey, ChannelCounts>;

  static StaticMutex sChannelCountMutex;
  static CountTable* sChannelCounts;

 public:
  NS_DECL_THREADSAFE_ISUPPORTS

  NS_IMETHOD
  CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData,
                 bool aAnonymize) override {
    StaticMutexAutoLock countLock(sChannelCountMutex);
    if (!sChannelCounts) {
      return NS_OK;
    }
    for (auto iter = sChannelCounts->Iter(); !iter.Done(); iter.Next()) {
      nsPrintfCString pathNow("ipc-channels/%s", iter.Key());
      nsPrintfCString pathMax("ipc-channels-peak/%s", iter.Key());
      nsPrintfCString descNow(
          "Number of IPC channels for"
          " top-level actor type %s",
          iter.Key());
      nsPrintfCString descMax(
          "Peak number of IPC channels for"
          " top-level actor type %s",
          iter.Key());

      aHandleReport->Callback(""_ns, pathNow, KIND_OTHER, UNITS_COUNT,
                              iter.Data().mNow, descNow, aData);
      aHandleReport->Callback(""_ns, pathMax, KIND_OTHER, UNITS_COUNT,
                              iter.Data().mMax, descMax, aData);
    }
    return NS_OK;
  }

  static void Increment(const char* aName) {
    StaticMutexAutoLock countLock(sChannelCountMutex);
    if (!sChannelCounts) {
      sChannelCounts = new CountTable;
    }
    sChannelCounts->GetOrInsert(aName).Inc();
  }

  static void Decrement(const char* aName) {
    StaticMutexAutoLock countLock(sChannelCountMutex);
    MOZ_ASSERT(sChannelCounts);
    sChannelCounts->GetOrInsert(aName).Dec();
  }
};

StaticMutex ChannelCountReporter::sChannelCountMutex;
ChannelCountReporter::CountTable* ChannelCountReporter::sChannelCounts;

NS_IMPL_ISUPPORTS(ChannelCountReporter, nsIMemoryReporter)

// In child processes, the first MessageChannel is created before
// XPCOM is initialized enough to construct the memory reporter
// manager.  This retries every time a MessageChannel is constructed,
// which is good enough in practice.
template <class Reporter>
static void TryRegisterStrongMemoryReporter() {
  static Atomic<bool> registered;
  if (registered.compareExchange(false, true)) {
    RefPtr<Reporter> reporter = new Reporter();
    if (NS_FAILED(RegisterStrongMemoryReporter(reporter))) {
      registered = false;
    }
  }
}

Atomic<size_t> MessageChannel::gUnresolvedResponses;

MessageChannel::MessageChannel(const char* aName, IToplevelProtocol* aListener)
    : mName(aName),
      mListener(aListener),
      mChannelState(ChannelClosed),
      mSide(UnknownSide),
      mIsCrossProcess(false),
      mChannelErrorTask(nullptr),
      mTimeoutMs(kNoTimeout),
      mInTimeoutSecondHalf(false),
      mNextSeqno(0),
      mLastSendError(SyncSendError::SendSuccess),
      mDispatchingAsyncMessage(false),
      mDispatchingAsyncMessageNestedLevel(0),
      mTransactionStack(nullptr),
      mTimedOutMessageSeqno(0),
      mTimedOutMessageNestedLevel(0),
      mMaybeDeferredPendingCount(0),
      mRemoteStackDepthGuess(0),
      mSawInterruptOutMsg(false),
      mIsWaitingForIncoming(false),
      mAbortOnError(false),
      mNotifiedChannelDone(false),
      mFlags(REQUIRE_DEFAULT),
      mPeerPidSet(false),
      mPeerPid(-1),
      mIsPostponingSends(false),
      mBuildIDsConfirmedMatch(false),
      mIsSameThreadChannel(false) {
  MOZ_COUNT_CTOR(ipc::MessageChannel);

#ifdef OS_WIN
  mTopFrame = nullptr;
  mIsSyncWaitingOnNonMainThread = false;
#endif

  mOnChannelConnectedTask = NewNonOwningCancelableRunnableMethod(
      "ipc::MessageChannel::DispatchOnChannelConnected", this,
      &MessageChannel::DispatchOnChannelConnected);

#ifdef OS_WIN
  mEvent = CreateEventW(nullptr, TRUE, FALSE, nullptr);
  MOZ_RELEASE_ASSERT(mEvent, "CreateEvent failed! Nothing is going to work!");
#endif

  TryRegisterStrongMemoryReporter<PendingResponseReporter>();
  TryRegisterStrongMemoryReporter<ChannelCountReporter>();
}

MessageChannel::~MessageChannel() {
  MOZ_COUNT_DTOR(ipc::MessageChannel);
  IPC_ASSERT(mCxxStackFrames.empty(), "mismatched CxxStackFrame ctor/dtors");
#ifdef OS_WIN
  if (mEvent) {
    BOOL ok = CloseHandle(mEvent);
    mEvent = nullptr;

    if (!ok) {
      gfxDevCrash(mozilla::gfx::LogReason::MessageChannelCloseFailure)
          << "MessageChannel failed to close. GetLastError: " << GetLastError();
    }
    MOZ_RELEASE_ASSERT(ok);
  } else {
    gfxDevCrash(mozilla::gfx::LogReason::MessageChannelCloseFailure)
        << "MessageChannel destructor ran without an mEvent Handle";
  }
#endif
  Clear();
}

#ifdef DEBUG
void MessageChannel::AssertMaybeDeferredCountCorrect() {
  size_t count = 0;
  for (MessageTask* task : mPending) {
    if (!IsAlwaysDeferred(task->Msg())) {
      count++;
    }
  }

  MOZ_ASSERT(count == mMaybeDeferredPendingCount);
}
#endif

// This function returns the current transaction ID. Since the notion of a
// "current transaction" can be hard to define when messages race with each
// other and one gets canceled and the other doesn't, we require that this
// function is only called when the current transaction is known to be for a
// NESTED_INSIDE_SYNC message. In that case, we know for sure what the caller is
// looking for.
int32_t MessageChannel::CurrentNestedInsideSyncTransaction() const {
  mMonitor->AssertCurrentThreadOwns();
  if (!mTransactionStack) {
    return 0;
  }
  MOZ_RELEASE_ASSERT(mTransactionStack->NestedLevel() ==
                     IPC::Message::NESTED_INSIDE_SYNC);
  return mTransactionStack->TransactionID();
}

bool MessageChannel::AwaitingSyncReply() const {
  mMonitor->AssertCurrentThreadOwns();
  return mTransactionStack ? mTransactionStack->AwaitingSyncReply() : false;
}

int MessageChannel::AwaitingSyncReplyNestedLevel() const {
  mMonitor->AssertCurrentThreadOwns();
  return mTransactionStack ? mTransactionStack->AwaitingSyncReplyNestedLevel()
                           : 0;
}

bool MessageChannel::DispatchingSyncMessage() const {
  mMonitor->AssertCurrentThreadOwns();
  return mTransactionStack ? mTransactionStack->DispatchingSyncMessage()
                           : false;
}

int MessageChannel::DispatchingSyncMessageNestedLevel() const {
  mMonitor->AssertCurrentThreadOwns();
  return mTransactionStack
             ? mTransactionStack->DispatchingSyncMessageNestedLevel()
             : 0;
}

static void PrintErrorMessage(Side side, const char* channelName,
                              const char* msg) {
  const char* from = (side == ChildSide)
                         ? "Child"
                         : ((side == ParentSide) ? "Parent" : "Unknown");
  printf_stderr("\n###!!! [%s][%s] Error: %s\n\n", from, channelName, msg);
}

bool MessageChannel::Connected() const {
  mMonitor->AssertCurrentThreadOwns();

  // The transport layer allows us to send messages before
  // receiving the "connected" ack from the remote side.
  return (ChannelOpening == mChannelState || ChannelConnected == mChannelState);
}

bool MessageChannel::CanSend() const {
  if (!mMonitor) {
    return false;
  }
  MonitorAutoLock lock(*mMonitor);
  return Connected();
}

void MessageChannel::Clear() {
  // Don't clear mWorkerThread; we use it in AssertLinkThread() and
  // AssertWorkerThread().
  //
  // Also don't clear mListener.  If we clear it, then sending a message
  // through this channel after it's Clear()'ed can cause this process to
  // crash.
  //
  // In practice, mListener owns the channel, so the channel gets deleted
  // before mListener.  But just to be safe, mListener is a weak pointer.

#if !defined(ANDROID)
  if (!Unsound_IsClosed()) {
    CrashReporter::AnnotateCrashReport(
        CrashReporter::Annotation::IPCFatalErrorProtocol,
        nsDependentCString(mName));
    switch (mChannelState) {
      case ChannelOpening:
        MOZ_CRASH(
            "MessageChannel destroyed without being closed "
            "(mChannelState == ChannelOpening).");
        break;
      case ChannelConnected:
        MOZ_CRASH(
            "MessageChannel destroyed without being closed "
            "(mChannelState == ChannelConnected).");
        break;
      case ChannelTimeout:
        MOZ_CRASH(
            "MessageChannel destroyed without being closed "
            "(mChannelState == ChannelTimeout).");
        break;
      case ChannelClosing:
        MOZ_CRASH(
            "MessageChannel destroyed without being closed "
            "(mChannelState == ChannelClosing).");
        break;
      case ChannelError:
        MOZ_CRASH(
            "MessageChannel destroyed without being closed "
            "(mChannelState == ChannelError).");
        break;
      default:
        MOZ_CRASH("MessageChannel destroyed without being closed.");
    }
  }
#endif

  if (gParentProcessBlocker == this) {
    gParentProcessBlocker = nullptr;
  }

  gUnresolvedResponses -= mPendingResponses.size();
  for (auto& pair : mPendingResponses) {
    pair.second.get()->Reject(ResponseRejectReason::ChannelClosed);
  }
  mPendingResponses.clear();

  if (mLink != nullptr && mIsCrossProcess) {
    ChannelCountReporter::Decrement(mName);
  }

  if (mLink) {
    mLink->PrepareToDestroy();
    mLink = nullptr;
  }

  mOnChannelConnectedTask->Cancel();

  if (mChannelErrorTask) {
    mChannelErrorTask->Cancel();
    mChannelErrorTask = nullptr;
  }

  // Free up any memory used by pending messages.
  for (MessageTask* task : mPending) {
    task->Clear();
  }
  mPending.clear();

  mMaybeDeferredPendingCount = 0;

  mOutOfTurnReplies.clear();
  while (!mDeferred.empty()) {
    mDeferred.pop();
  }
}

bool MessageChannel::Open(mozilla::UniquePtr<Transport> aTransport,
                          MessageLoop* aIOLoop, Side aSide) {
  MOZ_ASSERT(!mLink, "Open() called > once");

  mMonitor = new RefCountedMonitor();
  mWorkerThread = GetCurrentSerialEventTarget();
  MOZ_ASSERT(mWorkerThread, "We should always be on a nsISerialEventTarget");
  mListener->OnIPCChannelOpened();

  auto link = MakeUnique<ProcessLink>(this);
  link->Open(std::move(aTransport), aIOLoop,
             aSide);  // :TODO: n.b.: sets mChild
  mLink = std::move(link);
  mIsCrossProcess = true;
  ChannelCountReporter::Increment(mName);
  return true;
}

bool MessageChannel::Open(MessageChannel* aTargetChan,
                          nsISerialEventTarget* aEventTarget, Side aSide) {
  // Opens a connection to another thread in the same process.

  //  This handshake proceeds as follows:
  //  - Let A be the thread initiating the process (either child or parent)
  //    and B be the other thread.
  //  - A spawns thread for B, obtaining B's message loop
  //  - A creates ProtocolChild and ProtocolParent instances.
  //    Let PA be the one appropriate to A and PB the side for B.
  //  - A invokes PA->Open(PB, ...):
  //    - set state to mChannelOpening
  //    - this will place a work item in B's worker loop (see next bullet)
  //      and then spins until PB->mChannelState becomes mChannelConnected
  //    - meanwhile, on PB's worker loop, the work item is removed and:
  //      - invokes PB->OpenAsOtherThread(PA, ...):
  //        - sets its state and that of PA to Connected
  MOZ_ASSERT(aTargetChan, "Need a target channel");
  MOZ_ASSERT(ChannelClosed == mChannelState, "Not currently closed");

  CommonThreadOpenInit(aTargetChan, GetCurrentSerialEventTarget(), aSide);

  Side oppSide = UnknownSide;
  switch (aSide) {
    case ChildSide:
      oppSide = ParentSide;
      break;
    case ParentSide:
      oppSide = ChildSide;
      break;
    case UnknownSide:
      break;
  }

  mMonitor = new RefCountedMonitor();

  MonitorAutoLock lock(*mMonitor);
  mChannelState = ChannelOpening;
  MOZ_ALWAYS_SUCCEEDS(aEventTarget->Dispatch(
      NewNonOwningRunnableMethod<MessageChannel*, nsISerialEventTarget*, Side>(
          "ipc::MessageChannel::OpenAsOtherThread", aTargetChan,
          &MessageChannel::OpenAsOtherThread, this, aEventTarget, oppSide)));

  while (ChannelOpening == mChannelState) mMonitor->Wait();
  MOZ_RELEASE_ASSERT(ChannelConnected == mChannelState,
                     "not connected when awoken");
  return (ChannelConnected == mChannelState);
}

void MessageChannel::OpenAsOtherThread(MessageChannel* aTargetChan,
                                       nsISerialEventTarget* aThread,
                                       Side aSide) {
  // Invoked when the other side has begun the open.
  MOZ_ASSERT(ChannelClosed == mChannelState, "Not currently closed");
  MOZ_ASSERT(ChannelOpening == aTargetChan->mChannelState,
             "Target channel not in the process of opening");

  CommonThreadOpenInit(aTargetChan, aThread, aSide);
  mMonitor = aTargetChan->mMonitor;

  MonitorAutoLock lock(*mMonitor);
  MOZ_RELEASE_ASSERT(ChannelOpening == aTargetChan->mChannelState,
                     "Target channel not in the process of opening");
  mChannelState = ChannelConnected;
  aTargetChan->mChannelState = ChannelConnected;
  aTargetChan->mMonitor->Notify();
}

void MessageChannel::CommonThreadOpenInit(MessageChannel* aTargetChan,
                                          nsISerialEventTarget* aThread,
                                          Side aSide) {
  MOZ_ASSERT(aThread);
  mWorkerThread = aThread;
  mListener->OnIPCChannelOpened();

  mLink = MakeUnique<ThreadLink>(this, aTargetChan);
  mSide = aSide;
}

bool MessageChannel::OpenOnSameThread(MessageChannel* aTargetChan,
                                      mozilla::ipc::Side aSide) {
  nsCOMPtr<nsISerialEventTarget> currentThread = GetCurrentSerialEventTarget();
  CommonThreadOpenInit(aTargetChan, currentThread, aSide);

  Side oppSide = UnknownSide;
  switch (aSide) {
    case ChildSide:
      oppSide = ParentSide;
      break;
    case ParentSide:
      oppSide = ChildSide;
      break;
    case UnknownSide:
      break;
  }
  mIsSameThreadChannel = true;

  // XXX(nika): Avoid setting up a monitor for same thread channels? We
  // shouldn't need it.
  mMonitor = new RefCountedMonitor();

  mChannelState = ChannelOpening;
  aTargetChan->CommonThreadOpenInit(this, currentThread, oppSide);

  aTargetChan->mIsSameThreadChannel = true;
  aTargetChan->mMonitor = mMonitor;

  mChannelState = ChannelConnected;
  aTargetChan->mChannelState = ChannelConnected;
  return true;
}

bool MessageChannel::Send(UniquePtr<Message> aMsg) {
  if (aMsg->size() >= kMinTelemetryMessageSize) {
    Telemetry::Accumulate(Telemetry::IPC_MESSAGE_SIZE2, aMsg->size());
  }

  // If the message was created by the IPC bindings, the create time will be
  // recorded. Use this information to report the
  // IPC_WRITE_MAIN_THREAD_LATENCY_MS (time from message creation to it being
  // sent).
  if (NS_IsMainThread() && aMsg->create_time()) {
    uint32_t latencyMs = round(
        (mozilla::TimeStamp::Now() - aMsg->create_time()).ToMilliseconds());
    if (latencyMs >= kMinTelemetryIPCWriteLatencyMs) {
      mozilla::Telemetry::Accumulate(
          mozilla::Telemetry::IPC_WRITE_MAIN_THREAD_LATENCY_MS,
          nsDependentCString(aMsg->name()), latencyMs);
    }
  }

  MOZ_RELEASE_ASSERT(!aMsg->is_sync());
  MOZ_RELEASE_ASSERT(aMsg->nested_level() != IPC::Message::NESTED_INSIDE_SYNC);

  CxxStackFrame frame(*this, OUT_MESSAGE, aMsg.get());

  AssertWorkerThread();
  mMonitor->AssertNotCurrentThreadOwns();
  if (MSG_ROUTING_NONE == aMsg->routing_id()) {
    ReportMessageRouteError("MessageChannel::Send");
    return false;
  }

  if (aMsg->seqno() == 0) {
    aMsg->set_seqno(NextSeqno());
  }

  MonitorAutoLock lock(*mMonitor);
  if (!Connected()) {
    ReportConnectionError("MessageChannel", aMsg.get());
    return false;
  }

  AddProfilerMarker(*aMsg, MessageDirection::eSending);
  SendMessageToLink(std::move(aMsg));
  return true;
}

void MessageChannel::SendMessageToLink(UniquePtr<Message> aMsg) {
  if (mIsPostponingSends) {
    mPostponedSends.push_back(std::move(aMsg));
    return;
  }
  mLink->SendMessage(std::move(aMsg));
}

void MessageChannel::BeginPostponingSends() {
  AssertWorkerThread();
  mMonitor->AssertNotCurrentThreadOwns();

  MonitorAutoLock lock(*mMonitor);
  {
    MOZ_ASSERT(!mIsPostponingSends);
    mIsPostponingSends = true;
  }
}

void MessageChannel::StopPostponingSends() {
  // Note: this can be called from any thread.
  MonitorAutoLock lock(*mMonitor);

  MOZ_ASSERT(mIsPostponingSends);

  for (UniquePtr<Message>& iter : mPostponedSends) {
    mLink->SendMessage(std::move(iter));
  }

  // We unset this after SendMessage so we can make correct thread
  // assertions in MessageLink.
  mIsPostponingSends = false;
  mPostponedSends.clear();
}

UniquePtr<MessageChannel::UntypedCallbackHolder> MessageChannel::PopCallback(
    const Message& aMsg) {
  auto iter = mPendingResponses.find(aMsg.seqno());
  if (iter != mPendingResponses.end()) {
    UniquePtr<MessageChannel::UntypedCallbackHolder> ret =
        std::move(iter->second);
    mPendingResponses.erase(iter);
    gUnresolvedResponses--;
    return ret;
  }
  return nullptr;
}

void MessageChannel::RejectPendingResponsesForActor(ActorIdType aActorId) {
  auto itr = mPendingResponses.begin();
  while (itr != mPendingResponses.end()) {
    if (itr->second.get()->mActorId != aActorId) {
      ++itr;
      continue;
    }
    itr->second.get()->Reject(ResponseRejectReason::ActorDestroyed);
    // Take special care of advancing the iterator since we are
    // removing it while iterating.
    itr = mPendingResponses.erase(itr);
    gUnresolvedResponses--;
  }
}

class BuildIDsMatchMessage : public IPC::Message {
 public:
  BuildIDsMatchMessage()
      : IPC::Message(MSG_ROUTING_NONE, BUILD_IDS_MATCH_MESSAGE_TYPE) {}
  void Log(const std::string& aPrefix, FILE* aOutf) const {
    fputs("(special `Build IDs match' message)", aOutf);
  }
};

// Send the parent a special async message to confirm when the parent and child
// are of the same buildID. Skips sending the message and returns false if the
// buildIDs don't match. This is a minor variation on
// MessageChannel::Send(Message* aMsg).
bool MessageChannel::SendBuildIDsMatchMessage(const char* aParentBuildID) {
  MOZ_ASSERT(!XRE_IsParentProcess());

  nsCString parentBuildID(aParentBuildID);
  nsCString childBuildID(mozilla::PlatformBuildID());

  if (parentBuildID != childBuildID) {
    // The build IDs didn't match, usually because an update occurred in the
    // background.
    return false;
  }

  auto msg = MakeUnique<BuildIDsMatchMessage>();

  MOZ_RELEASE_ASSERT(!msg->is_sync());
  MOZ_RELEASE_ASSERT(msg->nested_level() != IPC::Message::NESTED_INSIDE_SYNC);

  AssertWorkerThread();
  mMonitor->AssertNotCurrentThreadOwns();
  // Don't check for MSG_ROUTING_NONE.

  MonitorAutoLock lock(*mMonitor);
  if (!Connected()) {
    ReportConnectionError("MessageChannel", msg.get());
    return false;
  }
  mLink->SendMessage(std::move(msg));
  return true;
}

class CancelMessage : public IPC::Message {
 public:
  explicit CancelMessage(int transaction)
      : IPC::Message(MSG_ROUTING_NONE, CANCEL_MESSAGE_TYPE) {
    set_transaction_id(transaction);
  }
  static bool Read(const Message* msg) { return true; }
  void Log(const std::string& aPrefix, FILE* aOutf) const {
    fputs("(special `Cancel' message)", aOutf);
  }
};

bool MessageChannel::MaybeInterceptSpecialIOMessage(const Message& aMsg) {
  AssertLinkThread();
  mMonitor->AssertCurrentThreadOwns();

  if (MSG_ROUTING_NONE == aMsg.routing_id()) {
    if (GOODBYE_MESSAGE_TYPE == aMsg.type()) {
      // :TODO: Sort out Close() on this side racing with Close() on the
      // other side
      mChannelState = ChannelClosing;
      if (LoggingEnabled()) {
        printf("NOTE: %s process received `Goodbye', closing down\n",
               (mSide == ChildSide) ? "child" : "parent");
      }
      return true;
    } else if (CANCEL_MESSAGE_TYPE == aMsg.type()) {
      IPC_LOG("Cancel from message");
      CancelTransaction(aMsg.transaction_id());
      NotifyWorkerThread();
      return true;
    } else if (BUILD_IDS_MATCH_MESSAGE_TYPE == aMsg.type()) {
      IPC_LOG("Build IDs match message");
      mBuildIDsConfirmedMatch = true;
      return true;
    } else if (IMPENDING_SHUTDOWN_MESSAGE_TYPE == aMsg.type()) {
      IPC_LOG("Impending Shutdown received");
      ProcessChild::NotifyImpendingShutdown();
      return true;
    }
  }
  return false;
}

/* static */
bool MessageChannel::IsAlwaysDeferred(const Message& aMsg) {
  // If a message is not NESTED_INSIDE_CPOW and not sync, then we always defer
  // it.
  return aMsg.nested_level() != IPC::Message::NESTED_INSIDE_CPOW &&
         !aMsg.is_sync();
}

bool MessageChannel::ShouldDeferMessage(const Message& aMsg) {
  // Never defer messages that have the highest nested level, even async
  // ones. This is safe because only the child can send these messages, so
  // they can never nest.
  if (aMsg.nested_level() == IPC::Message::NESTED_INSIDE_CPOW) {
    MOZ_ASSERT(!IsAlwaysDeferred(aMsg));
    return false;
  }

  // Unless they're NESTED_INSIDE_CPOW, we always defer async messages.
  // Note that we never send an async NESTED_INSIDE_SYNC message.
  if (!aMsg.is_sync()) {
    MOZ_RELEASE_ASSERT(aMsg.nested_level() == IPC::Message::NOT_NESTED);
    MOZ_ASSERT(IsAlwaysDeferred(aMsg));
    return true;
  }

  MOZ_ASSERT(!IsAlwaysDeferred(aMsg));

  int msgNestedLevel = aMsg.nested_level();
  int waitingNestedLevel = AwaitingSyncReplyNestedLevel();

  // Always defer if the nested level of the incoming message is less than the
  // nested level of the message we're awaiting.
  if (msgNestedLevel < waitingNestedLevel) return true;

  // Never defer if the message has strictly greater nested level.
  if (msgNestedLevel > waitingNestedLevel) return false;

  // When both sides send sync messages of the same nested level, we resolve the
  // race by dispatching in the child and deferring the incoming message in
  // the parent. However, the parent still needs to dispatch nested sync
  // messages.
  //
  // Deferring in the parent only sort of breaks message ordering. When the
  // child's message comes in, we can pretend the child hasn't quite
  // finished sending it yet. Since the message is sync, we know that the
  // child hasn't moved on yet.
  return mSide == ParentSide &&
         aMsg.transaction_id() != CurrentNestedInsideSyncTransaction();
}

void MessageChannel::OnMessageReceivedFromLink(Message&& aMsg) {
  AssertLinkThread();
  mMonitor->AssertCurrentThreadOwns();

  if (MaybeInterceptSpecialIOMessage(aMsg)) return;

  mListener->OnChannelReceivedMessage(aMsg);

  // Regardless of the Interrupt stack, if we're awaiting a sync reply,
  // we know that it needs to be immediately handled to unblock us.
  if (aMsg.is_sync() && aMsg.is_reply()) {
    IPC_LOG("Received reply seqno=%d xid=%d", aMsg.seqno(),
            aMsg.transaction_id());

    if (aMsg.seqno() == mTimedOutMessageSeqno) {
      // Drop the message, but allow future sync messages to be sent.
      IPC_LOG("Received reply to timedout message; igoring; xid=%d",
              mTimedOutMessageSeqno);
      EndTimeout();
      return;
    }

    MOZ_RELEASE_ASSERT(AwaitingSyncReply());
    MOZ_RELEASE_ASSERT(!mTimedOutMessageSeqno);

    mTransactionStack->HandleReply(std::move(aMsg));
    NotifyWorkerThread();
    return;
  }

  // Nested messages cannot be compressed.
  MOZ_RELEASE_ASSERT(aMsg.compress_type() == IPC::Message::COMPRESSION_NONE ||
                     aMsg.nested_level() == IPC::Message::NOT_NESTED);

  bool reuseTask = false;
  if (aMsg.compress_type() == IPC::Message::COMPRESSION_ENABLED) {
    bool compress =
        (!mPending.isEmpty() &&
         mPending.getLast()->Msg().type() == aMsg.type() &&
         mPending.getLast()->Msg().routing_id() == aMsg.routing_id());
    if (compress) {
      // This message type has compression enabled, and the back of the
      // queue was the same message type and routed to the same destination.
      // Replace it with the newer message.
      MOZ_RELEASE_ASSERT(mPending.getLast()->Msg().compress_type() ==
                         IPC::Message::COMPRESSION_ENABLED);
      mPending.getLast()->Msg() = std::move(aMsg);

      reuseTask = true;
    }
  } else if (aMsg.compress_type() == IPC::Message::COMPRESSION_ALL &&
             !mPending.isEmpty()) {
    for (MessageTask* p = mPending.getLast(); p; p = p->getPrevious()) {
      if (p->Msg().type() == aMsg.type() &&
          p->Msg().routing_id() == aMsg.routing_id()) {
        // This message type has compression enabled, and the queue
        // holds a message with the same message type and routed to the
        // same destination. Erase it. Note that, since we always
        // compress these redundancies, There Can Be Only One.
        MOZ_RELEASE_ASSERT(p->Msg().compress_type() ==
                           IPC::Message::COMPRESSION_ALL);
        MOZ_RELEASE_ASSERT(IsAlwaysDeferred(p->Msg()));
        p->remove();
        break;
      }
    }
  }

  bool alwaysDeferred = IsAlwaysDeferred(aMsg);

  bool wakeUpSyncSend = AwaitingSyncReply() && !ShouldDeferMessage(aMsg);

  bool shouldWakeUp =
      AwaitingInterruptReply() || wakeUpSyncSend || AwaitingIncomingMessage();

  // Although we usually don't need to post a message task if
  // shouldWakeUp is true, it's easier to post anyway than to have to
  // guarantee that every Send call processes everything it's supposed to
  // before returning.
  bool shouldPostTask = !shouldWakeUp || wakeUpSyncSend;

  IPC_LOG("Receive on link thread; seqno=%d, xid=%d, shouldWakeUp=%d",
          aMsg.seqno(), aMsg.transaction_id(), shouldWakeUp);

  if (reuseTask) {
    return;
  }

  // There are three cases we're concerned about, relating to the state of the
  // main thread:
  //
  // (1) We are waiting on a sync reply - main thread is blocked on the
  //     IPC monitor.
  //   - If the message is NESTED_INSIDE_SYNC, we wake up the main thread to
  //     deliver the message depending on ShouldDeferMessage. Otherwise, we
  //     leave it in the mPending queue, posting a task to the main event
  //     loop, where it will be processed once the synchronous reply has been
  //     received.
  //
  // (2) We are waiting on an Interrupt reply - main thread is blocked on the
  //     IPC monitor.
  //   - Always notify and wake up the main thread.
  //
  // (3) We are not waiting on a reply.
  //   - We post a task to the main event loop.
  //
  // Note that, we may notify the main thread even though the monitor is not
  // blocked. This is okay, since we always check for pending events before
  // blocking again.

#ifdef MOZ_TASK_TRACER
  aMsg.TaskTracerDispatch();
#endif
  RefPtr<MessageTask> task = new MessageTask(this, std::move(aMsg));
  mPending.insertBack(task);

  if (!alwaysDeferred) {
    mMaybeDeferredPendingCount++;
  }

  if (shouldWakeUp) {
    NotifyWorkerThread();
  }

  if (shouldPostTask) {
    task->Post();
  }
}

void MessageChannel::PeekMessages(
    const std::function<bool(const Message& aMsg)>& aInvoke) {
  // FIXME: We shouldn't be holding the lock for aInvoke!
  MonitorAutoLock lock(*mMonitor);

  for (MessageTask* it : mPending) {
    const Message& msg = it->Msg();
    if (!aInvoke(msg)) {
      break;
    }
  }
}

void MessageChannel::ProcessPendingRequests(
    AutoEnterTransaction& aTransaction) {
  mMonitor->AssertCurrentThreadOwns();

  AssertMaybeDeferredCountCorrect();
  if (mMaybeDeferredPendingCount == 0) {
    return;
  }

  IPC_LOG("ProcessPendingRequests for seqno=%d, xid=%d",
          aTransaction.SequenceNumber(), aTransaction.TransactionID());

  // Loop until there aren't any more nested messages to process.
  for (;;) {
    // If we canceled during ProcessPendingRequest, then we need to leave
    // immediately because the results of ShouldDeferMessage will be
    // operating with weird state (as if no Send is in progress). That could
    // cause even NOT_NESTED sync messages to be processed (but not
    // NOT_NESTED async messages), which would break message ordering.
    if (aTransaction.IsCanceled()) {
      return;
    }

    mozilla::Vector<Message> toProcess;

    for (MessageTask* p = mPending.getFirst(); p;) {
      Message& msg = p->Msg();

      MOZ_RELEASE_ASSERT(!aTransaction.IsCanceled(),
                         "Calling ShouldDeferMessage when cancelled");
      bool defer = ShouldDeferMessage(msg);

      // Only log the interesting messages.
      if (msg.is_sync() ||
          msg.nested_level() == IPC::Message::NESTED_INSIDE_CPOW) {
        IPC_LOG("ShouldDeferMessage(seqno=%d) = %d", msg.seqno(), defer);
      }

      if (!defer) {
        MOZ_ASSERT(!IsAlwaysDeferred(msg));

        if (!toProcess.append(std::move(msg))) MOZ_CRASH();

        mMaybeDeferredPendingCount--;

        p = p->removeAndGetNext();
        continue;
      }
      p = p->getNext();
    }

    if (toProcess.empty()) {
      break;
    }

    // Processing these messages could result in more messages, so we
    // loop around to check for more afterwards.

    for (auto it = toProcess.begin(); it != toProcess.end(); it++) {
      ProcessPendingRequest(std::move(*it));
    }
  }

  AssertMaybeDeferredCountCorrect();
}

bool MessageChannel::Send(UniquePtr<Message> aMsg, Message* aReply) {
  mozilla::TimeStamp start = TimeStamp::Now();
  if (aMsg->size() >= kMinTelemetryMessageSize) {
    Telemetry::Accumulate(Telemetry::IPC_MESSAGE_SIZE2, aMsg->size());
  }

  // Sanity checks.
  AssertWorkerThread();
  mMonitor->AssertNotCurrentThreadOwns();
  MOZ_RELEASE_ASSERT(!mIsSameThreadChannel,
                     "sync send over same-thread channel will deadlock!");

#ifdef OS_WIN
  SyncStackFrame frame(this, false);
  NeuteredWindowRegion neuteredRgn(mFlags &
                                   REQUIRE_DEFERRED_MESSAGE_PROTECTION);
#endif
#ifdef MOZ_TASK_TRACER
  AutoScopedLabel autolabel("sync message %s", aMsg->name());
#endif

  CxxStackFrame f(*this, OUT_MESSAGE, aMsg.get());

  MonitorAutoLock lock(*mMonitor);

  if (mTimedOutMessageSeqno) {
    // Don't bother sending another sync message if a previous one timed out
    // and we haven't received a reply for it. Once the original timed-out
    // message receives a reply, we'll be able to send more sync messages
    // again.
    IPC_LOG("Send() failed due to previous timeout");
    mLastSendError = SyncSendError::PreviousTimeout;
    return false;
  }

  if (DispatchingSyncMessageNestedLevel() == IPC::Message::NOT_NESTED &&
      aMsg->nested_level() > IPC::Message::NOT_NESTED) {
    // Don't allow sending CPOWs while we're dispatching a sync message.
    IPC_LOG("Nested level forbids send");
    mLastSendError = SyncSendError::SendingCPOWWhileDispatchingSync;
    return false;
  }

  if (DispatchingSyncMessageNestedLevel() == IPC::Message::NESTED_INSIDE_CPOW ||
      DispatchingAsyncMessageNestedLevel() ==
          IPC::Message::NESTED_INSIDE_CPOW) {
    // Generally only the parent dispatches urgent messages. And the only
    // sync messages it can send are NESTED_INSIDE_SYNC. Mainly we want to
    // ensure here that we don't return false for non-CPOW messages.
    MOZ_RELEASE_ASSERT(aMsg->nested_level() ==
                       IPC::Message::NESTED_INSIDE_SYNC);
    IPC_LOG("Sending while dispatching urgent message");
    mLastSendError = SyncSendError::SendingCPOWWhileDispatchingUrgent;
    return false;
  }

  if (aMsg->nested_level() < DispatchingSyncMessageNestedLevel() ||
      aMsg->nested_level() < AwaitingSyncReplyNestedLevel()) {
    MOZ_RELEASE_ASSERT(DispatchingSyncMessage() || DispatchingAsyncMessage());
    MOZ_RELEASE_ASSERT(!mIsPostponingSends);
    IPC_LOG("Cancel from Send");
    auto cancel =
        MakeUnique<CancelMessage>(CurrentNestedInsideSyncTransaction());
    CancelTransaction(CurrentNestedInsideSyncTransaction());
    mLink->SendMessage(std::move(cancel));
  }

  IPC_ASSERT(aMsg->is_sync(), "can only Send() sync messages here");

  IPC_ASSERT(aMsg->nested_level() >= DispatchingSyncMessageNestedLevel(),
             "can't send sync message of a lesser nested level than what's "
             "being dispatched");
  IPC_ASSERT(AwaitingSyncReplyNestedLevel() <= aMsg->nested_level(),
             "nested sync message sends must be of increasing nested level");
  IPC_ASSERT(
      DispatchingSyncMessageNestedLevel() != IPC::Message::NESTED_INSIDE_CPOW,
      "not allowed to send messages while dispatching urgent messages");

  IPC_ASSERT(
      DispatchingAsyncMessageNestedLevel() != IPC::Message::NESTED_INSIDE_CPOW,
      "not allowed to send messages while dispatching urgent messages");

  if (!Connected()) {
    ReportConnectionError("MessageChannel::SendAndWait", aMsg.get());
    mLastSendError = SyncSendError::NotConnectedBeforeSend;
    return false;
  }

  aMsg->set_seqno(NextSeqno());

  int32_t seqno = aMsg->seqno();
  int nestedLevel = aMsg->nested_level();
  msgid_t replyType = aMsg->type() + 1;

  AutoEnterTransaction* stackTop = mTransactionStack;

  // If the most recent message on the stack is NESTED_INSIDE_SYNC, then our
  // message should nest inside that and we use the same transaction
  // ID. Otherwise we need a new transaction ID (so we use the seqno of the
  // message we're sending).
  bool nest =
      stackTop && stackTop->NestedLevel() == IPC::Message::NESTED_INSIDE_SYNC;
  int32_t transaction = nest ? stackTop->TransactionID() : seqno;
  aMsg->set_transaction_id(transaction);

  bool handleWindowsMessages = mListener->HandleWindowsMessages(*aMsg.get());
  AutoEnterTransaction transact(this, seqno, transaction, nestedLevel);

  IPC_LOG("Send seqno=%d, xid=%d", seqno, transaction);

  // aMsg will be destroyed soon, but name() is not owned by aMsg.
  const char* msgName = aMsg->name();

  AddProfilerMarker(*aMsg, MessageDirection::eSending);
  SendMessageToLink(std::move(aMsg));

  while (true) {
    MOZ_RELEASE_ASSERT(!transact.IsCanceled());
    ProcessPendingRequests(transact);
    if (transact.IsComplete()) {
      break;
    }
    if (!Connected()) {
      ReportConnectionError("MessageChannel::Send");
      mLastSendError = SyncSendError::DisconnectedDuringSend;
      return false;
    }

    MOZ_RELEASE_ASSERT(!mTimedOutMessageSeqno);
    MOZ_RELEASE_ASSERT(!transact.IsComplete());
    MOZ_RELEASE_ASSERT(mTransactionStack == &transact);

    bool maybeTimedOut = !WaitForSyncNotify(handleWindowsMessages);

    if (mListener->NeedArtificialSleep()) {
      MonitorAutoUnlock unlock(*mMonitor);
      mListener->ArtificialSleep();
    }

    if (!Connected()) {
      ReportConnectionError("MessageChannel::SendAndWait");
      mLastSendError = SyncSendError::DisconnectedDuringSend;
      return false;
    }

    if (transact.IsCanceled()) {
      break;
    }

    MOZ_RELEASE_ASSERT(mTransactionStack == &transact);

    // We only time out a message if it initiated a new transaction (i.e.,
    // if neither side has any other message Sends on the stack).
    bool canTimeOut = transact.IsBottom();
    if (maybeTimedOut && canTimeOut && !ShouldContinueFromTimeout()) {
      // Since ShouldContinueFromTimeout drops the lock, we need to
      // re-check all our conditions here. We shouldn't time out if any of
      // these things happen because there won't be a reply to the timed
      // out message in these cases.
      if (transact.IsComplete()) {
        break;
      }

      IPC_LOG("Timing out Send: xid=%d", transaction);

      mTimedOutMessageSeqno = seqno;
      mTimedOutMessageNestedLevel = nestedLevel;
      mLastSendError = SyncSendError::TimedOut;
      return false;
    }

    if (transact.IsCanceled()) {
      break;
    }
  }

  if (transact.IsCanceled()) {
    IPC_LOG("Other side canceled seqno=%d, xid=%d", seqno, transaction);
    mLastSendError = SyncSendError::CancelledAfterSend;
    return false;
  }

  if (transact.IsError()) {
    IPC_LOG("Error: seqno=%d, xid=%d", seqno, transaction);
    mLastSendError = SyncSendError::ReplyError;
    return false;
  }

  uint32_t latencyMs = round((TimeStamp::Now() - start).ToMilliseconds());
  IPC_LOG("Got reply: seqno=%d, xid=%d, msgName=%s, latency=%ums", seqno,
          transaction, msgName, latencyMs);

  UniquePtr<Message> reply = transact.GetReply();

  MOZ_RELEASE_ASSERT(reply);
  MOZ_RELEASE_ASSERT(reply->is_reply(), "expected reply");
  MOZ_RELEASE_ASSERT(!reply->is_reply_error());
  MOZ_RELEASE_ASSERT(reply->seqno() == seqno);
  MOZ_RELEASE_ASSERT(reply->type() == replyType, "wrong reply type");
  MOZ_RELEASE_ASSERT(reply->is_sync());

  AddProfilerMarker(*reply, MessageDirection::eReceiving);

  *aReply = std::move(*reply);
  if (aReply->size() >= kMinTelemetryMessageSize) {
    Telemetry::Accumulate(Telemetry::IPC_REPLY_SIZE,
                          nsDependentCString(msgName), aReply->size());
  }

  // NOTE: Only collect IPC_SYNC_MAIN_LATENCY_MS on the main thread (bug
  // 1343729)
  if (NS_IsMainThread() && latencyMs >= kMinTelemetrySyncIPCLatencyMs) {
    Telemetry::Accumulate(Telemetry::IPC_SYNC_MAIN_LATENCY_MS,
                          nsDependentCString(msgName), latencyMs);
  }
  return true;
}

bool MessageChannel::Call(UniquePtr<Message> aMsg, Message* aReply) {
  AssertWorkerThread();
  mMonitor->AssertNotCurrentThreadOwns();
  MOZ_RELEASE_ASSERT(!mIsSameThreadChannel,
                     "intr call send over same-thread channel will deadlock!");

#ifdef OS_WIN
  SyncStackFrame frame(this, true);
#endif
#ifdef MOZ_TASK_TRACER
  AutoScopedLabel autolabel("sync message %s", aMsg->name());
#endif

  // This must come before MonitorAutoLock, as its destructor acquires the
  // monitor lock.
  CxxStackFrame cxxframe(*this, OUT_MESSAGE, aMsg.get());

  MonitorAutoLock lock(*mMonitor);
  if (!Connected()) {
    ReportConnectionError("MessageChannel::Call", aMsg.get());
    return false;
  }

  // Sanity checks.
  IPC_ASSERT(!AwaitingSyncReply(),
             "cannot issue Interrupt call while blocked on sync request");
  IPC_ASSERT(!DispatchingSyncMessage(), "violation of sync handler invariant");
  IPC_ASSERT(aMsg->is_interrupt(), "can only Call() Interrupt messages here");
  IPC_ASSERT(!mIsPostponingSends, "not postponing sends");

  aMsg->set_seqno(NextSeqno());
  aMsg->set_interrupt_remote_stack_depth_guess(mRemoteStackDepthGuess);
  aMsg->set_interrupt_local_stack_depth(1 + InterruptStackDepth());
  mInterruptStack.push(MessageInfo(*aMsg));

  AddProfilerMarker(*aMsg, MessageDirection::eSending);

  mLink->SendMessage(std::move(aMsg));

  while (true) {
    // if a handler invoked by *Dispatch*() spun a nested event
    // loop, and the connection was broken during that loop, we
    // might have already processed the OnError event. if so,
    // trying another loop iteration will be futile because
    // channel state will have been cleared
    if (!Connected()) {
      ReportConnectionError("MessageChannel::Call");
      return false;
    }

#ifdef OS_WIN
    // We need to limit the scoped of neuteredRgn to this spot in the code.
    // Window neutering can't be enabled during some plugin calls because
    // we then risk the neutered window procedure being subclassed by a
    // plugin.
    {
      NeuteredWindowRegion neuteredRgn(mFlags &
                                       REQUIRE_DEFERRED_MESSAGE_PROTECTION);
      /* We should pump messages at this point to ensure that the IPC
         peer does not become deadlocked on a pending inter-thread
         SendMessage() */
      neuteredRgn.PumpOnce();
    }
#endif

    // Now might be the time to process a message deferred because of race
    // resolution.
    MaybeUndeferIncall();

    // Wait for an event to occur.
    while (!InterruptEventOccurred()) {
      bool maybeTimedOut = !WaitForInterruptNotify();

      // We might have received a "subtly deferred" message in a nested
      // loop that it's now time to process.
      if (InterruptEventOccurred() ||
          (!maybeTimedOut &&
           (!mDeferred.empty() || !mOutOfTurnReplies.empty()))) {
        break;
      }

      if (maybeTimedOut && !ShouldContinueFromTimeout()) return false;
    }

    Message recvd;
    MessageMap::iterator it;

    if ((it = mOutOfTurnReplies.find(mInterruptStack.top().seqno())) !=
        mOutOfTurnReplies.end()) {
      recvd = std::move(it->second);
      mOutOfTurnReplies.erase(it);
    } else if (!mPending.isEmpty()) {
      RefPtr<MessageTask> task = mPending.popFirst();
      recvd = std::move(task->Msg());
      if (!IsAlwaysDeferred(recvd)) {
        mMaybeDeferredPendingCount--;
      }
    } else {
      // because of subtleties with nested event loops, it's possible
      // that we got here and nothing happened.  or, we might have a
      // deferred in-call that needs to be processed.  either way, we
      // won't break the inner while loop again until something new
      // happens.
      continue;
    }

    // If the message is not Interrupt, we can dispatch it as normal.
    if (!recvd.is_interrupt()) {
      DispatchMessage(std::move(recvd));
      if (!Connected()) {
        ReportConnectionError("MessageChannel::DispatchMessage");
        return false;
      }
      continue;
    }

    // If the message is an Interrupt reply, either process it as a reply to our
    // call, or add it to the list of out-of-turn replies we've received.
    if (recvd.is_reply()) {
      IPC_ASSERT(!mInterruptStack.empty(), "invalid Interrupt stack");

      // If this is not a reply the call we've initiated, add it to our
      // out-of-turn replies and keep polling for events.
      {
        const MessageInfo& outcall = mInterruptStack.top();

        // Note, In the parent, sequence numbers increase from 0, and
        // in the child, they decrease from 0.
        if ((mSide == ChildSide && recvd.seqno() > outcall.seqno()) ||
            (mSide != ChildSide && recvd.seqno() < outcall.seqno())) {
          mOutOfTurnReplies[recvd.seqno()] = std::move(recvd);
          continue;
        }

        IPC_ASSERT(
            recvd.is_reply_error() || (recvd.type() == (outcall.type() + 1) &&
                                       recvd.seqno() == outcall.seqno()),
            "somebody's misbehavin'", true);
      }

      // We received a reply to our most recent outstanding call. Pop
      // this frame and return the reply.
      mInterruptStack.pop();

      AddProfilerMarker(recvd, MessageDirection::eReceiving);

      bool is_reply_error = recvd.is_reply_error();
      if (!is_reply_error) {
        *aReply = std::move(recvd);
      }

      // If we have no more pending out calls waiting on replies, then
      // the reply queue should be empty.
      IPC_ASSERT(!mInterruptStack.empty() || mOutOfTurnReplies.empty(),
                 "still have pending replies with no pending out-calls", true);

      return !is_reply_error;
    }

    // Dispatch an Interrupt in-call. Snapshot the current stack depth while we
    // own the monitor.
    size_t stackDepth = InterruptStackDepth();
    {
#ifdef MOZ_TASK_TRACER
      Message::AutoTaskTracerRun tasktracerRun(recvd);
#endif
      MonitorAutoUnlock unlock(*mMonitor);

      CxxStackFrame frame(*this, IN_MESSAGE, &recvd);
      RefPtr<ActorLifecycleProxy> listenerProxy =
          mListener->GetLifecycleProxy();
      DispatchInterruptMessage(listenerProxy, std::move(recvd), stackDepth);
    }
    if (!Connected()) {
      ReportConnectionError("MessageChannel::DispatchInterruptMessage");
      return false;
    }
  }

  return true;
}

bool MessageChannel::WaitForIncomingMessage() {
#ifdef OS_WIN
  SyncStackFrame frame(this, true);
  NeuteredWindowRegion neuteredRgn(mFlags &
                                   REQUIRE_DEFERRED_MESSAGE_PROTECTION);
#endif

  MonitorAutoLock lock(*mMonitor);
  AutoEnterWaitForIncoming waitingForIncoming(*this);
  if (mChannelState != ChannelConnected) {
    return false;
  }
  if (!HasPendingEvents()) {
    return WaitForInterruptNotify();
  }

  MOZ_RELEASE_ASSERT(!mPending.isEmpty());
  RefPtr<MessageTask> task = mPending.getFirst();
  RunMessage(*task);
  return true;
}

bool MessageChannel::HasPendingEvents() {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();
  return Connected() && !mPending.isEmpty();
}

bool MessageChannel::InterruptEventOccurred() {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();
  IPC_ASSERT(InterruptStackDepth() > 0, "not in wait loop");

  return (!Connected() || !mPending.isEmpty() ||
          (!mOutOfTurnReplies.empty() &&
           mOutOfTurnReplies.find(mInterruptStack.top().seqno()) !=
               mOutOfTurnReplies.end()));
}

bool MessageChannel::ProcessPendingRequest(Message&& aUrgent) {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();

  IPC_LOG("Process pending: seqno=%d, xid=%d", aUrgent.seqno(),
          aUrgent.transaction_id());

  DispatchMessage(std::move(aUrgent));
  if (!Connected()) {
    ReportConnectionError("MessageChannel::ProcessPendingRequest");
    return false;
  }

  return true;
}

bool MessageChannel::ShouldRunMessage(const Message& aMsg) {
  if (!mTimedOutMessageSeqno) {
    return true;
  }

  // If we've timed out a message and we're awaiting the reply to the timed
  // out message, we have to be careful what messages we process. Here's what
  // can go wrong:
  // 1. child sends a NOT_NESTED sync message S
  // 2. parent sends a NESTED_INSIDE_SYNC sync message H at the same time
  // 3. parent times out H
  // 4. child starts processing H and sends a NESTED_INSIDE_SYNC message H'
  //    nested within the same transaction
  // 5. parent dispatches S and sends reply
  // 6. child asserts because it instead expected a reply to H'.
  //
  // To solve this, we refuse to process S in the parent until we get a reply
  // to H. More generally, let the timed out message be M. We don't process a
  // message unless the child would need the response to that message in order
  // to process M. Those messages are the ones that have a higher nested level
  // than M or that are part of the same transaction as M.
  if (aMsg.nested_level() < mTimedOutMessageNestedLevel ||
      (aMsg.nested_level() == mTimedOutMessageNestedLevel &&
       aMsg.transaction_id() != mTimedOutMessageSeqno)) {
    return false;
  }

  return true;
}

void MessageChannel::RunMessage(MessageTask& aTask) {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();

  Message& msg = aTask.Msg();

  if (!Connected()) {
    ReportConnectionError("RunMessage");
    return;
  }

  // Check that we're going to run the first message that's valid to run.
#if 0
#  ifdef DEBUG
    nsCOMPtr<nsIEventTarget> messageTarget =
        mListener->GetMessageEventTarget(msg);

    for (MessageTask* task : mPending) {
        if (task == &aTask) {
            break;
        }

        nsCOMPtr<nsIEventTarget> taskTarget =
            mListener->GetMessageEventTarget(task->Msg());

        MOZ_ASSERT(!ShouldRunMessage(task->Msg()) ||
                   taskTarget != messageTarget ||
                   aTask.Msg().priority() != task->Msg().priority());

    }
#  endif
#endif

  if (!mDeferred.empty()) {
    MaybeUndeferIncall();
  }

  if (!ShouldRunMessage(msg)) {
    return;
  }

  MOZ_RELEASE_ASSERT(aTask.isInList());
  aTask.remove();

  if (!IsAlwaysDeferred(msg)) {
    mMaybeDeferredPendingCount--;
  }

  if (IsOnCxxStack() && msg.is_interrupt() && msg.is_reply()) {
    // We probably just received a reply in a nested loop for an
    // Interrupt call sent before entering that loop.
    mOutOfTurnReplies[msg.seqno()] = std::move(msg);
    return;
  }

  DispatchMessage(std::move(msg));
}

NS_IMPL_ISUPPORTS_INHERITED(MessageChannel::MessageTask, CancelableRunnable,
                            nsIRunnablePriority, nsIRunnableIPCMessageType)

MessageChannel::MessageTask::MessageTask(MessageChannel* aChannel,
                                         Message&& aMessage)
    : CancelableRunnable(aMessage.name()),
      mChannel(aChannel),
      mMessage(std::move(aMessage)),
      mScheduled(false) {}

nsresult MessageChannel::MessageTask::Run() {
  if (!mChannel) {
    return NS_OK;
  }

  mChannel->AssertWorkerThread();
  mChannel->mMonitor->AssertNotCurrentThreadOwns();

  MonitorAutoLock lock(*mChannel->mMonitor);

  // In case we choose not to run this message, we may need to be able to Post
  // it again.
  mScheduled = false;

  if (!isInList()) {
    return NS_OK;
  }

  mChannel->RunMessage(*this);
  return NS_OK;
}

// Warning: This method removes the receiver from whatever list it might be in.
nsresult MessageChannel::MessageTask::Cancel() {
  if (!mChannel) {
    return NS_OK;
  }

  mChannel->AssertWorkerThread();
  mChannel->mMonitor->AssertNotCurrentThreadOwns();

  MonitorAutoLock lock(*mChannel->mMonitor);

  if (!isInList()) {
    return NS_OK;
  }
  remove();

  if (!IsAlwaysDeferred(Msg())) {
    mChannel->mMaybeDeferredPendingCount--;
  }

  return NS_OK;
}

void MessageChannel::MessageTask::Post() {
  MOZ_RELEASE_ASSERT(!mScheduled);
  MOZ_RELEASE_ASSERT(isInList());

  mScheduled = true;

  RefPtr<MessageTask> self = this;
  nsCOMPtr<nsISerialEventTarget> eventTarget =
      mChannel->mListener->GetMessageEventTarget(mMessage);

  if (eventTarget) {
    eventTarget->Dispatch(self.forget(), NS_DISPATCH_NORMAL);
  } else {
    mChannel->mWorkerThread->Dispatch(self.forget());
  }
}

void MessageChannel::MessageTask::Clear() {
  mChannel->AssertWorkerThread();

  mChannel = nullptr;
}

NS_IMETHODIMP
MessageChannel::MessageTask::GetPriority(uint32_t* aPriority) {
  switch (mMessage.priority()) {
    case Message::NORMAL_PRIORITY:
      *aPriority = PRIORITY_NORMAL;
      break;
    case Message::INPUT_PRIORITY:
      *aPriority = PRIORITY_INPUT_HIGH;
      break;
    case Message::HIGH_PRIORITY:
      *aPriority = PRIORITY_HIGH;
      break;
    case Message::MEDIUMHIGH_PRIORITY:
      *aPriority = PRIORITY_MEDIUMHIGH;
      break;
    default:
      MOZ_ASSERT(false);
      break;
  }
  return NS_OK;
}

NS_IMETHODIMP
MessageChannel::MessageTask::GetType(uint32_t* aType) {
  if (!Msg().is_valid()) {
    // If mMessage has been moved already elsewhere, we can't know what the type
    // has been.
    return NS_ERROR_FAILURE;
  }

  *aType = Msg().type();
  return NS_OK;
}

void MessageChannel::DispatchMessage(Message&& aMsg) {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();

  RefPtr<ActorLifecycleProxy> listenerProxy = mListener->GetLifecycleProxy();

  Maybe<AutoNoJSAPI> nojsapi;
  if (NS_IsMainThread() && CycleCollectedJSContext::Get()) {
    nojsapi.emplace();
  }

  UniquePtr<Message> reply;

  IPC_LOG("DispatchMessage: seqno=%d, xid=%d", aMsg.seqno(),
          aMsg.transaction_id());
  AddProfilerMarker(aMsg, MessageDirection::eReceiving);

  {
    AutoEnterTransaction transaction(this, aMsg);

    int id = aMsg.transaction_id();
    MOZ_RELEASE_ASSERT(!aMsg.is_sync() || id == transaction.TransactionID());

    {
#ifdef MOZ_TASK_TRACER
      Message::AutoTaskTracerRun tasktracerRun(aMsg);
#endif
      MonitorAutoUnlock unlock(*mMonitor);
      CxxStackFrame frame(*this, IN_MESSAGE, &aMsg);

      mListener->ArtificialSleep();

      if (aMsg.is_sync()) {
        DispatchSyncMessage(listenerProxy, aMsg, *getter_Transfers(reply));
      } else if (aMsg.is_interrupt()) {
        DispatchInterruptMessage(listenerProxy, std::move(aMsg), 0);
      } else {
        DispatchAsyncMessage(listenerProxy, aMsg);
      }

      mListener->ArtificialSleep();
    }

    if (reply && transaction.IsCanceled()) {
      // The transaction has been canceled. Don't send a reply.
      IPC_LOG("Nulling out reply due to cancellation, seqno=%d, xid=%d",
              aMsg.seqno(), id);
      reply = nullptr;
    }
  }

  if (reply && ChannelConnected == mChannelState) {
    IPC_LOG("Sending reply seqno=%d, xid=%d", aMsg.seqno(),
            aMsg.transaction_id());
    AddProfilerMarker(*reply, MessageDirection::eSending);

    mLink->SendMessage(std::move(reply));
  }
}

void MessageChannel::DispatchSyncMessage(ActorLifecycleProxy* aProxy,
                                         const Message& aMsg,
                                         Message*& aReply) {
  AssertWorkerThread();

  mozilla::TimeStamp start = TimeStamp::Now();

  int nestedLevel = aMsg.nested_level();

  MOZ_RELEASE_ASSERT(nestedLevel == IPC::Message::NOT_NESTED ||
                     NS_IsMainThread());
#ifdef MOZ_TASK_TRACER
  AutoScopedLabel autolabel("sync message %s", aMsg.name());
#endif

  MessageChannel* dummy;
  MessageChannel*& blockingVar =
      mSide == ChildSide && NS_IsMainThread() ? gParentProcessBlocker : dummy;

  Result rv;
  {
    AutoSetValue<MessageChannel*> blocked(blockingVar, this);
    rv = aProxy->Get()->OnMessageReceived(aMsg, aReply);
  }

  uint32_t latencyMs = round((TimeStamp::Now() - start).ToMilliseconds());
  if (latencyMs >= kMinTelemetrySyncIPCLatencyMs) {
    Telemetry::Accumulate(Telemetry::IPC_SYNC_RECEIVE_MS,
                          nsDependentCString(aMsg.name()), latencyMs);
  }

  if (!MaybeHandleError(rv, aMsg, "DispatchSyncMessage")) {
    aReply = Message::ForSyncDispatchError(aMsg.nested_level());
  }
  aReply->set_seqno(aMsg.seqno());
  aReply->set_transaction_id(aMsg.transaction_id());
}

void MessageChannel::DispatchAsyncMessage(ActorLifecycleProxy* aProxy,
                                          const Message& aMsg) {
  AssertWorkerThread();
  MOZ_RELEASE_ASSERT(!aMsg.is_interrupt() && !aMsg.is_sync());

  if (aMsg.routing_id() == MSG_ROUTING_NONE) {
    MOZ_CRASH("unhandled special message!");
  }

  Result rv;
  {
    int nestedLevel = aMsg.nested_level();
    AutoSetValue<bool> async(mDispatchingAsyncMessage, true);
    AutoSetValue<int> nestedLevelSet(mDispatchingAsyncMessageNestedLevel,
                                     nestedLevel);
    rv = aProxy->Get()->OnMessageReceived(aMsg);
  }
  MaybeHandleError(rv, aMsg, "DispatchAsyncMessage");
}

void MessageChannel::DispatchInterruptMessage(ActorLifecycleProxy* aProxy,
                                              Message&& aMsg,
                                              size_t stackDepth) {
  AssertWorkerThread();
  mMonitor->AssertNotCurrentThreadOwns();

  IPC_ASSERT(aMsg.is_interrupt() && !aMsg.is_reply(), "wrong message type");

  if (ShouldDeferInterruptMessage(aMsg, stackDepth)) {
    // We now know the other side's stack has one more frame
    // than we thought.
    ++mRemoteStackDepthGuess;  // decremented in MaybeProcessDeferred()
    mDeferred.push(std::move(aMsg));
    return;
  }

  // If we "lost" a race and need to process the other side's in-call, we
  // don't need to fix up the mRemoteStackDepthGuess here, because we're just
  // about to increment it, which will make it correct again.

#ifdef OS_WIN
  SyncStackFrame frame(this, true);
#endif

  UniquePtr<Message> reply;

  ++mRemoteStackDepthGuess;
  Result rv = aProxy->Get()->OnCallReceived(aMsg, *getter_Transfers(reply));
  --mRemoteStackDepthGuess;

  if (!MaybeHandleError(rv, aMsg, "DispatchInterruptMessage")) {
    reply = WrapUnique(Message::ForInterruptDispatchError());
  }
  reply->set_seqno(aMsg.seqno());

  MonitorAutoLock lock(*mMonitor);
  if (ChannelConnected == mChannelState) {
    AddProfilerMarker(*reply, MessageDirection::eSending);
    mLink->SendMessage(std::move(reply));
  }
}

bool MessageChannel::ShouldDeferInterruptMessage(const Message& aMsg,
                                                 size_t aStackDepth) {
  AssertWorkerThread();

  // We may or may not own the lock in this function, so don't access any
  // channel state.

  IPC_ASSERT(aMsg.is_interrupt() && !aMsg.is_reply(), "wrong message type");

  // Race detection: see the long comment near mRemoteStackDepthGuess in
  // MessageChannel.h. "Remote" stack depth means our side, and "local" means
  // the other side.
  if (aMsg.interrupt_remote_stack_depth_guess() ==
      RemoteViewOfStackDepth(aStackDepth)) {
    return false;
  }

  // Interrupt in-calls have raced. The winner, if there is one, gets to defer
  // processing of the other side's in-call.
  bool defer;
  const char* winner;
  const MessageInfo parentMsgInfo =
      (mSide == ChildSide) ? MessageInfo(aMsg) : mInterruptStack.top();
  const MessageInfo childMsgInfo =
      (mSide == ChildSide) ? mInterruptStack.top() : MessageInfo(aMsg);
  switch (mListener->MediateInterruptRace(parentMsgInfo, childMsgInfo)) {
    case RIPChildWins:
      winner = "child";
      defer = (mSide == ChildSide);
      break;
    case RIPParentWins:
      winner = "parent";
      defer = (mSide != ChildSide);
      break;
    case RIPError:
      MOZ_CRASH("NYI: 'Error' Interrupt race policy");
    default:
      MOZ_CRASH("not reached");
  }

  IPC_LOG("race in %s: %s won", (mSide == ChildSide) ? "child" : "parent",
          winner);

  return defer;
}

void MessageChannel::MaybeUndeferIncall() {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();

  if (mDeferred.empty()) return;

  size_t stackDepth = InterruptStackDepth();

  Message& deferred = mDeferred.top();

  // the other side can only *under*-estimate our actual stack depth
  IPC_ASSERT(deferred.interrupt_remote_stack_depth_guess() <= stackDepth,
             "fatal logic error");

  if (ShouldDeferInterruptMessage(deferred, stackDepth)) {
    return;
  }

  // maybe time to process this message
  Message call(std::move(deferred));
  mDeferred.pop();

  // fix up fudge factor we added to account for race
  IPC_ASSERT(0 < mRemoteStackDepthGuess, "fatal logic error");
  --mRemoteStackDepthGuess;

  MOZ_RELEASE_ASSERT(call.nested_level() == IPC::Message::NOT_NESTED);
  RefPtr<MessageTask> task = new MessageTask(this, std::move(call));
  mPending.insertBack(task);
  MOZ_ASSERT(IsAlwaysDeferred(task->Msg()));
  task->Post();
}

void MessageChannel::EnteredCxxStack() { mListener->EnteredCxxStack(); }

void MessageChannel::ExitedCxxStack() {
  mListener->ExitedCxxStack();
  if (mSawInterruptOutMsg) {
    MonitorAutoLock lock(*mMonitor);
    // see long comment in OnMaybeDequeueOne()
    EnqueuePendingMessages();
    mSawInterruptOutMsg = false;
  }
}

void MessageChannel::EnteredCall() { mListener->EnteredCall(); }

void MessageChannel::ExitedCall() { mListener->ExitedCall(); }

void MessageChannel::EnteredSyncSend() { mListener->OnEnteredSyncSend(); }

void MessageChannel::ExitedSyncSend() { mListener->OnExitedSyncSend(); }

void MessageChannel::EnqueuePendingMessages() {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();

  MaybeUndeferIncall();

  // XXX performance tuning knob: could process all or k pending
  // messages here, rather than enqueuing for later processing

  RepostAllMessages();
}

bool MessageChannel::WaitResponse(bool aWaitTimedOut) {
  if (aWaitTimedOut) {
    if (mInTimeoutSecondHalf) {
      // We've really timed out this time.
      return false;
    }
    // Try a second time.
    mInTimeoutSecondHalf = true;
  } else {
    mInTimeoutSecondHalf = false;
  }
  return true;
}

#ifndef OS_WIN
bool MessageChannel::WaitForSyncNotify(bool /* aHandleWindowsMessages */) {
#  ifdef DEBUG
  // WARNING: We don't release the lock here. We can't because the link thread
  // could signal at this time and we would miss it. Instead we require
  // ArtificialTimeout() to be extremely simple.
  if (mListener->ArtificialTimeout()) {
    return false;
  }
#  endif

  MOZ_RELEASE_ASSERT(!mIsSameThreadChannel,
                     "Wait on same-thread channel will deadlock!");

  TimeDuration timeout = (kNoTimeout == mTimeoutMs)
                             ? TimeDuration::Forever()
                             : TimeDuration::FromMilliseconds(mTimeoutMs);
  CVStatus status = mMonitor->Wait(timeout);

  // If the timeout didn't expire, we know we received an event. The
  // converse is not true.
  return WaitResponse(status == CVStatus::Timeout);
}

bool MessageChannel::WaitForInterruptNotify() {
  return WaitForSyncNotify(true);
}

void MessageChannel::NotifyWorkerThread() { mMonitor->Notify(); }
#endif

bool MessageChannel::ShouldContinueFromTimeout() {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();

  bool cont;
  {
    MonitorAutoUnlock unlock(*mMonitor);
    cont = mListener->ShouldContinueFromReplyTimeout();
    mListener->ArtificialSleep();
  }

  static enum {
    UNKNOWN,
    NOT_DEBUGGING,
    DEBUGGING
  } sDebuggingChildren = UNKNOWN;

  if (sDebuggingChildren == UNKNOWN) {
    sDebuggingChildren =
        getenv("MOZ_DEBUG_CHILD_PROCESS") || getenv("MOZ_DEBUG_CHILD_PAUSE")
            ? DEBUGGING
            : NOT_DEBUGGING;
  }
  if (sDebuggingChildren == DEBUGGING) {
    return true;
  }

  return cont;
}

void MessageChannel::SetReplyTimeoutMs(int32_t aTimeoutMs) {
  // Set channel timeout value. Since this is broken up into
  // two period, the minimum timeout value is 2ms.
  AssertWorkerThread();
  mTimeoutMs =
      (aTimeoutMs <= 0) ? kNoTimeout : (int32_t)ceil((double)aTimeoutMs / 2.0);
}

void MessageChannel::OnChannelConnected(int32_t peer_id) {
  MOZ_RELEASE_ASSERT(!mPeerPidSet);
  mPeerPidSet = true;
  mPeerPid = peer_id;
  RefPtr<CancelableRunnable> task = mOnChannelConnectedTask;
  mWorkerThread->Dispatch(task.forget());
}

void MessageChannel::DispatchOnChannelConnected() {
  AssertWorkerThread();
  MOZ_RELEASE_ASSERT(mPeerPidSet);
  mListener->OnChannelConnected(mPeerPid);
}

void MessageChannel::ReportMessageRouteError(const char* channelName) const {
  PrintErrorMessage(mSide, channelName, "Need a route");
  mListener->ProcessingError(MsgRouteError, "MsgRouteError");
}

void MessageChannel::ReportConnectionError(const char* aChannelName,
                                           Message* aMsg) const {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();

  const char* errorMsg = nullptr;
  switch (mChannelState) {
    case ChannelClosed:
      errorMsg = "Closed channel: cannot send/recv";
      break;
    case ChannelOpening:
      errorMsg = "Opening channel: not yet ready for send/recv";
      break;
    case ChannelTimeout:
      errorMsg = "Channel timeout: cannot send/recv";
      break;
    case ChannelClosing:
      errorMsg =
          "Channel closing: too late to send/recv, messages will be lost";
      break;
    case ChannelError:
      errorMsg = "Channel error: cannot send/recv";
      break;

    default:
      MOZ_CRASH("unreached");
  }

  if (aMsg) {
    char reason[512];
    SprintfLiteral(reason, "(msgtype=0x%X,name=%s) %s", aMsg->type(),
                   aMsg->name(), errorMsg);

    PrintErrorMessage(mSide, aChannelName, reason);
  } else {
    PrintErrorMessage(mSide, aChannelName, errorMsg);
  }

  MonitorAutoUnlock unlock(*mMonitor);
  mListener->ProcessingError(MsgDropped, errorMsg);
}

bool MessageChannel::MaybeHandleError(Result code, const Message& aMsg,
                                      const char* channelName) {
  if (MsgProcessed == code) return true;

  const char* errorMsg = nullptr;
  switch (code) {
    case MsgNotKnown:
      errorMsg = "Unknown message: not processed";
      break;
    case MsgNotAllowed:
      errorMsg = "Message not allowed: cannot be sent/recvd in this state";
      break;
    case MsgPayloadError:
      errorMsg = "Payload error: message could not be deserialized";
      break;
    case MsgProcessingError:
      errorMsg =
          "Processing error: message was deserialized, but the handler "
          "returned false (indicating failure)";
      break;
    case MsgRouteError:
      errorMsg = "Route error: message sent to unknown actor ID";
      break;
    case MsgValueError:
      errorMsg =
          "Value error: message was deserialized, but contained an illegal "
          "value";
      break;

    default:
      MOZ_CRASH("unknown Result code");
      return false;
  }

  char reason[512];
  const char* msgname = aMsg.name();
  if (msgname[0] == '?') {
    SprintfLiteral(reason, "(msgtype=0x%X) %s", aMsg.type(), errorMsg);
  } else {
    SprintfLiteral(reason, "%s %s", msgname, errorMsg);
  }

  PrintErrorMessage(mSide, channelName, reason);

  // Error handled in mozilla::ipc::IPCResult.
  if (code == MsgProcessingError) {
    return false;
  }

  mListener->ProcessingError(code, reason);

  return false;
}

void MessageChannel::OnChannelErrorFromLink() {
  AssertLinkThread();
  mMonitor->AssertCurrentThreadOwns();

  IPC_LOG("OnChannelErrorFromLink");

  if (InterruptStackDepth() > 0) NotifyWorkerThread();

  if (AwaitingSyncReply() || AwaitingIncomingMessage()) NotifyWorkerThread();

  if (ChannelClosing != mChannelState) {
    if (mAbortOnError) {
      // mAbortOnError is set by main actors (e.g., ContentChild) to ensure
      // that the process terminates even if normal shutdown is prevented.
      // A MOZ_CRASH() here is not helpful because crash reporting relies
      // on the parent process which we know is dead or otherwise unusable.
      //
      // Additionally, the parent process can (and often is) killed on Android
      // when apps are backgrounded. We don't need to report a crash for
      // normal behavior in that case.
      printf_stderr("Exiting due to channel error.\n");
      ProcessChild::QuickExit();
    }
    mChannelState = ChannelError;
    mMonitor->Notify();
  }

  PostErrorNotifyTask();
}

void MessageChannel::NotifyMaybeChannelError() {
  mMonitor->AssertNotCurrentThreadOwns();

  // TODO sort out Close() on this side racing with Close() on the other side
  if (ChannelClosing == mChannelState) {
    // the channel closed, but we received a "Goodbye" message warning us
    // about it. no worries
    mChannelState = ChannelClosed;
    NotifyChannelClosed();
    return;
  }

  Clear();

  // Oops, error!  Let the listener know about it.
  mChannelState = ChannelError;

  // IPDL assumes these notifications do not fire twice, so we do not let
  // that happen.
  if (mNotifiedChannelDone) {
    return;
  }
  mNotifiedChannelDone = true;

  // After this, the channel may be deleted.  Based on the premise that
  // mListener owns this channel, any calls back to this class that may
  // work with mListener should still work on living objects.
  mListener->OnChannelError();
}

void MessageChannel::OnNotifyMaybeChannelError() {
  AssertWorkerThread();
  mMonitor->AssertNotCurrentThreadOwns();

  mChannelErrorTask = nullptr;

  // OnChannelError holds mMonitor when it posts this task and this
  // task cannot be allowed to run until OnChannelError has
  // exited. We enforce that order by grabbing the mutex here which
  // should only continue once OnChannelError has completed.
  {
    MonitorAutoLock lock(*mMonitor);
    // nothing to do here
  }

  if (IsOnCxxStack()) {
    mChannelErrorTask = NewNonOwningCancelableRunnableMethod(
        "ipc::MessageChannel::OnNotifyMaybeChannelError", this,
        &MessageChannel::OnNotifyMaybeChannelError);
    RefPtr<Runnable> task = mChannelErrorTask;
    // This used to post a 10ms delayed patch; however not all
    // nsISerialEventTarget implementations support delayed dispatch.
    // The delay being completely arbitrary, we may not as well have any.
    mWorkerThread->Dispatch(task.forget());
    return;
  }

  NotifyMaybeChannelError();
}

void MessageChannel::PostErrorNotifyTask() {
  mMonitor->AssertCurrentThreadOwns();

  if (mChannelErrorTask) return;

  // This must be the last code that runs on this thread!
  mChannelErrorTask = NewNonOwningCancelableRunnableMethod(
      "ipc::MessageChannel::OnNotifyMaybeChannelError", this,
      &MessageChannel::OnNotifyMaybeChannelError);
  RefPtr<Runnable> task = mChannelErrorTask;
  mWorkerThread->Dispatch(task.forget());
}

// Special async message.
class GoodbyeMessage : public IPC::Message {
 public:
  GoodbyeMessage() : IPC::Message(MSG_ROUTING_NONE, GOODBYE_MESSAGE_TYPE) {}
  static bool Read(const Message* msg) { return true; }
  void Log(const std::string& aPrefix, FILE* aOutf) const {
    fputs("(special `Goodbye' message)", aOutf);
  }
};

void MessageChannel::SynchronouslyClose() {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();
  mLink->SendClose();

  MOZ_RELEASE_ASSERT(!mIsSameThreadChannel || ChannelClosed == mChannelState,
                     "same-thread channel failed to synchronously close?");

  while (ChannelClosed != mChannelState) mMonitor->Wait();
}

void MessageChannel::CloseWithError() {
  AssertWorkerThread();

  MonitorAutoLock lock(*mMonitor);
  if (ChannelConnected != mChannelState) {
    return;
  }
  SynchronouslyClose();
  mChannelState = ChannelError;
  PostErrorNotifyTask();
}

void MessageChannel::CloseWithTimeout() {
  AssertWorkerThread();

  MonitorAutoLock lock(*mMonitor);
  if (ChannelConnected != mChannelState) {
    return;
  }
  SynchronouslyClose();
  mChannelState = ChannelTimeout;
}

void MessageChannel::NotifyImpendingShutdown() {
  UniquePtr<Message> msg =
      MakeUnique<Message>(MSG_ROUTING_NONE, IMPENDING_SHUTDOWN_MESSAGE_TYPE);
  MonitorAutoLock lock(*mMonitor);
  if (Connected()) {
    MOZ_DIAGNOSTIC_ASSERT(mIsCrossProcess);
    mLink->SendMessage(std::move(msg));
  }
}

void MessageChannel::Close() {
  AssertWorkerThread();

  {
    // We don't use MonitorAutoLock here as that causes some sort of
    // deadlock in the error/timeout-with-a-listener state below when
    // compiling an optimized msvc build.
    mMonitor->Lock();

    // Instead just use a ScopeExit to manage the unlock.
    RefPtr<RefCountedMonitor> monitor(mMonitor);
    auto exit = MakeScopeExit([m = std::move(monitor)]() { m->Unlock(); });

    if (ChannelError == mChannelState || ChannelTimeout == mChannelState) {
      // See bug 538586: if the listener gets deleted while the
      // IO thread's NotifyChannelError event is still enqueued
      // and subsequently deletes us, then the error event will
      // also be deleted and the listener will never be notified
      // of the channel error.
      if (mListener) {
        exit.release();  // Explicitly unlocking, clear scope exit.
        mMonitor->Unlock();
        NotifyMaybeChannelError();
      }
      return;
    }

    if (ChannelOpening == mChannelState) {
      // SynchronouslyClose() waits for an ack from the other side, so
      // the opening sequence should complete before this returns.
      SynchronouslyClose();
      mChannelState = ChannelError;
      NotifyMaybeChannelError();
      return;
    }

    if (ChannelClosed == mChannelState) {
      // Slightly unexpected but harmless; ignore.  See bug 1554244.
      return;
    }

    // Notify the other side that we're about to close our socket. If we've
    // already received a Goodbye from the other side (and our state is
    // ChannelClosing), there's no reason to send one.
    if (ChannelConnected == mChannelState) {
      mLink->SendMessage(MakeUnique<GoodbyeMessage>());
    }
    SynchronouslyClose();
  }

  NotifyChannelClosed();
}

void MessageChannel::NotifyChannelClosed() {
  mMonitor->AssertNotCurrentThreadOwns();

  if (ChannelClosed != mChannelState)
    MOZ_CRASH("channel should have been closed!");

  Clear();

  // IPDL assumes these notifications do not fire twice, so we do not let
  // that happen.
  if (mNotifiedChannelDone) {
    return;
  }
  mNotifiedChannelDone = true;

  // OK, the IO thread just closed the channel normally.  Let the
  // listener know about it. After this point the channel may be
  // deleted.
  mListener->OnChannelClose();
}

void MessageChannel::DebugAbort(const char* file, int line, const char* cond,
                                const char* why, bool reply) {
  printf_stderr(
      "###!!! [MessageChannel][%s][%s:%d] "
      "Assertion (%s) failed.  %s %s\n",
      mSide == ChildSide ? "Child" : "Parent", file, line, cond, why,
      reply ? "(reply)" : "");
  // technically we need the mutex for this, but we're dying anyway
  DumpInterruptStack("  ");
  printf_stderr("  remote Interrupt stack guess: %zu\n",
                mRemoteStackDepthGuess);
  printf_stderr("  deferred stack size: %zu\n", mDeferred.size());
  printf_stderr("  out-of-turn Interrupt replies stack size: %zu\n",
                mOutOfTurnReplies.size());

  MessageQueue pending = std::move(mPending);
  while (!pending.isEmpty()) {
    printf_stderr(
        "    [ %s%s ]\n",
        pending.getFirst()->Msg().is_interrupt()
            ? "intr"
            : (pending.getFirst()->Msg().is_sync() ? "sync" : "async"),
        pending.getFirst()->Msg().is_reply() ? "reply" : "");
    pending.popFirst();
  }

  MOZ_CRASH_UNSAFE(why);
}

void MessageChannel::DumpInterruptStack(const char* const pfx) const {
  NS_WARNING_ASSERTION(!mWorkerThread->IsOnCurrentThread(),
                       "The worker thread had better be paused in a debugger!");

  printf_stderr("%sMessageChannel 'backtrace':\n", pfx);

  // print a python-style backtrace, first frame to last
  for (uint32_t i = 0; i < mCxxStackFrames.length(); ++i) {
    int32_t id;
    const char* dir;
    const char* sems;
    const char* name;
    mCxxStackFrames[i].Describe(&id, &dir, &sems, &name);

    printf_stderr("%s[(%u) %s %s %s(actor=%d) ]\n", pfx, i, dir, sems, name,
                  id);
  }
}

void MessageChannel::AddProfilerMarker(const IPC::Message& aMessage,
                                       MessageDirection aDirection) {
  mMonitor->AssertCurrentThreadOwns();
#ifdef MOZ_GECKO_PROFILER
  if (profiler_feature_active(ProfilerFeature::IPCMessages)) {
    int32_t pid = mListener->OtherPidMaybeInvalid();
    // Only record markers for IPCs with a valid pid.
    // And if one of the profiler mutexes is locked on this thread, don't record
    // markers, because we don't want to expose profiler IPCs due to the
    // profiler itself, and also to avoid possible re-entrancy issues.
    if (pid != kInvalidProcessId && !profiler_is_locked_on_current_thread()) {
      // The current timestamp must be given to the `IPCMarker` payload.
      const TimeStamp now = TimeStamp::NowUnfuzzed();
      PROFILER_MARKER("IPC", IPC, MarkerTiming::InstantAt(now), IPCMarker, now,
                      now, pid, aMessage.seqno(), aMessage.type(), mSide,
                      aDirection, MessagePhase::Endpoint, aMessage.is_sync());
    }
  }
#endif
}

int32_t MessageChannel::GetTopmostMessageRoutingId() const {
  AssertWorkerThread();

  if (mCxxStackFrames.empty()) {
    return MSG_ROUTING_NONE;
  }
  const InterruptFrame& frame = mCxxStackFrames.back();
  return frame.GetRoutingId();
}

void MessageChannel::EndTimeout() {
  mMonitor->AssertCurrentThreadOwns();

  IPC_LOG("Ending timeout of seqno=%d", mTimedOutMessageSeqno);
  mTimedOutMessageSeqno = 0;
  mTimedOutMessageNestedLevel = 0;

  RepostAllMessages();
}

void MessageChannel::RepostAllMessages() {
  bool needRepost = false;
  for (MessageTask* task : mPending) {
    if (!task->IsScheduled()) {
      needRepost = true;
      break;
    }
  }
  if (!needRepost) {
    // If everything is already scheduled to run, do nothing.
    return;
  }

  // In some cases we may have deferred dispatch of some messages in the
  // queue. Now we want to run them again. However, we can't just re-post
  // those messages since the messages after them in mPending would then be
  // before them in the event queue. So instead we cancel everything and
  // re-post all messages in the correct order.
  MessageQueue queue = std::move(mPending);
  while (RefPtr<MessageTask> task = queue.popFirst()) {
    RefPtr<MessageTask> newTask = new MessageTask(this, std::move(task->Msg()));
    mPending.insertBack(newTask);
    newTask->Post();
  }

  AssertMaybeDeferredCountCorrect();
}

void MessageChannel::CancelTransaction(int transaction) {
  mMonitor->AssertCurrentThreadOwns();

  // When we cancel a transaction, we need to behave as if there's no longer
  // any IPC on the stack. Anything we were dispatching or sending will get
  // canceled. Consequently, we have to update the state variables below.
  //
  // We also need to ensure that when any IPC functions on the stack return,
  // they don't reset these values using an RAII class like AutoSetValue. To
  // avoid that, these RAII classes check if the variable they set has been
  // tampered with (by us). If so, they don't reset the variable to the old
  // value.

  IPC_LOG("CancelTransaction: xid=%d", transaction);

  // An unusual case: We timed out a transaction which the other side then
  // cancelled. In this case we just leave the timedout state and try to
  // forget this ever happened.
  if (transaction == mTimedOutMessageSeqno) {
    IPC_LOG("Cancelled timed out message %d", mTimedOutMessageSeqno);
    EndTimeout();

    // Normally mCurrentTransaction == 0 here. But it can be non-zero if:
    // 1. Parent sends NESTED_INSIDE_SYNC message H.
    // 2. Parent times out H.
    // 3. Child dispatches H and sends nested message H' (same transaction).
    // 4. Parent dispatches H' and cancels.
    MOZ_RELEASE_ASSERT(!mTransactionStack ||
                       mTransactionStack->TransactionID() == transaction);
    if (mTransactionStack) {
      mTransactionStack->Cancel();
    }
  } else {
    MOZ_RELEASE_ASSERT(mTransactionStack->TransactionID() == transaction);
    mTransactionStack->Cancel();
  }

  bool foundSync = false;
  for (MessageTask* p = mPending.getFirst(); p;) {
    Message& msg = p->Msg();

    // If there was a race between the parent and the child, then we may
    // have a queued sync message. We want to drop this message from the
    // queue since if will get cancelled along with the transaction being
    // cancelled. This happens if the message in the queue is
    // NESTED_INSIDE_SYNC.
    if (msg.is_sync() && msg.nested_level() != IPC::Message::NOT_NESTED) {
      MOZ_RELEASE_ASSERT(!foundSync);
      MOZ_RELEASE_ASSERT(msg.transaction_id() != transaction);
      IPC_LOG("Removing msg from queue seqno=%d xid=%d", msg.seqno(),
              msg.transaction_id());
      foundSync = true;
      if (!IsAlwaysDeferred(msg)) {
        mMaybeDeferredPendingCount--;
      }
      p = p->removeAndGetNext();
      continue;
    }

    p = p->getNext();
  }

  AssertMaybeDeferredCountCorrect();
}

void MessageChannel::CancelCurrentTransaction() {
  MonitorAutoLock lock(*mMonitor);
  if (DispatchingSyncMessageNestedLevel() >= IPC::Message::NESTED_INSIDE_SYNC) {
    if (DispatchingSyncMessageNestedLevel() ==
            IPC::Message::NESTED_INSIDE_CPOW ||
        DispatchingAsyncMessageNestedLevel() ==
            IPC::Message::NESTED_INSIDE_CPOW) {
      mListener->IntentionalCrash();
    }

    IPC_LOG("Cancel requested: current xid=%d",
            CurrentNestedInsideSyncTransaction());
    MOZ_RELEASE_ASSERT(DispatchingSyncMessage());
    auto cancel =
        MakeUnique<CancelMessage>(CurrentNestedInsideSyncTransaction());
    CancelTransaction(CurrentNestedInsideSyncTransaction());
    mLink->SendMessage(std::move(cancel));
  }
}

void CancelCPOWs() {
  if (gParentProcessBlocker) {
    mozilla::Telemetry::Accumulate(mozilla::Telemetry::IPC_TRANSACTION_CANCEL,
                                   true);
    gParentProcessBlocker->CancelCurrentTransaction();
  }
}

}  // namespace ipc
}  // namespace mozilla