1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_CacheIRCompiler_h
#define jit_CacheIRCompiler_h
#include "mozilla/Maybe.h"
#include "jit/CacheIR.h"
#include "jit/JitOptions.h"
#include "jit/MacroAssembler.h"
#include "jit/SharedICRegisters.h"
#include "js/ScalarType.h" // js::Scalar::Type
namespace js {
class TypedArrayObject;
namespace jit {
class BaselineCacheIRCompiler;
class IonCacheIRCompiler;
enum class ICStubEngine : uint8_t;
// [SMDOC] CacheIR Value Representation and Tracking
//
// While compiling an IC stub the CacheIR compiler needs to keep track of the
// physical location for each logical piece of data we care about, as well as
// ensure that in the case of a stub failing, we are able to restore the input
// state so that a subsequent stub can attempt to provide a value.
//
// OperandIds are created in the CacheIR front-end to keep track of values that
// are passed between CacheIR ops during the execution of a given CacheIR stub.
// In the CacheRegisterAllocator these OperandIds are given OperandLocations,
// that represent the physical location of the OperandId at a given point in
// time during CacheRegister allocation.
//
// In the CacheRegisterAllocator physical locations include the stack, and
// registers, as well as whether or not the value has been unboxed or not.
// Constants are also represented separately to provide for on-demand
// materialization.
//
// Intra-op Register allocation:
//
// During the emission of a CacheIR op, code can ask the CacheRegisterAllocator
// for access to a particular OperandId, and the register allocator will
// generate the required code to fill that request.
//
// Input OperandIds should be considered as immutable, and should not be mutated
// during the execution of a stub.
//
// There are also a number of RAII classes that interact with the register
// allocator, in order to provide access to more registers than just those
// provided for by the OperandIds.
//
// - AutoOutputReg: The register which will hold the output value of the stub.
// - AutoScratchReg: By default, an arbitrary scratch register, however a
// specific register can be requested.
// - AutoScratchRegMaybeOutput: Any arbitrary scratch register, but the output
// register may be used as well.
//
// These RAII classes take ownership of a register for the duration of their
// lifetime so they can be used for computation or output. The register
// allocator can spill values with OperandLocations in order to try to ensure
// that a register is made available for use.
//
// If a specific register is required (via AutoScratchRegister), it should be
// the first register acquired, as the register rallocator will be unable to
// allocate the fixed register if the current op is using it for something else.
//
// If no register can be provided after attempting to spill, a
// MOZ_RELEASE_ASSERT ensures the browser will crash. The register allocator is
// not provided enough information in its current design to insert spills and
// fills at arbitrary locations, and so it can fail to find an allocation
// solution. However, this will only happen within the implementation of an
// operand emitter, and because the cache register allocator is mostly
// determinstic, so long as the operand id emitter is tested, this won't
// suddenly crop up in an arbitrary webpage. It's worth noting the most
// difficult platform to support is x86-32, because it has the least number of
// registers available.
//
// FailurePaths checkpoint the state of the register allocator so that the input
// state can be recomputed from the current state before jumping to the next
// stub in the IC chain. An important invariant is that the FailurePath must be
// allocated for each op after all the manipulation of OperandLocations has
// happened, so that its recording is correct.
//
// Inter-op Register Allocation:
//
// The RAII register management classes are RAII because all register state
// outside the OperandLocations is reset before the compilation of each
// individual CacheIR op. This means that you cannot rely on a value surviving
// between ops, even if you use the ability of AutoScratchRegister to name a
// specific register. Values that need to be preserved between ops must be given
// an OperandId.
// Represents a Value on the Baseline frame's expression stack. Slot 0 is the
// value on top of the stack (the most recently pushed value), slot 1 is the
// value pushed before that, etc.
class BaselineFrameSlot {
uint32_t slot_;
public:
explicit BaselineFrameSlot(uint32_t slot) : slot_(slot) {}
uint32_t slot() const { return slot_; }
bool operator==(const BaselineFrameSlot& other) const {
return slot_ == other.slot_;
}
bool operator!=(const BaselineFrameSlot& other) const {
return slot_ != other.slot_;
}
};
// OperandLocation represents the location of an OperandId. The operand is
// either in a register or on the stack, and is either boxed or unboxed.
class OperandLocation {
public:
enum Kind {
Uninitialized = 0,
PayloadReg,
DoubleReg,
ValueReg,
PayloadStack,
ValueStack,
BaselineFrame,
Constant,
};
private:
Kind kind_;
union Data {
struct {
Register reg;
JSValueType type;
} payloadReg;
FloatRegister doubleReg;
ValueOperand valueReg;
struct {
uint32_t stackPushed;
JSValueType type;
} payloadStack;
uint32_t valueStackPushed;
BaselineFrameSlot baselineFrameSlot;
Value constant;
Data() : valueStackPushed(0) {}
};
Data data_;
public:
OperandLocation() : kind_(Uninitialized) {}
Kind kind() const { return kind_; }
void setUninitialized() { kind_ = Uninitialized; }
ValueOperand valueReg() const {
MOZ_ASSERT(kind_ == ValueReg);
return data_.valueReg;
}
Register payloadReg() const {
MOZ_ASSERT(kind_ == PayloadReg);
return data_.payloadReg.reg;
}
FloatRegister doubleReg() const {
MOZ_ASSERT(kind_ == DoubleReg);
return data_.doubleReg;
}
uint32_t payloadStack() const {
MOZ_ASSERT(kind_ == PayloadStack);
return data_.payloadStack.stackPushed;
}
uint32_t valueStack() const {
MOZ_ASSERT(kind_ == ValueStack);
return data_.valueStackPushed;
}
JSValueType payloadType() const {
if (kind_ == PayloadReg) {
return data_.payloadReg.type;
}
MOZ_ASSERT(kind_ == PayloadStack);
return data_.payloadStack.type;
}
Value constant() const {
MOZ_ASSERT(kind_ == Constant);
return data_.constant;
}
BaselineFrameSlot baselineFrameSlot() const {
MOZ_ASSERT(kind_ == BaselineFrame);
return data_.baselineFrameSlot;
}
void setPayloadReg(Register reg, JSValueType type) {
kind_ = PayloadReg;
data_.payloadReg.reg = reg;
data_.payloadReg.type = type;
}
void setDoubleReg(FloatRegister reg) {
kind_ = DoubleReg;
data_.doubleReg = reg;
}
void setValueReg(ValueOperand reg) {
kind_ = ValueReg;
data_.valueReg = reg;
}
void setPayloadStack(uint32_t stackPushed, JSValueType type) {
kind_ = PayloadStack;
data_.payloadStack.stackPushed = stackPushed;
data_.payloadStack.type = type;
}
void setValueStack(uint32_t stackPushed) {
kind_ = ValueStack;
data_.valueStackPushed = stackPushed;
}
void setConstant(const Value& v) {
kind_ = Constant;
data_.constant = v;
}
void setBaselineFrame(BaselineFrameSlot slot) {
kind_ = BaselineFrame;
data_.baselineFrameSlot = slot;
}
bool isUninitialized() const { return kind_ == Uninitialized; }
bool isInRegister() const { return kind_ == PayloadReg || kind_ == ValueReg; }
bool isOnStack() const {
return kind_ == PayloadStack || kind_ == ValueStack;
}
size_t stackPushed() const {
if (kind_ == PayloadStack) {
return data_.payloadStack.stackPushed;
}
MOZ_ASSERT(kind_ == ValueStack);
return data_.valueStackPushed;
}
size_t stackSizeInBytes() const {
if (kind_ == PayloadStack) {
return sizeof(uintptr_t);
}
MOZ_ASSERT(kind_ == ValueStack);
return sizeof(js::Value);
}
void adjustStackPushed(int32_t diff) {
if (kind_ == PayloadStack) {
data_.payloadStack.stackPushed += diff;
return;
}
MOZ_ASSERT(kind_ == ValueStack);
data_.valueStackPushed += diff;
}
bool aliasesReg(Register reg) const {
if (kind_ == PayloadReg) {
return payloadReg() == reg;
}
if (kind_ == ValueReg) {
return valueReg().aliases(reg);
}
return false;
}
bool aliasesReg(ValueOperand reg) const {
#if defined(JS_NUNBOX32)
return aliasesReg(reg.typeReg()) || aliasesReg(reg.payloadReg());
#else
return aliasesReg(reg.valueReg());
#endif
}
bool aliasesReg(const OperandLocation& other) const;
bool operator==(const OperandLocation& other) const;
bool operator!=(const OperandLocation& other) const {
return !operator==(other);
}
};
struct SpilledRegister {
Register reg;
uint32_t stackPushed;
SpilledRegister(Register reg, uint32_t stackPushed)
: reg(reg), stackPushed(stackPushed) {}
bool operator==(const SpilledRegister& other) const {
return reg == other.reg && stackPushed == other.stackPushed;
}
bool operator!=(const SpilledRegister& other) const {
return !(*this == other);
}
};
using SpilledRegisterVector = Vector<SpilledRegister, 2, SystemAllocPolicy>;
// Class to track and allocate registers while emitting IC code.
class MOZ_RAII CacheRegisterAllocator {
// The original location of the inputs to the cache.
Vector<OperandLocation, 4, SystemAllocPolicy> origInputLocations_;
// The current location of each operand.
Vector<OperandLocation, 8, SystemAllocPolicy> operandLocations_;
// Free lists for value- and payload-slots on stack
Vector<uint32_t, 2, SystemAllocPolicy> freeValueSlots_;
Vector<uint32_t, 2, SystemAllocPolicy> freePayloadSlots_;
// The registers allocated while emitting the current CacheIR op.
// This prevents us from allocating a register and then immediately
// clobbering it for something else, while we're still holding on to it.
LiveGeneralRegisterSet currentOpRegs_;
const AllocatableGeneralRegisterSet allocatableRegs_;
// Registers that are currently unused and available.
AllocatableGeneralRegisterSet availableRegs_;
// Registers that are available, but before use they must be saved and
// then restored when returning from the stub.
AllocatableGeneralRegisterSet availableRegsAfterSpill_;
// Registers we took from availableRegsAfterSpill_ and spilled to the stack.
SpilledRegisterVector spilledRegs_;
// The number of bytes pushed on the native stack.
uint32_t stackPushed_;
#ifdef DEBUG
// Flag used to assert individual CacheIR instructions don't allocate
// registers after calling addFailurePath.
bool addedFailurePath_;
#endif
// The index of the CacheIR instruction we're currently emitting.
uint32_t currentInstruction_;
// Whether the stack contains a double spilled by AutoScratchFloatRegister.
bool hasAutoScratchFloatRegisterSpill_ = false;
const CacheIRWriter& writer_;
CacheRegisterAllocator(const CacheRegisterAllocator&) = delete;
CacheRegisterAllocator& operator=(const CacheRegisterAllocator&) = delete;
void freeDeadOperandLocations(MacroAssembler& masm);
void spillOperandToStack(MacroAssembler& masm, OperandLocation* loc);
void spillOperandToStackOrRegister(MacroAssembler& masm,
OperandLocation* loc);
void popPayload(MacroAssembler& masm, OperandLocation* loc, Register dest);
void popValue(MacroAssembler& masm, OperandLocation* loc, ValueOperand dest);
Address valueAddress(MacroAssembler& masm, const OperandLocation* loc) const;
#ifdef DEBUG
void assertValidState() const;
#endif
public:
friend class AutoScratchRegister;
friend class AutoScratchRegisterExcluding;
explicit CacheRegisterAllocator(const CacheIRWriter& writer)
: allocatableRegs_(GeneralRegisterSet::All()),
stackPushed_(0),
#ifdef DEBUG
addedFailurePath_(false),
#endif
currentInstruction_(0),
writer_(writer) {
}
[[nodiscard]] bool init();
void initAvailableRegs(const AllocatableGeneralRegisterSet& available) {
availableRegs_ = available;
}
void initAvailableRegsAfterSpill();
void fixupAliasedInputs(MacroAssembler& masm);
OperandLocation operandLocation(size_t i) const {
return operandLocations_[i];
}
void setOperandLocation(size_t i, const OperandLocation& loc) {
operandLocations_[i] = loc;
}
OperandLocation origInputLocation(size_t i) const {
return origInputLocations_[i];
}
void initInputLocation(size_t i, ValueOperand reg) {
origInputLocations_[i].setValueReg(reg);
operandLocations_[i].setValueReg(reg);
}
void initInputLocation(size_t i, Register reg, JSValueType type) {
origInputLocations_[i].setPayloadReg(reg, type);
operandLocations_[i].setPayloadReg(reg, type);
}
void initInputLocation(size_t i, FloatRegister reg) {
origInputLocations_[i].setDoubleReg(reg);
operandLocations_[i].setDoubleReg(reg);
}
void initInputLocation(size_t i, const Value& v) {
origInputLocations_[i].setConstant(v);
operandLocations_[i].setConstant(v);
}
void initInputLocation(size_t i, BaselineFrameSlot slot) {
origInputLocations_[i].setBaselineFrame(slot);
operandLocations_[i].setBaselineFrame(slot);
}
void initInputLocation(size_t i, const TypedOrValueRegister& reg);
void initInputLocation(size_t i, const ConstantOrRegister& value);
const SpilledRegisterVector& spilledRegs() const { return spilledRegs_; }
[[nodiscard]] bool setSpilledRegs(const SpilledRegisterVector& regs) {
spilledRegs_.clear();
return spilledRegs_.appendAll(regs);
}
bool hasAutoScratchFloatRegisterSpill() const {
return hasAutoScratchFloatRegisterSpill_;
}
void setHasAutoScratchFloatRegisterSpill(bool b) {
MOZ_ASSERT(hasAutoScratchFloatRegisterSpill_ != b);
hasAutoScratchFloatRegisterSpill_ = b;
}
void nextOp() {
#ifdef DEBUG
assertValidState();
addedFailurePath_ = false;
#endif
currentOpRegs_.clear();
currentInstruction_++;
}
#ifdef DEBUG
void setAddedFailurePath() {
MOZ_ASSERT(!addedFailurePath_, "multiple failure paths for instruction");
addedFailurePath_ = true;
}
#endif
bool isDeadAfterInstruction(OperandId opId) const {
return writer_.operandIsDead(opId.id(), currentInstruction_ + 1);
}
uint32_t stackPushed() const { return stackPushed_; }
void setStackPushed(uint32_t pushed) { stackPushed_ = pushed; }
bool isAllocatable(Register reg) const { return allocatableRegs_.has(reg); }
// Allocates a new register.
Register allocateRegister(MacroAssembler& masm);
ValueOperand allocateValueRegister(MacroAssembler& masm);
void allocateFixedRegister(MacroAssembler& masm, Register reg);
void allocateFixedValueRegister(MacroAssembler& masm, ValueOperand reg);
// Releases a register so it can be reused later.
void releaseRegister(Register reg) {
MOZ_ASSERT(currentOpRegs_.has(reg));
availableRegs_.add(reg);
currentOpRegs_.take(reg);
}
void releaseValueRegister(ValueOperand reg) {
#ifdef JS_NUNBOX32
releaseRegister(reg.payloadReg());
releaseRegister(reg.typeReg());
#else
releaseRegister(reg.valueReg());
#endif
}
// Removes spilled values from the native stack. This should only be
// called after all registers have been allocated.
void discardStack(MacroAssembler& masm);
Address addressOf(MacroAssembler& masm, BaselineFrameSlot slot) const;
BaseValueIndex addressOf(MacroAssembler& masm, Register argcReg,
BaselineFrameSlot slot) const;
// Returns the register for the given operand. If the operand is currently
// not in a register, it will load it into one.
ValueOperand useValueRegister(MacroAssembler& masm, ValOperandId val);
ValueOperand useFixedValueRegister(MacroAssembler& masm, ValOperandId valId,
ValueOperand reg);
Register useRegister(MacroAssembler& masm, TypedOperandId typedId);
ConstantOrRegister useConstantOrRegister(MacroAssembler& masm,
ValOperandId val);
// Allocates an output register for the given operand.
Register defineRegister(MacroAssembler& masm, TypedOperandId typedId);
ValueOperand defineValueRegister(MacroAssembler& masm, ValOperandId val);
// Loads (potentially coercing) and unboxes a value into a float register
// This is infallible, as there should have been a previous guard
// to ensure the value is already a number.
// Does not change the allocator's state.
void ensureDoubleRegister(MacroAssembler& masm, NumberOperandId op,
FloatRegister dest) const;
// Loads an unboxed value into a scratch register. This can be useful
// especially on 32-bit x86 when there are not enough registers for
// useRegister.
// Does not change the allocator's state.
void copyToScratchRegister(MacroAssembler& masm, TypedOperandId typedId,
Register dest) const;
// Returns |val|'s JSValueType or JSVAL_TYPE_UNKNOWN.
JSValueType knownType(ValOperandId val) const;
// Emits code to restore registers and stack to the state at the start of
// the stub.
void restoreInputState(MacroAssembler& masm, bool discardStack = true);
// Returns the set of registers storing the IC input operands.
GeneralRegisterSet inputRegisterSet() const;
void saveIonLiveRegisters(MacroAssembler& masm, LiveRegisterSet liveRegs,
Register scratch, IonScript* ionScript);
void restoreIonLiveRegisters(MacroAssembler& masm, LiveRegisterSet liveRegs);
};
// RAII class to allocate a scratch register and release it when we're done
// with it.
class MOZ_RAII AutoScratchRegister {
CacheRegisterAllocator& alloc_;
Register reg_;
AutoScratchRegister(const AutoScratchRegister&) = delete;
void operator=(const AutoScratchRegister&) = delete;
public:
AutoScratchRegister(CacheRegisterAllocator& alloc, MacroAssembler& masm,
Register reg = InvalidReg)
: alloc_(alloc) {
if (reg != InvalidReg) {
alloc.allocateFixedRegister(masm, reg);
reg_ = reg;
} else {
reg_ = alloc.allocateRegister(masm);
}
MOZ_ASSERT(alloc_.currentOpRegs_.has(reg_));
}
~AutoScratchRegister() { alloc_.releaseRegister(reg_); }
Register get() const { return reg_; }
operator Register() const { return reg_; }
};
// On x86, spectreBoundsCheck32 can emit better code if it has a scratch
// register and index masking is enabled.
class MOZ_RAII AutoSpectreBoundsScratchRegister {
mozilla::Maybe<AutoScratchRegister> scratch_;
Register reg_ = InvalidReg;
AutoSpectreBoundsScratchRegister(const AutoSpectreBoundsScratchRegister&) =
delete;
void operator=(const AutoSpectreBoundsScratchRegister&) = delete;
public:
AutoSpectreBoundsScratchRegister(CacheRegisterAllocator& alloc,
MacroAssembler& masm) {
#ifdef JS_CODEGEN_X86
if (JitOptions.spectreIndexMasking) {
scratch_.emplace(alloc, masm);
reg_ = scratch_->get();
}
#endif
}
Register get() const { return reg_; }
operator Register() const { return reg_; }
};
// Scratch Register64. Implemented with a single AutoScratchRegister on 64-bit
// platforms and two AutoScratchRegisters on 32-bit platforms.
class MOZ_RAII AutoScratchRegister64 {
AutoScratchRegister reg1_;
#if JS_BITS_PER_WORD == 32
AutoScratchRegister reg2_;
#endif
public:
AutoScratchRegister64(const AutoScratchRegister64&) = delete;
void operator=(const AutoScratchRegister64&) = delete;
#if JS_BITS_PER_WORD == 32
AutoScratchRegister64(CacheRegisterAllocator& alloc, MacroAssembler& masm)
: reg1_(alloc, masm), reg2_(alloc, masm) {}
Register64 get() const { return Register64(reg1_, reg2_); }
#else
AutoScratchRegister64(CacheRegisterAllocator& alloc, MacroAssembler& masm)
: reg1_(alloc, masm) {}
Register64 get() const { return Register64(reg1_); }
#endif
operator Register64() const { return get(); }
};
// The FailurePath class stores everything we need to generate a failure path
// at the end of the IC code. The failure path restores the input registers, if
// needed, and jumps to the next stub.
class FailurePath {
Vector<OperandLocation, 4, SystemAllocPolicy> inputs_;
SpilledRegisterVector spilledRegs_;
NonAssertingLabel label_;
uint32_t stackPushed_;
#ifdef DEBUG
// Flag to ensure FailurePath::label() isn't taken while there's a scratch
// float register which still needs to be restored.
bool hasAutoScratchFloatRegister_ = false;
#endif
public:
FailurePath() = default;
FailurePath(FailurePath&& other)
: inputs_(std::move(other.inputs_)),
spilledRegs_(std::move(other.spilledRegs_)),
label_(other.label_),
stackPushed_(other.stackPushed_) {}
Label* labelUnchecked() { return &label_; }
Label* label() {
MOZ_ASSERT(!hasAutoScratchFloatRegister_);
return labelUnchecked();
}
void setStackPushed(uint32_t i) { stackPushed_ = i; }
uint32_t stackPushed() const { return stackPushed_; }
[[nodiscard]] bool appendInput(const OperandLocation& loc) {
return inputs_.append(loc);
}
OperandLocation input(size_t i) const { return inputs_[i]; }
const SpilledRegisterVector& spilledRegs() const { return spilledRegs_; }
[[nodiscard]] bool setSpilledRegs(const SpilledRegisterVector& regs) {
MOZ_ASSERT(spilledRegs_.empty());
return spilledRegs_.appendAll(regs);
}
// If canShareFailurePath(other) returns true, the same machine code will
// be emitted for two failure paths, so we can share them.
bool canShareFailurePath(const FailurePath& other) const;
void setHasAutoScratchFloatRegister() {
#ifdef DEBUG
MOZ_ASSERT(!hasAutoScratchFloatRegister_);
hasAutoScratchFloatRegister_ = true;
#endif
}
void clearHasAutoScratchFloatRegister() {
#ifdef DEBUG
MOZ_ASSERT(hasAutoScratchFloatRegister_);
hasAutoScratchFloatRegister_ = false;
#endif
}
};
/**
* Wrap an offset so that a call can decide to embed a constant
* or load from the stub data.
*/
class StubFieldOffset {
private:
uint32_t offset_;
StubField::Type type_;
public:
StubFieldOffset(uint32_t offset, StubField::Type type)
: offset_(offset), type_(type) {}
uint32_t getOffset() { return offset_; }
StubField::Type getStubFieldType() { return type_; }
};
class AutoOutputRegister;
// Base class for BaselineCacheIRCompiler and IonCacheIRCompiler.
class MOZ_RAII CacheIRCompiler {
protected:
friend class AutoOutputRegister;
friend class AutoStubFrame;
friend class AutoSaveLiveRegisters;
friend class AutoCallVM;
friend class AutoScratchFloatRegister;
friend class AutoAvailableFloatRegister;
enum class Mode { Baseline, Ion };
bool preparedForVMCall_;
bool isBaseline();
bool isIon();
BaselineCacheIRCompiler* asBaseline();
IonCacheIRCompiler* asIon();
JSContext* cx_;
const CacheIRWriter& writer_;
StackMacroAssembler masm;
CacheRegisterAllocator allocator;
Vector<FailurePath, 4, SystemAllocPolicy> failurePaths;
// Float registers that are live. Registers not in this set can be
// clobbered and don't need to be saved before performing a VM call.
// Doing this for non-float registers is a bit more complicated because
// the IC register allocator allocates GPRs.
LiveFloatRegisterSet liveFloatRegs_;
mozilla::Maybe<TypedOrValueRegister> outputUnchecked_;
Mode mode_;
// Distance from the IC to the stub data; mostly will be
// sizeof(stubType)
uint32_t stubDataOffset_;
enum class StubFieldPolicy { Address, Constant };
StubFieldPolicy stubFieldPolicy_;
CacheIRCompiler(JSContext* cx, const CacheIRWriter& writer,
uint32_t stubDataOffset, Mode mode, StubFieldPolicy policy)
: preparedForVMCall_(false),
cx_(cx),
writer_(writer),
allocator(writer_),
liveFloatRegs_(FloatRegisterSet::All()),
mode_(mode),
stubDataOffset_(stubDataOffset),
stubFieldPolicy_(policy) {
MOZ_ASSERT(!writer.failed());
}
[[nodiscard]] bool addFailurePath(FailurePath** failure);
[[nodiscard]] bool emitFailurePath(size_t i);
// Returns the set of volatile float registers that are live. These
// registers need to be saved when making non-GC calls with callWithABI.
FloatRegisterSet liveVolatileFloatRegs() const {
return FloatRegisterSet::Intersect(liveFloatRegs_.set(),
FloatRegisterSet::Volatile());
}
bool objectGuardNeedsSpectreMitigations(ObjOperandId objId) const {
// Instructions like GuardShape need Spectre mitigations if
// (1) mitigations are enabled and (2) the object is used by other
// instructions (if the object is *not* used by other instructions,
// zeroing its register is pointless).
return JitOptions.spectreObjectMitigationsMisc &&
!allocator.isDeadAfterInstruction(objId);
}
void emitRegisterEnumerator(Register enumeratorsList, Register iter,
Register scratch);
private:
void emitPostBarrierShared(Register obj, const ConstantOrRegister& val,
Register scratch, Register maybeIndex);
void emitPostBarrierShared(Register obj, ValueOperand val, Register scratch,
Register maybeIndex) {
emitPostBarrierShared(obj, ConstantOrRegister(val), scratch, maybeIndex);
}
protected:
template <typename T>
void emitPostBarrierSlot(Register obj, const T& val, Register scratch) {
emitPostBarrierShared(obj, val, scratch, InvalidReg);
}
template <typename T>
void emitPostBarrierElement(Register obj, const T& val, Register scratch,
Register index) {
MOZ_ASSERT(index != InvalidReg);
emitPostBarrierShared(obj, val, scratch, index);
}
bool emitComparePointerResultShared(JSOp op, TypedOperandId lhsId,
TypedOperandId rhsId);
[[nodiscard]] bool emitMathFunctionNumberResultShared(
UnaryMathFunction fun, FloatRegister inputScratch, ValueOperand output);
template <typename Fn, Fn fn>
[[nodiscard]] bool emitBigIntBinaryOperationShared(BigIntOperandId lhsId,
BigIntOperandId rhsId);
template <typename Fn, Fn fn>
[[nodiscard]] bool emitBigIntUnaryOperationShared(BigIntOperandId inputId);
bool emitDoubleIncDecResult(bool isInc, NumberOperandId inputId);
using AtomicsReadWriteModifyFn = int32_t (*)(TypedArrayObject*, int32_t,
int32_t);
[[nodiscard]] bool emitAtomicsReadModifyWriteResult(
ObjOperandId objId, Int32OperandId indexId, Int32OperandId valueId,
Scalar::Type elementType, AtomicsReadWriteModifyFn fn);
CACHE_IR_COMPILER_SHARED_GENERATED
void emitLoadStubField(StubFieldOffset val, Register dest);
void emitLoadStubFieldConstant(StubFieldOffset val, Register dest);
Address emitAddressFromStubField(StubFieldOffset val, Register base);
uintptr_t readStubWord(uint32_t offset, StubField::Type type) {
MOZ_ASSERT(stubFieldPolicy_ == StubFieldPolicy::Constant);
MOZ_ASSERT((offset % sizeof(uintptr_t)) == 0);
return writer_.readStubFieldForIon(offset, type).asWord();
}
uint64_t readStubInt64(uint32_t offset, StubField::Type type) {
MOZ_ASSERT(stubFieldPolicy_ == StubFieldPolicy::Constant);
MOZ_ASSERT((offset % sizeof(uintptr_t)) == 0);
return writer_.readStubFieldForIon(offset, type).asInt64();
}
int32_t int32StubField(uint32_t offset) {
MOZ_ASSERT(stubFieldPolicy_ == StubFieldPolicy::Constant);
return readStubWord(offset, StubField::Type::RawInt32);
}
uint32_t uint32StubField(uint32_t offset) {
MOZ_ASSERT(stubFieldPolicy_ == StubFieldPolicy::Constant);
return readStubWord(offset, StubField::Type::RawInt32);
}
Shape* shapeStubField(uint32_t offset) {
MOZ_ASSERT(stubFieldPolicy_ == StubFieldPolicy::Constant);
return (Shape*)readStubWord(offset, StubField::Type::Shape);
}
JSObject* objectStubField(uint32_t offset) {
MOZ_ASSERT(stubFieldPolicy_ == StubFieldPolicy::Constant);
return (JSObject*)readStubWord(offset, StubField::Type::JSObject);
}
// This accessor is for cases where the stubField policy is
// being respected through other means, so we don't check the
// policy here. (see LoadNewObjectFromTemplateResult)
JSObject* objectStubFieldUnchecked(uint32_t offset) {
return (JSObject*)writer_
.readStubFieldForIon(offset, StubField::Type::JSObject)
.asWord();
}
JSString* stringStubField(uint32_t offset) {
MOZ_ASSERT(stubFieldPolicy_ == StubFieldPolicy::Constant);
return (JSString*)readStubWord(offset, StubField::Type::String);
}
JS::Symbol* symbolStubField(uint32_t offset) {
MOZ_ASSERT(stubFieldPolicy_ == StubFieldPolicy::Constant);
return (JS::Symbol*)readStubWord(offset, StubField::Type::Symbol);
}
ObjectGroup* groupStubField(uint32_t offset) {
MOZ_ASSERT(stubFieldPolicy_ == StubFieldPolicy::Constant);
return (ObjectGroup*)readStubWord(offset, StubField::Type::ObjectGroup);
}
JS::Compartment* compartmentStubField(uint32_t offset) {
MOZ_ASSERT(stubFieldPolicy_ == StubFieldPolicy::Constant);
return (JS::Compartment*)readStubWord(offset, StubField::Type::RawPointer);
}
const JSClass* classStubField(uintptr_t offset) {
MOZ_ASSERT(stubFieldPolicy_ == StubFieldPolicy::Constant);
return (const JSClass*)readStubWord(offset, StubField::Type::RawPointer);
}
const void* proxyHandlerStubField(uintptr_t offset) {
MOZ_ASSERT(stubFieldPolicy_ == StubFieldPolicy::Constant);
return (const void*)readStubWord(offset, StubField::Type::RawPointer);
}
const void* pointerStubField(uintptr_t offset) {
MOZ_ASSERT(stubFieldPolicy_ == StubFieldPolicy::Constant);
return (const void*)readStubWord(offset, StubField::Type::RawPointer);
}
jsid idStubField(uint32_t offset) {
MOZ_ASSERT(stubFieldPolicy_ == StubFieldPolicy::Constant);
return jsid::fromRawBits(readStubWord(offset, StubField::Type::Id));
}
#ifdef DEBUG
void assertFloatRegisterAvailable(FloatRegister reg);
#endif
public:
void callVMInternal(MacroAssembler& masm, VMFunctionId id);
template <typename Fn, Fn fn>
void callVM(MacroAssembler& masm);
};
// Ensures the IC's output register is available for writing.
class MOZ_RAII AutoOutputRegister {
TypedOrValueRegister output_;
CacheRegisterAllocator& alloc_;
AutoOutputRegister(const AutoOutputRegister&) = delete;
void operator=(const AutoOutputRegister&) = delete;
public:
explicit AutoOutputRegister(CacheIRCompiler& compiler);
~AutoOutputRegister();
Register maybeReg() const {
if (output_.hasValue()) {
return output_.valueReg().scratchReg();
}
if (!output_.typedReg().isFloat()) {
return output_.typedReg().gpr();
}
return InvalidReg;
}
bool hasValue() const { return output_.hasValue(); }
ValueOperand valueReg() const { return output_.valueReg(); }
AnyRegister typedReg() const { return output_.typedReg(); }
JSValueType type() const {
MOZ_ASSERT(!hasValue());
return ValueTypeFromMIRType(output_.type());
}
operator TypedOrValueRegister() const { return output_; }
};
enum class CallCanGC { CanGC, CanNotGC };
// Instructions that have to perform a callVM require a stub frame. Call its
// enter() and leave() methods to enter/leave the stub frame.
// Hoisted from jit/BaselineCacheIRCompiler.cpp. See there for method
// definitions.
class MOZ_RAII AutoStubFrame {
BaselineCacheIRCompiler& compiler;
#ifdef DEBUG
uint32_t framePushedAtEnterStubFrame_;
#endif
AutoStubFrame(const AutoStubFrame&) = delete;
void operator=(const AutoStubFrame&) = delete;
public:
explicit AutoStubFrame(BaselineCacheIRCompiler& compiler);
void enter(MacroAssembler& masm, Register scratch,
CallCanGC canGC = CallCanGC::CanGC);
void leave(MacroAssembler& masm, bool calledIntoIon = false);
#ifdef DEBUG
~AutoStubFrame();
#endif
};
// AutoSaveLiveRegisters must be used when we make a call that can GC. The
// constructor ensures all live registers are stored on the stack (where the GC
// expects them) and the destructor restores these registers.
class MOZ_RAII AutoSaveLiveRegisters {
IonCacheIRCompiler& compiler_;
AutoSaveLiveRegisters(const AutoSaveLiveRegisters&) = delete;
void operator=(const AutoSaveLiveRegisters&) = delete;
public:
explicit AutoSaveLiveRegisters(IonCacheIRCompiler& compiler);
~AutoSaveLiveRegisters();
};
// Like AutoScratchRegister, but reuse a register of |output| if possible.
class MOZ_RAII AutoScratchRegisterMaybeOutput {
mozilla::Maybe<AutoScratchRegister> scratch_;
Register scratchReg_;
AutoScratchRegisterMaybeOutput(const AutoScratchRegisterMaybeOutput&) =
delete;
void operator=(const AutoScratchRegisterMaybeOutput&) = delete;
public:
AutoScratchRegisterMaybeOutput(CacheRegisterAllocator& alloc,
MacroAssembler& masm,
const AutoOutputRegister& output) {
scratchReg_ = output.maybeReg();
if (scratchReg_ == InvalidReg) {
scratch_.emplace(alloc, masm);
scratchReg_ = scratch_.ref();
}
}
Register get() const { return scratchReg_; }
operator Register() const { return scratchReg_; }
};
// Like AutoScratchRegisterMaybeOutput, but tries to use the ValueOperand's
// type register for the scratch register on 32-bit.
//
// Word of warning: Passing an instance of this class and AutoOutputRegister to
// functions may not work correctly, because no guarantee is given that the type
// register is used last when modifying the output's ValueOperand.
class MOZ_RAII AutoScratchRegisterMaybeOutputType {
mozilla::Maybe<AutoScratchRegister> scratch_;
Register scratchReg_;
public:
AutoScratchRegisterMaybeOutputType(CacheRegisterAllocator& alloc,
MacroAssembler& masm,
const AutoOutputRegister& output) {
#if defined(JS_NUNBOX32)
scratchReg_ = output.hasValue() ? output.valueReg().typeReg() : InvalidReg;
#else
scratchReg_ = InvalidReg;
#endif
if (scratchReg_ == InvalidReg) {
scratch_.emplace(alloc, masm);
scratchReg_ = scratch_.ref();
}
}
AutoScratchRegisterMaybeOutputType(
const AutoScratchRegisterMaybeOutputType&) = delete;
void operator=(const AutoScratchRegisterMaybeOutputType&) = delete;
operator Register() const { return scratchReg_; }
};
// AutoCallVM is a wrapper class that unifies methods shared by
// IonCacheIRCompiler and BaselineCacheIRCompiler that perform a callVM, but
// require stub specific functionality before performing the VM call.
//
// Expected Usage:
//
// OPs with implementations that may be unified by this class must:
// - Be listed in the CACHEIR_OPS list but not in the CACHE_IR_SHARED_OPS
// list
// - Differ only in their use of `AutoSaveLiveRegisters`,
// `AutoOutputRegister`, and `AutoScratchRegister`. The Ion
// implementation will use `AutoSaveLiveRegisters` and
// `AutoOutputRegister`, while the Baseline implementation will use
// `AutoScratchRegister`.
// - Both use the `callVM` method.
//
// Using AutoCallVM:
// - The constructor initializes `AutoOutputRegister` for both compiler
// types. Additionally it initializes an `AutoSaveLiveRegisters` for
// CacheIRCompilers with the mode Ion, and initializes
// `AutoScratchRegisterMaybeOutput` and `AutoStubFrame` variables for
// compilers with mode Baseline.
// - The `prepare()` method calls the IonCacheIRCompiler method
// `prepareVMCall` for IonCacheIRCompilers, calls the `enter()` method of
// `AutoStubFrame` for BaselineCacheIRCompilers, and calls the
// `discardStack` method of the `Register` class for both compiler types.
// - The `call()` method invokes `callVM` on the CacheIRCompiler and stores
// the call result according to its type. Finally it calls the `leave`
// method of `AutoStubFrame` for BaselineCacheIRCompilers.
//
// Expected Usage Example:
// See: `CacheIRCompiler::emitCallGetSparseElementResult()`
//
// Restrictions:
// - OPs that do not meet the criteria listed above can not be unified with
// AutoCallVM
//
class MOZ_RAII AutoCallVM {
MacroAssembler& masm_;
CacheIRCompiler* compiler_;
CacheRegisterAllocator& allocator_;
mozilla::Maybe<AutoOutputRegister> output_;
// Baseline specific stuff
mozilla::Maybe<AutoStubFrame> stubFrame_;
mozilla::Maybe<AutoScratchRegisterMaybeOutput> scratch_;
// Ion specific stuff
mozilla::Maybe<AutoSaveLiveRegisters> save_;
void storeResult(JSValueType returnType);
template <typename Fn>
void storeResult();
void leaveBaselineStubFrame();
public:
AutoCallVM(MacroAssembler& masm, CacheIRCompiler* compiler,
CacheRegisterAllocator& allocator);
void prepare();
template <typename Fn, Fn fn>
void call() {
compiler_->callVM<Fn, fn>(masm_);
storeResult<Fn>();
leaveBaselineStubFrame();
}
template <typename Fn, Fn fn>
void callNoResult() {
compiler_->callVM<Fn, fn>(masm_);
leaveBaselineStubFrame();
}
ValueOperand outputValueReg() const { return output_->valueReg(); }
};
// RAII class to allocate FloatReg0 as a scratch register and release it when
// we're done with it. The previous contents of FloatReg0 may be spilled on the
// stack and, if necessary, are restored when the destructor runs.
//
// When FailurePath is passed to the constructor, FailurePath::label() must not
// be used during the life time of the AutoScratchFloatRegister. Instead use
// AutoScratchFloatRegister::failure().
class MOZ_RAII AutoScratchFloatRegister {
Label failurePopReg_{};
CacheIRCompiler* compiler_;
FailurePath* failure_;
AutoScratchFloatRegister(const AutoScratchFloatRegister&) = delete;
void operator=(const AutoScratchFloatRegister&) = delete;
public:
explicit AutoScratchFloatRegister(CacheIRCompiler* compiler)
: AutoScratchFloatRegister(compiler, nullptr) {}
AutoScratchFloatRegister(CacheIRCompiler* compiler, FailurePath* failure);
~AutoScratchFloatRegister();
Label* failure();
FloatRegister get() const { return FloatReg0; }
operator FloatRegister() const { return FloatReg0; }
};
// This class can be used to assert a certain FloatRegister is available. In
// Baseline mode, all float registers are available. In Ion mode, only the
// registers added as fixed temps in LIRGenerator are available.
class MOZ_RAII AutoAvailableFloatRegister {
FloatRegister reg_;
AutoAvailableFloatRegister(const AutoAvailableFloatRegister&) = delete;
void operator=(const AutoAvailableFloatRegister&) = delete;
public:
explicit AutoAvailableFloatRegister(CacheIRCompiler& compiler,
FloatRegister reg)
: reg_(reg) {
#ifdef DEBUG
compiler.assertFloatRegisterAvailable(reg);
#endif
}
FloatRegister get() const { return reg_; }
operator FloatRegister() const { return reg_; }
};
// See the 'Sharing Baseline stub code' comment in CacheIR.h for a description
// of this class.
class CacheIRStubInfo {
// These fields don't require 8 bits, but GCC complains if these fields are
// smaller than the size of the enums.
CacheKind kind_ : 8;
ICStubEngine engine_ : 8;
bool makesGCCalls_ : 1;
uint8_t stubDataOffset_;
const uint8_t* code_;
uint32_t length_;
const uint8_t* fieldTypes_;
CacheIRStubInfo(CacheKind kind, ICStubEngine engine, bool makesGCCalls,
uint32_t stubDataOffset, const uint8_t* code,
uint32_t codeLength, const uint8_t* fieldTypes)
: kind_(kind),
engine_(engine),
makesGCCalls_(makesGCCalls),
stubDataOffset_(stubDataOffset),
code_(code),
length_(codeLength),
fieldTypes_(fieldTypes) {
MOZ_ASSERT(kind_ == kind, "Kind must fit in bitfield");
MOZ_ASSERT(engine_ == engine, "Engine must fit in bitfield");
MOZ_ASSERT(stubDataOffset_ == stubDataOffset,
"stubDataOffset must fit in uint8_t");
}
CacheIRStubInfo(const CacheIRStubInfo&) = delete;
CacheIRStubInfo& operator=(const CacheIRStubInfo&) = delete;
public:
CacheKind kind() const { return kind_; }
ICStubEngine engine() const { return engine_; }
bool makesGCCalls() const { return makesGCCalls_; }
const uint8_t* code() const { return code_; }
uint32_t codeLength() const { return length_; }
uint32_t stubDataOffset() const { return stubDataOffset_; }
size_t stubDataSize() const;
StubField::Type fieldType(uint32_t i) const {
return (StubField::Type)fieldTypes_[i];
}
static CacheIRStubInfo* New(CacheKind kind, ICStubEngine engine,
bool canMakeCalls, uint32_t stubDataOffset,
const CacheIRWriter& writer);
template <class Stub, class T>
js::GCPtr<T>& getStubField(Stub* stub, uint32_t offset) const;
template <class T>
js::GCPtr<T>& getStubField(ICCacheIRStub* stub, uint32_t offset) const {
return getStubField<ICCacheIRStub, T>(stub, offset);
}
uintptr_t getStubRawWord(const uint8_t* stubData, uint32_t offset) const;
uintptr_t getStubRawWord(ICCacheIRStub* stub, uint32_t offset) const;
int64_t getStubRawInt64(const uint8_t* stubData, uint32_t offset) const;
int64_t getStubRawInt64(ICCacheIRStub* stub, uint32_t offset) const;
void replaceStubRawWord(uint8_t* stubData, uint32_t offset, uintptr_t oldWord,
uintptr_t newWord) const;
};
template <typename T>
void TraceCacheIRStub(JSTracer* trc, T* stub, const CacheIRStubInfo* stubInfo);
} // namespace jit
} // namespace js
#endif /* jit_CacheIRCompiler_h */
|