summaryrefslogtreecommitdiffstats
path: root/ipc/glue/MessageChannel.h
blob: 972615ea76127ce1c5b5b91f403c19e851b24b8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: sw=2 ts=4 et :
 */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef ipc_glue_MessageChannel_h
#define ipc_glue_MessageChannel_h 1

#include "ipc/EnumSerializer.h"
#include "mozilla/Atomics.h"
#include "mozilla/LinkedList.h"
#include "mozilla/Monitor.h"
#include "mozilla/Vector.h"
#if defined(OS_WIN)
#  include "mozilla/ipc/Neutering.h"
#endif  // defined(OS_WIN)

#include <functional>
#include <map>
#include <stack>
#include <vector>

#include "MessageLink.h"  // for HasResultCodes
#include "mozilla/ipc/Transport.h"

#ifdef MOZ_GECKO_PROFILER
#  include "mozilla/BaseProfilerMarkers.h"
#endif

class MessageLoop;

namespace IPC {
template <typename T>
struct ParamTraits;
}

namespace mozilla {
namespace ipc {

class IToplevelProtocol;
class ActorLifecycleProxy;

class RefCountedMonitor : public Monitor {
 public:
  RefCountedMonitor() : Monitor("mozilla.ipc.MessageChannel.mMonitor") {}

  NS_INLINE_DECL_THREADSAFE_REFCOUNTING(RefCountedMonitor)

 private:
  ~RefCountedMonitor() = default;
};

enum class MessageDirection {
  eSending,
  eReceiving,
};

enum class MessagePhase {
  Endpoint,
  TransferStart,
  TransferEnd,
};

enum class SyncSendError {
  SendSuccess,
  PreviousTimeout,
  SendingCPOWWhileDispatchingSync,
  SendingCPOWWhileDispatchingUrgent,
  NotConnectedBeforeSend,
  DisconnectedDuringSend,
  CancelledBeforeSend,
  CancelledAfterSend,
  TimedOut,
  ReplyError,
};

enum class ResponseRejectReason {
  SendError,
  ChannelClosed,
  HandlerRejected,
  ActorDestroyed,
  EndGuard_,
};

template <typename T>
using ResolveCallback = std::function<void(T&&)>;

using RejectCallback = std::function<void(ResponseRejectReason)>;

enum ChannelState {
  ChannelClosed,
  ChannelOpening,
  ChannelConnected,
  ChannelTimeout,
  ChannelClosing,
  ChannelError
};

class AutoEnterTransaction;

class MessageChannel : HasResultCodes {
  friend class ProcessLink;
  friend class ThreadLink;
#ifdef FUZZING
  friend class ProtocolFuzzerHelper;
#endif

  class CxxStackFrame;
  class InterruptFrame;

  typedef mozilla::Monitor Monitor;

  // We could templatize the actor type but it would unnecessarily
  // expand the code size. Using the actor address as the
  // identifier is already good enough.
  typedef void* ActorIdType;

 public:
  struct UntypedCallbackHolder {
    UntypedCallbackHolder(ActorIdType aActorId, RejectCallback&& aReject)
        : mActorId(aActorId), mReject(std::move(aReject)) {}

    virtual ~UntypedCallbackHolder() = default;

    void Reject(ResponseRejectReason&& aReason) { mReject(std::move(aReason)); }

    ActorIdType mActorId;
    RejectCallback mReject;
  };

  template <typename Value>
  struct CallbackHolder : public UntypedCallbackHolder {
    CallbackHolder(ActorIdType aActorId, ResolveCallback<Value>&& aResolve,
                   RejectCallback&& aReject)
        : UntypedCallbackHolder(aActorId, std::move(aReject)),
          mResolve(std::move(aResolve)) {}

    void Resolve(Value&& aReason) { mResolve(std::move(aReason)); }

    ResolveCallback<Value> mResolve;
  };

 private:
  static Atomic<size_t> gUnresolvedResponses;
  friend class PendingResponseReporter;

 public:
  static const int32_t kNoTimeout;

  typedef IPC::Message Message;
  typedef IPC::MessageInfo MessageInfo;
  typedef mozilla::ipc::Transport Transport;

  explicit MessageChannel(const char* aName, IToplevelProtocol* aListener);
  ~MessageChannel();

  IToplevelProtocol* Listener() const { return mListener; }

  // "Open" from the perspective of the transport layer; the underlying
  // socketpair/pipe should already be created.
  //
  // Returns true if the transport layer was successfully connected,
  // i.e., mChannelState == ChannelConnected.
  bool Open(UniquePtr<Transport> aTransport, MessageLoop* aIOLoop = 0,
            Side aSide = UnknownSide);

  // "Open" a connection to another thread in the same process.
  //
  // Returns true if the transport layer was successfully connected,
  // i.e., mChannelState == ChannelConnected.
  //
  // For more details on the process of opening a channel between
  // threads, see the extended comment on this function
  // in MessageChannel.cpp.
  bool Open(MessageChannel* aTargetChan, nsISerialEventTarget* aEventTarget,
            Side aSide);

  // "Open" a connection to an actor on the current thread.
  //
  // Returns true if the transport layer was successfully connected,
  // i.e., mChannelState == ChannelConnected.
  //
  // Same-thread channels may not perform synchronous or blocking message
  // sends, to avoid deadlocks.
  bool OpenOnSameThread(MessageChannel* aTargetChan, Side aSide);

  /**
   * This sends a special message that is processed on the IO thread, so that
   * other actors can know that the process will soon shutdown.
   */
  void NotifyImpendingShutdown();

  // Close the underlying transport channel.
  void Close();

  // Force the channel to behave as if a channel error occurred. Valid
  // for process links only, not thread links.
  void CloseWithError();

  void CloseWithTimeout();

  void SetAbortOnError(bool abort) { mAbortOnError = abort; }

  // Call aInvoke for each pending message until it returns false.
  // XXX: You must get permission from an IPC peer to use this function
  //      since it requires custom deserialization and re-orders events.
  void PeekMessages(const std::function<bool(const Message& aMsg)>& aInvoke);

  // Misc. behavioral traits consumers can request for this channel
  enum ChannelFlags {
    REQUIRE_DEFAULT = 0,
    // Windows: if this channel operates on the UI thread, indicates
    // WindowsMessageLoop code should enable deferred native message
    // handling to prevent deadlocks. Should only be used for protocols
    // that manage child processes which might create native UI, like
    // plugins.
    REQUIRE_DEFERRED_MESSAGE_PROTECTION = 1 << 0,
    // Windows: When this flag is specified, any wait that occurs during
    // synchronous IPC will be alertable, thus allowing a11y code in the
    // chrome process to reenter content while content is waiting on a
    // synchronous call.
    REQUIRE_A11Y_REENTRY = 1 << 1,
  };
  void SetChannelFlags(ChannelFlags aFlags) { mFlags = aFlags; }
  ChannelFlags GetChannelFlags() { return mFlags; }

  // Asynchronously send a message to the other side of the channel
  bool Send(UniquePtr<Message> aMsg);

  // Asynchronously send a message to the other side of the channel
  // and wait for asynchronous reply.
  template <typename Value>
  void Send(UniquePtr<Message> aMsg, ActorIdType aActorId,
            ResolveCallback<Value>&& aResolve, RejectCallback&& aReject) {
    int32_t seqno = NextSeqno();
    aMsg->set_seqno(seqno);
    if (!Send(std::move(aMsg))) {
      aReject(ResponseRejectReason::SendError);
      return;
    }

    UniquePtr<UntypedCallbackHolder> callback =
        MakeUnique<CallbackHolder<Value>>(aActorId, std::move(aResolve),
                                          std::move(aReject));
    mPendingResponses.insert(std::make_pair(seqno, std::move(callback)));
    gUnresolvedResponses++;
  }

  bool SendBuildIDsMatchMessage(const char* aParentBuildI);
  bool DoBuildIDsMatch() { return mBuildIDsConfirmedMatch; }

  // Synchronously send |msg| (i.e., wait for |reply|)
  bool Send(UniquePtr<Message> aMsg, Message* aReply);

  // Make an Interrupt call to the other side of the channel
  bool Call(UniquePtr<Message> aMsg, Message* aReply);

  // Wait until a message is received
  bool WaitForIncomingMessage();

  bool CanSend() const;

  // Remove and return a callback that needs reply
  UniquePtr<UntypedCallbackHolder> PopCallback(const Message& aMsg);

  // Used to reject and remove pending responses owned by the given
  // actor when it's about to be destroyed.
  void RejectPendingResponsesForActor(ActorIdType aActorId);

  // If sending a sync message returns an error, this function gives a more
  // descriptive error message.
  SyncSendError LastSendError() const {
    AssertWorkerThread();
    return mLastSendError;
  }

  // Currently only for debugging purposes, doesn't aquire mMonitor.
  ChannelState GetChannelState__TotallyRacy() const { return mChannelState; }

  void SetReplyTimeoutMs(int32_t aTimeoutMs);

  bool IsOnCxxStack() const { return !mCxxStackFrames.empty(); }

  void CancelCurrentTransaction();

  // Force all calls to Send to defer actually sending messages. This will
  // cause sync messages to block until another thread calls
  // StopPostponingSends.
  //
  // This must be called from the worker thread.
  void BeginPostponingSends();

  // Stop postponing sent messages, and immediately flush all postponed
  // messages to the link. This may be called from any thread.
  //
  // Note that there are no ordering guarantees between two different
  // MessageChannels. If channel B sends a message, then stops postponing
  // channel A, messages from A may arrive before B. The easiest way to order
  // this, if needed, is to make B send a sync message.
  void StopPostponingSends();

  /**
   * This function is used by hang annotation code to determine which IPDL
   * actor is highest in the call stack at the time of the hang. It should
   * be called from the main thread when a sync or intr message is about to
   * be sent.
   */
  int32_t GetTopmostMessageRoutingId() const;

  // Unsound_IsClosed and Unsound_NumQueuedMessages are safe to call from any
  // thread, but they make no guarantees about whether you'll get an
  // up-to-date value; the values are written on one thread and read without
  // locking, on potentially different threads.  Thus you should only use
  // them when you don't particularly care about getting a recent value (e.g.
  // in a memory report).
  bool Unsound_IsClosed() const {
    return mLink ? mLink->Unsound_IsClosed() : true;
  }
  uint32_t Unsound_NumQueuedMessages() const {
    return mLink ? mLink->Unsound_NumQueuedMessages() : 0;
  }

  static bool IsPumpingMessages() { return sIsPumpingMessages; }
  static void SetIsPumpingMessages(bool aIsPumping) {
    sIsPumpingMessages = aIsPumping;
  }

  /**
   * Does this MessageChannel cross process boundaries?
   */
  bool IsCrossProcess() const { return mIsCrossProcess; }

#ifdef OS_WIN
  struct MOZ_STACK_CLASS SyncStackFrame {
    SyncStackFrame(MessageChannel* channel, bool interrupt);
    ~SyncStackFrame();

    bool mInterrupt;
    bool mSpinNestedEvents;
    bool mListenerNotified;
    MessageChannel* mChannel;

    // The previous stack frame for this channel.
    SyncStackFrame* mPrev;

    // The previous stack frame on any channel.
    SyncStackFrame* mStaticPrev;
  };
  friend struct MessageChannel::SyncStackFrame;

  static bool IsSpinLoopActive() {
    for (SyncStackFrame* frame = sStaticTopFrame; frame; frame = frame->mPrev) {
      if (frame->mSpinNestedEvents) return true;
    }
    return false;
  }

 protected:
  // The deepest sync stack frame for this channel.
  SyncStackFrame* mTopFrame;

  bool mIsSyncWaitingOnNonMainThread;

  // The deepest sync stack frame on any channel.
  static SyncStackFrame* sStaticTopFrame;

 public:
  void ProcessNativeEventsInInterruptCall();
  static void NotifyGeckoEventDispatch();

 private:
  void SpinInternalEventLoop();
#  if defined(ACCESSIBILITY)
  bool WaitForSyncNotifyWithA11yReentry();
#  endif  // defined(ACCESSIBILITY)
#endif    // defined(OS_WIN)

 private:
  void CommonThreadOpenInit(MessageChannel* aTargetChan,
                            nsISerialEventTarget* aThread, Side aSide);
  void OpenAsOtherThread(MessageChannel* aTargetChan,
                         nsISerialEventTarget* aThread, Side aSide);

  void PostErrorNotifyTask();
  void OnNotifyMaybeChannelError();
  void ReportConnectionError(const char* aChannelName,
                             Message* aMsg = nullptr) const;
  void ReportMessageRouteError(const char* channelName) const;
  bool MaybeHandleError(Result code, const Message& aMsg,
                        const char* channelName);

  void Clear();

  // Send OnChannelConnected notification to listeners.
  void DispatchOnChannelConnected();

  bool InterruptEventOccurred();
  bool HasPendingEvents();

  void ProcessPendingRequests(AutoEnterTransaction& aTransaction);
  bool ProcessPendingRequest(Message&& aUrgent);

  void MaybeUndeferIncall();
  void EnqueuePendingMessages();

  // Dispatches an incoming message to its appropriate handler.
  void DispatchMessage(Message&& aMsg);

  // DispatchMessage will route to one of these functions depending on the
  // protocol type of the message.
  void DispatchSyncMessage(ActorLifecycleProxy* aProxy, const Message& aMsg,
                           Message*& aReply);
  void DispatchAsyncMessage(ActorLifecycleProxy* aProxy, const Message& aMsg);
  void DispatchInterruptMessage(ActorLifecycleProxy* aProxy, Message&& aMsg,
                                size_t aStackDepth);

  // Return true if the wait ended because a notification was received.
  //
  // Return false if the time elapsed from when we started the process of
  // waiting until afterwards exceeded the currently allotted timeout.
  // That *DOES NOT* mean false => "no event" (== timeout); there are many
  // circumstances that could cause the measured elapsed time to exceed the
  // timeout EVEN WHEN we were notified.
  //
  // So in sum: true is a meaningful return value; false isn't,
  // necessarily.
  bool WaitForSyncNotify(bool aHandleWindowsMessages);
  bool WaitForInterruptNotify();

  bool WaitResponse(bool aWaitTimedOut);

  bool ShouldContinueFromTimeout();

  void EndTimeout();
  void CancelTransaction(int transaction);

  void RepostAllMessages();

  // The "remote view of stack depth" can be different than the
  // actual stack depth when there are out-of-turn replies.  When we
  // receive one, our actual Interrupt stack depth doesn't decrease, but
  // the other side (that sent the reply) thinks it has.  So, the
  // "view" returned here is |stackDepth| minus the number of
  // out-of-turn replies.
  //
  // Only called from the worker thread.
  size_t RemoteViewOfStackDepth(size_t stackDepth) const {
    AssertWorkerThread();
    return stackDepth - mOutOfTurnReplies.size();
  }

  int32_t NextSeqno() {
    AssertWorkerThread();
    return (mSide == ChildSide) ? --mNextSeqno : ++mNextSeqno;
  }

  // This helper class manages mCxxStackDepth on behalf of MessageChannel.
  // When the stack depth is incremented from zero to non-zero, it invokes
  // a callback, and similarly for when the depth goes from non-zero to zero.
  void EnteredCxxStack();
  void ExitedCxxStack();

  void EnteredCall();
  void ExitedCall();

  void EnteredSyncSend();
  void ExitedSyncSend();

  void DebugAbort(const char* file, int line, const char* cond, const char* why,
                  bool reply = false);

  // This method is only safe to call on the worker thread, or in a
  // debugger with all threads paused.
  void DumpInterruptStack(const char* const pfx = "") const;

  void AddProfilerMarker(const IPC::Message& aMessage,
                         MessageDirection aDirection);

 private:
  // Called from both threads
  size_t InterruptStackDepth() const {
    mMonitor->AssertCurrentThreadOwns();
    return mInterruptStack.size();
  }

  bool AwaitingInterruptReply() const {
    mMonitor->AssertCurrentThreadOwns();
    return !mInterruptStack.empty();
  }
  bool AwaitingIncomingMessage() const {
    mMonitor->AssertCurrentThreadOwns();
    return mIsWaitingForIncoming;
  }

  class MOZ_STACK_CLASS AutoEnterWaitForIncoming {
   public:
    explicit AutoEnterWaitForIncoming(MessageChannel& aChannel)
        : mChannel(aChannel) {
      aChannel.mMonitor->AssertCurrentThreadOwns();
      aChannel.mIsWaitingForIncoming = true;
    }

    ~AutoEnterWaitForIncoming() { mChannel.mIsWaitingForIncoming = false; }

   private:
    MessageChannel& mChannel;
  };
  friend class AutoEnterWaitForIncoming;

  // Returns true if we're dispatching an async message's callback.
  bool DispatchingAsyncMessage() const {
    AssertWorkerThread();
    return mDispatchingAsyncMessage;
  }

  int DispatchingAsyncMessageNestedLevel() const {
    AssertWorkerThread();
    return mDispatchingAsyncMessageNestedLevel;
  }

  bool Connected() const;

 private:
  // Executed on the IO thread.
  void NotifyWorkerThread();

  // Return true if |aMsg| is a special message targeted at the IO
  // thread, in which case it shouldn't be delivered to the worker.
  bool MaybeInterceptSpecialIOMessage(const Message& aMsg);

  void OnChannelConnected(int32_t peer_id);

  // Tell the IO thread to close the channel and wait for it to ACK.
  void SynchronouslyClose();

  // Returns true if ShouldDeferMessage(aMsg) is guaranteed to return true.
  // Otherwise, the result of ShouldDeferMessage(aMsg) may be true or false,
  // depending on context.
  static bool IsAlwaysDeferred(const Message& aMsg);

  // Helper for sending a message via the link. This should only be used for
  // non-special messages that might have to be postponed.
  void SendMessageToLink(UniquePtr<Message> aMsg);

  bool WasTransactionCanceled(int transaction);
  bool ShouldDeferMessage(const Message& aMsg);
  bool ShouldDeferInterruptMessage(const Message& aMsg, size_t aStackDepth);
  void OnMessageReceivedFromLink(Message&& aMsg);
  void OnChannelErrorFromLink();

 private:
  // Run on the not current thread.
  void NotifyChannelClosed();
  void NotifyMaybeChannelError();

 private:
  void AssertWorkerThread() const {
    MOZ_ASSERT(mWorkerThread, "Channel hasn't been opened yet");
    MOZ_RELEASE_ASSERT(mWorkerThread && mWorkerThread->IsOnCurrentThread(),
                       "not on worker thread!");
  }

  // The "link" thread is either the I/O thread (ProcessLink), the other
  // actor's work thread (ThreadLink), or the worker thread (same-thread
  // channels).
  void AssertLinkThread() const {
    if (mIsSameThreadChannel) {
      // If we're a same-thread channel, we have to be on our worker
      // thread.
      AssertWorkerThread();
      return;
    }

    // If we aren't a same-thread channel, our "link" thread is _not_ our
    // worker thread!
    MOZ_ASSERT(mWorkerThread, "Channel hasn't been opened yet");
    MOZ_RELEASE_ASSERT(mWorkerThread && !mWorkerThread->IsOnCurrentThread(),
                       "on worker thread but should not be!");
  }

 private:
  class MessageTask : public CancelableRunnable,
                      public LinkedListElement<RefPtr<MessageTask>>,
                      public nsIRunnablePriority,
                      public nsIRunnableIPCMessageType {
   public:
    explicit MessageTask(MessageChannel* aChannel, Message&& aMessage);

    NS_DECL_ISUPPORTS_INHERITED

    NS_IMETHOD Run() override;
    nsresult Cancel() override;
    NS_IMETHOD GetPriority(uint32_t* aPriority) override;
    NS_DECL_NSIRUNNABLEIPCMESSAGETYPE
    void Post();
    void Clear();

    bool IsScheduled() const { return mScheduled; }

    Message& Msg() { return mMessage; }
    const Message& Msg() const { return mMessage; }

   private:
    MessageTask() = delete;
    MessageTask(const MessageTask&) = delete;
    ~MessageTask() = default;

    MessageChannel* mChannel;
    Message mMessage;
    bool mScheduled : 1;
  };

  bool ShouldRunMessage(const Message& aMsg);
  void RunMessage(MessageTask& aTask);

  typedef LinkedList<RefPtr<MessageTask>> MessageQueue;
  typedef std::map<size_t, Message> MessageMap;
  typedef std::map<size_t, UniquePtr<UntypedCallbackHolder>> CallbackMap;
  typedef IPC::Message::msgid_t msgid_t;

 private:
  // This will be a string literal, so lifetime is not an issue.
  const char* mName;

  // Based on presumption the listener owns and overlives the channel,
  // this is never nullified.
  IToplevelProtocol* mListener;
  ChannelState mChannelState;
  RefPtr<RefCountedMonitor> mMonitor;
  Side mSide;
  bool mIsCrossProcess;
  UniquePtr<MessageLink> mLink;
  RefPtr<CancelableRunnable>
      mChannelErrorTask;  // NotifyMaybeChannelError runnable

  // Thread we are allowed to send and receive on.
  nsCOMPtr<nsISerialEventTarget> mWorkerThread;

  // Timeout periods are broken up in two to prevent system suspension from
  // triggering an abort. This method (called by WaitForEvent with a 'did
  // timeout' flag) decides if we should wait again for half of mTimeoutMs
  // or give up.
  int32_t mTimeoutMs;
  bool mInTimeoutSecondHalf;

  // Worker-thread only; sequence numbers for messages that require
  // replies.
  int32_t mNextSeqno;

  static bool sIsPumpingMessages;

  // If ::Send returns false, this gives a more descriptive error.
  SyncSendError mLastSendError;

  template <class T>
  class AutoSetValue {
   public:
    explicit AutoSetValue(T& var, const T& newValue)
        : mVar(var), mPrev(var), mNew(newValue) {
      mVar = newValue;
    }
    ~AutoSetValue() {
      // The value may have been zeroed if the transaction was
      // canceled. In that case we shouldn't return it to its previous
      // value.
      if (mVar == mNew) {
        mVar = mPrev;
      }
    }

   private:
    T& mVar;
    T mPrev;
    T mNew;
  };

  bool mDispatchingAsyncMessage;
  int mDispatchingAsyncMessageNestedLevel;

  // When we send an urgent request from the parent process, we could race
  // with an RPC message that was issued by the child beforehand. In this
  // case, if the parent were to wake up while waiting for the urgent reply,
  // and process the RPC, it could send an additional urgent message. The
  // child would wake up to process the urgent message (as it always will),
  // then send a reply, which could be received by the parent out-of-order
  // with respect to the first urgent reply.
  //
  // To address this problem, urgent or RPC requests are associated with a
  // "transaction". Whenever one side of the channel wishes to start a
  // chain of RPC/urgent messages, it allocates a new transaction ID. Any
  // messages the parent receives, not apart of this transaction, are
  // deferred. When issuing RPC/urgent requests on top of a started
  // transaction, the initiating transaction ID is used.
  //
  // To ensure IDs are unique, we use sequence numbers for transaction IDs,
  // which grow in opposite directions from child to parent.

  friend class AutoEnterTransaction;
  AutoEnterTransaction* mTransactionStack;

  int32_t CurrentNestedInsideSyncTransaction() const;

  bool AwaitingSyncReply() const;
  int AwaitingSyncReplyNestedLevel() const;

  bool DispatchingSyncMessage() const;
  int DispatchingSyncMessageNestedLevel() const;

#ifdef DEBUG
  void AssertMaybeDeferredCountCorrect();
#else
  void AssertMaybeDeferredCountCorrect() {}
#endif

  // If a sync message times out, we store its sequence number here. Any
  // future sync messages will fail immediately. Once the reply for original
  // sync message is received, we allow sync messages again.
  //
  // When a message times out, nothing is done to inform the other side. The
  // other side will eventually dispatch the message and send a reply. Our
  // side is responsible for replying to all sync messages sent by the other
  // side when it dispatches the timed out message. The response is always an
  // error.
  //
  // A message is only timed out if it initiated a transaction. This avoids
  // hitting a lot of corner cases with message nesting that we don't really
  // care about.
  int32_t mTimedOutMessageSeqno;
  int mTimedOutMessageNestedLevel;

  // Queue of all incoming messages.
  //
  // If both this side and the other side are functioning correctly, the queue
  // can only be in certain configurations.  Let
  //
  //   |A<| be an async in-message,
  //   |S<| be a sync in-message,
  //   |C<| be an Interrupt in-call,
  //   |R<| be an Interrupt reply.
  //
  // The queue can only match this configuration
  //
  //  A<* (S< | C< | R< (?{mInterruptStack.size() == 1} A<* (S< | C<)))
  //
  // The other side can send as many async messages |A<*| as it wants before
  // sending us a blocking message.
  //
  // The first case is |S<|, a sync in-msg.  The other side must be blocked,
  // and thus can't send us any more messages until we process the sync
  // in-msg.
  //
  // The second case is |C<|, an Interrupt in-call; the other side must be
  // blocked. (There's a subtlety here: this in-call might have raced with an
  // out-call, but we detect that with the mechanism below,
  // |mRemoteStackDepth|, and races don't matter to the queue.)
  //
  // Final case, the other side replied to our most recent out-call |R<|.
  // If that was the *only* out-call on our stack,
  // |?{mInterruptStack.size() == 1}|, then other side "finished with us,"
  // and went back to its own business.  That business might have included
  // sending any number of async message |A<*| until sending a blocking
  // message |(S< | C<)|.  If we had more than one Interrupt call on our
  // stack, the other side *better* not have sent us another blocking
  // message, because it's blocked on a reply from us.
  //
  MessageQueue mPending;

  // The number of messages in mPending for which IsAlwaysDeferred is false
  // (i.e., the number of messages that might not be deferred, depending on
  // context).
  size_t mMaybeDeferredPendingCount;

  // Stack of all the out-calls on which this channel is awaiting responses.
  // Each stack refers to a different protocol and the stacks are mutually
  // exclusive: multiple outcalls of the same kind cannot be initiated while
  // another is active.
  std::stack<MessageInfo> mInterruptStack;

  // This is what we think the Interrupt stack depth is on the "other side" of
  // this Interrupt channel.  We maintain this variable so that we can detect
  // racy Interrupt calls.  With each Interrupt out-call sent, we send along
  // what *we* think the stack depth of the remote side is *before* it will
  // receive the Interrupt call.
  //
  // After sending the out-call, our stack depth is "incremented" by pushing
  // that pending message onto mPending.
  //
  // Then when processing an in-call |c|, it must be true that
  //
  //   mInterruptStack.size() == c.remoteDepth
  //
  // I.e., my depth is actually the same as what the other side thought it
  // was when it sent in-call |c|.  If this fails to hold, we have detected
  // racy Interrupt calls.
  //
  // We then increment mRemoteStackDepth *just before* processing the
  // in-call, since we know the other side is waiting on it, and decrement
  // it *just after* finishing processing that in-call, since our response
  // will pop the top of the other side's |mPending|.
  //
  // One nice aspect of this race detection is that it is symmetric; if one
  // side detects a race, then the other side must also detect the same race.
  size_t mRemoteStackDepthGuess;

  // Approximation of code frames on the C++ stack. It can only be
  // interpreted as the implication:
  //
  //  !mCxxStackFrames.empty() => MessageChannel code on C++ stack
  //
  // This member is only accessed on the worker thread, and so is not
  // protected by mMonitor.  It is managed exclusively by the helper
  // |class CxxStackFrame|.
  mozilla::Vector<InterruptFrame> mCxxStackFrames;

  // Did we process an Interrupt out-call during this stack?  Only meaningful in
  // ExitedCxxStack(), from which this variable is reset.
  bool mSawInterruptOutMsg;

  // Are we waiting on this channel for an incoming message? This is used
  // to implement WaitForIncomingMessage(). Must only be accessed while owning
  // mMonitor.
  bool mIsWaitingForIncoming;

  // Map of replies received "out of turn", because of Interrupt
  // in-calls racing with replies to outstanding in-calls.  See
  // https://bugzilla.mozilla.org/show_bug.cgi?id=521929.
  MessageMap mOutOfTurnReplies;

  // Map of async Callbacks that are still waiting replies.
  CallbackMap mPendingResponses;

  // Stack of Interrupt in-calls that were deferred because of race
  // conditions.
  std::stack<Message> mDeferred;

#ifdef OS_WIN
  HANDLE mEvent;
#endif

  // Should the channel abort the process from the I/O thread when
  // a channel error occurs?
  bool mAbortOnError;

  // True if the listener has already been notified of a channel close or
  // error.
  bool mNotifiedChannelDone;

  // See SetChannelFlags
  ChannelFlags mFlags;

  // Task and state used to asynchronously notify channel has been connected
  // safely.  This is necessary to be able to cancel notification if we are
  // closed at the same time.
  RefPtr<CancelableRunnable> mOnChannelConnectedTask;
  bool mPeerPidSet;
  int32_t mPeerPid;

  // Channels can enter messages are not sent immediately; instead, they are
  // held in a queue until another thread deems it is safe to send them.
  bool mIsPostponingSends;
  std::vector<UniquePtr<Message>> mPostponedSends;

  bool mBuildIDsConfirmedMatch;

  // If this is true, both ends of this message channel have event targets
  // on the same thread.
  bool mIsSameThreadChannel;
};

void CancelCPOWs();

}  // namespace ipc
}  // namespace mozilla

namespace IPC {
template <>
struct ParamTraits<mozilla::ipc::ResponseRejectReason>
    : public ContiguousEnumSerializer<
          mozilla::ipc::ResponseRejectReason,
          mozilla::ipc::ResponseRejectReason::SendError,
          mozilla::ipc::ResponseRejectReason::EndGuard_> {};
}  // namespace IPC

#ifdef MOZ_GECKO_PROFILER
namespace geckoprofiler::markers {

struct IPCMarker {
  static constexpr mozilla::Span<const char> MarkerTypeName() {
    return mozilla::MakeStringSpan("IPC");
  }
  static void StreamJSONMarkerData(
      mozilla::baseprofiler::SpliceableJSONWriter& aWriter,
      mozilla::TimeStamp aStart, mozilla::TimeStamp aEnd, int32_t aOtherPid,
      int32_t aMessageSeqno, IPC::Message::msgid_t aMessageType,
      mozilla::ipc::Side aSide, mozilla::ipc::MessageDirection aDirection,
      mozilla::ipc::MessagePhase aPhase, bool aSync) {
    using namespace mozilla::ipc;
    // This payload still streams a startTime and endTime property because it
    // made the migration to MarkerTiming on the front-end easier.
    aWriter.TimeProperty("startTime", aStart);
    aWriter.TimeProperty("endTime", aEnd);

    aWriter.IntProperty("otherPid", aOtherPid);
    aWriter.IntProperty("messageSeqno", aMessageSeqno);
    aWriter.StringProperty(
        "messageType",
        mozilla::MakeStringSpan(IPC::StringFromIPCMessageType(aMessageType)));
    aWriter.StringProperty("side", IPCSideToString(aSide));
    aWriter.StringProperty("direction",
                           aDirection == MessageDirection::eSending
                               ? mozilla::MakeStringSpan("sending")
                               : mozilla::MakeStringSpan("receiving"));
    aWriter.StringProperty("phase", IPCPhaseToString(aPhase));
    aWriter.BoolProperty("sync", aSync);
  }
  static mozilla::MarkerSchema MarkerTypeDisplay() {
    return mozilla::MarkerSchema::SpecialFrontendLocation{};
  }

 private:
  static mozilla::Span<const char> IPCSideToString(mozilla::ipc::Side aSide) {
    switch (aSide) {
      case mozilla::ipc::ParentSide:
        return mozilla::MakeStringSpan("parent");
      case mozilla::ipc::ChildSide:
        return mozilla::MakeStringSpan("child");
      case mozilla::ipc::UnknownSide:
        return mozilla::MakeStringSpan("unknown");
      default:
        MOZ_ASSERT_UNREACHABLE("Invalid IPC side");
        return mozilla::MakeStringSpan("<invalid IPC side>");
    }
  }

  static mozilla::Span<const char> IPCPhaseToString(
      mozilla::ipc::MessagePhase aPhase) {
    switch (aPhase) {
      case mozilla::ipc::MessagePhase::Endpoint:
        return mozilla::MakeStringSpan("endpoint");
      case mozilla::ipc::MessagePhase::TransferStart:
        return mozilla::MakeStringSpan("transferStart");
      case mozilla::ipc::MessagePhase::TransferEnd:
        return mozilla::MakeStringSpan("transferEnd");
      default:
        MOZ_ASSERT_UNREACHABLE("Invalid IPC phase");
        return mozilla::MakeStringSpan("<invalid IPC phase>");
    }
  }
};

}  // namespace geckoprofiler::markers
#endif

#endif  // ifndef ipc_glue_MessageChannel_h