1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef frontend_NameCollections_h
#define frontend_NameCollections_h
#include <type_traits>
#include "ds/InlineTable.h"
#include "frontend/NameAnalysisTypes.h"
#include "js/Vector.h"
namespace js {
namespace frontend {
class FunctionBox;
// A pool of recyclable containers for use in the frontend. The Parser and
// BytecodeEmitter create many maps for name analysis that are short-lived
// (i.e., for the duration of parsing or emitting a lexical scope). Making
// them recyclable cuts down significantly on allocator churn.
template <typename RepresentativeCollection, typename ConcreteCollectionPool>
class CollectionPool {
using RecyclableCollections = Vector<void*, 32, SystemAllocPolicy>;
RecyclableCollections all_;
RecyclableCollections recyclable_;
static RepresentativeCollection* asRepresentative(void* p) {
return reinterpret_cast<RepresentativeCollection*>(p);
}
RepresentativeCollection* allocate() {
size_t newAllLength = all_.length() + 1;
if (!all_.reserve(newAllLength) || !recyclable_.reserve(newAllLength)) {
return nullptr;
}
RepresentativeCollection* collection = js_new<RepresentativeCollection>();
if (collection) {
all_.infallibleAppend(collection);
}
return collection;
}
public:
~CollectionPool() { purgeAll(); }
void purgeAll() {
void** end = all_.end();
for (void** it = all_.begin(); it != end; ++it) {
js_delete(asRepresentative(*it));
}
all_.clearAndFree();
recyclable_.clearAndFree();
}
// Fallibly aquire one of the supported collection types from the pool.
template <typename Collection>
Collection* acquire(JSContext* cx) {
ConcreteCollectionPool::template assertInvariants<Collection>();
RepresentativeCollection* collection;
if (recyclable_.empty()) {
collection = allocate();
if (!collection) {
ReportOutOfMemory(cx);
}
} else {
collection = asRepresentative(recyclable_.popCopy());
collection->clear();
}
return reinterpret_cast<Collection*>(collection);
}
// Release a collection back to the pool.
template <typename Collection>
void release(Collection** collection) {
ConcreteCollectionPool::template assertInvariants<Collection>();
MOZ_ASSERT(*collection);
#ifdef DEBUG
bool ok = false;
// Make sure the collection is in |all_| but not already in |recyclable_|.
for (void** it = all_.begin(); it != all_.end(); ++it) {
if (*it == *collection) {
ok = true;
break;
}
}
MOZ_ASSERT(ok);
for (void** it = recyclable_.begin(); it != recyclable_.end(); ++it) {
MOZ_ASSERT(*it != *collection);
}
#endif
MOZ_ASSERT(recyclable_.length() < all_.length());
// Reserved in allocateFresh.
recyclable_.infallibleAppend(*collection);
*collection = nullptr;
}
};
template <typename Wrapped>
struct RecyclableAtomMapValueWrapper {
using WrappedType = Wrapped;
union {
Wrapped wrapped;
uint64_t dummy;
};
static void assertInvariant() {
static_assert(sizeof(Wrapped) <= sizeof(uint64_t),
"Can only recycle atom maps with values smaller than uint64");
}
RecyclableAtomMapValueWrapper() : dummy(0) { assertInvariant(); }
MOZ_IMPLICIT RecyclableAtomMapValueWrapper(Wrapped w) : wrapped(w) {
assertInvariant();
}
MOZ_IMPLICIT operator Wrapped&() { return wrapped; }
MOZ_IMPLICIT operator Wrapped&() const { return wrapped; }
Wrapped* operator->() { return &wrapped; }
const Wrapped* operator->() const { return &wrapped; }
};
struct NameMapHasher : public DefaultHasher<const ParserAtom*> {
static inline HashNumber hash(const Lookup& l) {
// Name maps use the atom's precomputed hash code, which is based on
// the atom's contents rather than its pointer value. This is necessary
// to preserve iteration order while recording/replaying: iteration can
// affect generated script bytecode and the order in which e.g. lookup
// property hooks are performed on the associated global.
return l->hash();
}
};
template <typename MapValue>
using RecyclableNameMap =
InlineMap<const ParserAtom*, RecyclableAtomMapValueWrapper<MapValue>, 24,
NameMapHasher, SystemAllocPolicy>;
using DeclaredNameMap = RecyclableNameMap<DeclaredNameInfo>;
using NameLocationMap = RecyclableNameMap<NameLocation>;
// Cannot use GCThingIndex here because it's not trivial type.
using AtomIndexMap = RecyclableNameMap<uint32_t>;
template <typename RepresentativeTable>
class InlineTablePool
: public CollectionPool<RepresentativeTable,
InlineTablePool<RepresentativeTable>> {
template <typename>
struct IsRecyclableAtomMapValueWrapper : std::false_type {};
template <typename T>
struct IsRecyclableAtomMapValueWrapper<RecyclableAtomMapValueWrapper<T>>
: std::true_type {};
public:
template <typename Table>
static void assertInvariants() {
static_assert(
Table::SizeOfInlineEntries == RepresentativeTable::SizeOfInlineEntries,
"Only tables with the same size for inline entries are usable in the "
"pool.");
using EntryType = typename Table::Table::Entry;
using KeyType = typename EntryType::KeyType;
using ValueType = typename EntryType::ValueType;
static_assert(IsRecyclableAtomMapValueWrapper<ValueType>::value,
"Please adjust the static assertions below if you need to "
"support other types than RecyclableAtomMapValueWrapper");
using WrappedType = typename ValueType::WrappedType;
// We can't directly check |std::is_trivial<EntryType>|, because neither
// mozilla::HashMapEntry nor IsRecyclableAtomMapValueWrapper are trivially
// default constructible. Instead we check that the key and the unwrapped
// value are trivial and additionally ensure that the entry itself is
// trivially copyable and destructible.
static_assert(std::is_trivial_v<KeyType>,
"Only tables with trivial keys are usable in the pool.");
static_assert(std::is_trivial_v<WrappedType>,
"Only tables with trivial values are usable in the pool.");
static_assert(
std::is_trivially_copyable_v<EntryType>,
"Only tables with trivially copyable entries are usable in the pool.");
static_assert(std::is_trivially_destructible_v<EntryType>,
"Only tables with trivially destructible entries are usable "
"in the pool.");
}
};
template <typename RepresentativeVector>
class VectorPool : public CollectionPool<RepresentativeVector,
VectorPool<RepresentativeVector>> {
public:
template <typename Vector>
static void assertInvariants() {
static_assert(
Vector::sMaxInlineStorage == RepresentativeVector::sMaxInlineStorage,
"Only vectors with the same size for inline entries are usable in the "
"pool.");
using ElementType = typename Vector::ElementType;
static_assert(std::is_trivial_v<ElementType>,
"Only vectors of trivial values are usable in the pool.");
static_assert(std::is_trivially_destructible_v<ElementType>,
"Only vectors of trivially destructible values are usable in "
"the pool.");
static_assert(
sizeof(ElementType) ==
sizeof(typename RepresentativeVector::ElementType),
"Only vectors with same-sized elements are usable in the pool.");
}
};
class NameCollectionPool {
InlineTablePool<AtomIndexMap> mapPool_;
VectorPool<AtomVector> vectorPool_;
uint32_t activeCompilations_;
public:
NameCollectionPool() : activeCompilations_(0) {}
bool hasActiveCompilation() const { return activeCompilations_ != 0; }
void addActiveCompilation() { activeCompilations_++; }
void removeActiveCompilation() {
MOZ_ASSERT(hasActiveCompilation());
activeCompilations_--;
}
template <typename Map>
Map* acquireMap(JSContext* cx) {
MOZ_ASSERT(hasActiveCompilation());
return mapPool_.acquire<Map>(cx);
}
template <typename Map>
void releaseMap(Map** map) {
MOZ_ASSERT(hasActiveCompilation());
MOZ_ASSERT(map);
if (*map) {
mapPool_.release(map);
}
}
template <typename Vector>
Vector* acquireVector(JSContext* cx) {
MOZ_ASSERT(hasActiveCompilation());
return vectorPool_.acquire<Vector>(cx);
}
template <typename Vector>
void releaseVector(Vector** vec) {
MOZ_ASSERT(hasActiveCompilation());
MOZ_ASSERT(vec);
if (*vec) {
vectorPool_.release(vec);
}
}
void purge() {
if (!hasActiveCompilation()) {
mapPool_.purgeAll();
vectorPool_.purgeAll();
}
}
};
template <typename T, template <typename> typename Impl>
class PooledCollectionPtr {
NameCollectionPool& pool_;
T* collection_ = nullptr;
protected:
~PooledCollectionPtr() { Impl<T>::releaseCollection(pool_, &collection_); }
T& collection() {
MOZ_ASSERT(collection_);
return *collection_;
}
const T& collection() const {
MOZ_ASSERT(collection_);
return *collection_;
}
public:
explicit PooledCollectionPtr(NameCollectionPool& pool) : pool_(pool) {}
bool acquire(JSContext* cx) {
MOZ_ASSERT(!collection_);
collection_ = Impl<T>::acquireCollection(cx, pool_);
return !!collection_;
}
explicit operator bool() const { return !!collection_; }
T* operator->() { return &collection(); }
const T* operator->() const { return &collection(); }
T& operator*() { return collection(); }
const T& operator*() const { return collection(); }
};
template <typename Map>
class PooledMapPtr : public PooledCollectionPtr<Map, PooledMapPtr> {
friend class PooledCollectionPtr<Map, PooledMapPtr>;
static Map* acquireCollection(JSContext* cx, NameCollectionPool& pool) {
return pool.acquireMap<Map>(cx);
}
static void releaseCollection(NameCollectionPool& pool, Map** ptr) {
pool.releaseMap(ptr);
}
using Base = PooledCollectionPtr<Map, PooledMapPtr>;
public:
using Base::Base;
~PooledMapPtr() = default;
};
template <typename Vector>
class PooledVectorPtr : public PooledCollectionPtr<Vector, PooledVectorPtr> {
friend class PooledCollectionPtr<Vector, PooledVectorPtr>;
static Vector* acquireCollection(JSContext* cx, NameCollectionPool& pool) {
return pool.acquireVector<Vector>(cx);
}
static void releaseCollection(NameCollectionPool& pool, Vector** ptr) {
pool.releaseVector(ptr);
}
using Base = PooledCollectionPtr<Vector, PooledVectorPtr>;
using Base::collection;
public:
using Base::Base;
~PooledVectorPtr() = default;
typename Vector::ElementType& operator[](size_t index) {
return collection()[index];
}
const typename Vector::ElementType& operator[](size_t index) const {
return collection()[index];
}
};
} // namespace frontend
} // namespace js
#endif // frontend_NameCollections_h
|