1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_arm_Architecture_arm_h
#define jit_arm_Architecture_arm_h
#include "mozilla/MathAlgorithms.h"
#include <limits.h>
#include <stdint.h>
#include "jit/shared/Architecture-shared.h"
#include "js/Utility.h"
// GCC versions 4.6 and above define __ARM_PCS_VFP to denote a hard-float
// ABI target. The iOS toolchain doesn't define anything specific here,
// but iOS always supports VFP.
#if defined(__ARM_PCS_VFP) || defined(XP_IOS)
# define JS_CODEGEN_ARM_HARDFP
#endif
namespace js {
namespace jit {
// In bytes: slots needed for potential memory->memory move spills.
// +8 for cycles
// +4 for gpr spills
// +8 for double spills
static const uint32_t ION_FRAME_SLACK_SIZE = 20;
// These offsets are specific to nunboxing, and capture offsets into the
// components of a js::Value.
static const int32_t NUNBOX32_TYPE_OFFSET = 4;
static const int32_t NUNBOX32_PAYLOAD_OFFSET = 0;
static const uint32_t ShadowStackSpace = 0;
// How far forward/back can a jump go? Provide a generous buffer for thunks.
static const uint32_t JumpImmediateRange = 20 * 1024 * 1024;
////
// These offsets are related to bailouts.
////
// Size of each bailout table entry. On arm, this is presently a single call
// (which is wrong!). The call clobbers lr.
// For now, I've dealt with this by ensuring that we never allocate to lr. It
// should probably be 8 bytes, a mov of an immediate into r12 (not allocated
// presently, or ever) followed by a branch to the apropriate code.
static const uint32_t BAILOUT_TABLE_ENTRY_SIZE = 4;
class Registers {
public:
enum RegisterID {
r0 = 0,
r1,
r2,
r3,
S0 = r3,
r4,
r5,
r6,
r7,
r8,
S1 = r8,
r9,
r10,
r11,
r12,
ip = r12,
r13,
sp = r13,
r14,
lr = r14,
r15,
pc = r15,
invalid_reg
};
typedef uint8_t Code;
typedef RegisterID Encoding;
// Content spilled during bailouts.
union RegisterContent {
uintptr_t r;
};
static const char* GetName(Code code) {
MOZ_ASSERT(code < Total);
static const char* const Names[] = {"r0", "r1", "r2", "r3", "r4", "r5",
"r6", "r7", "r8", "r9", "r10", "r11",
"r12", "sp", "r14", "pc"};
return Names[code];
}
static const char* GetName(Encoding i) { return GetName(Code(i)); }
static Code FromName(const char* name);
static const Encoding StackPointer = sp;
static const Encoding Invalid = invalid_reg;
static const uint32_t Total = 16;
static const uint32_t Allocatable = 13;
typedef uint32_t SetType;
static const SetType AllMask = (1 << Total) - 1;
static const SetType ArgRegMask =
(1 << r0) | (1 << r1) | (1 << r2) | (1 << r3);
static const SetType VolatileMask =
(1 << r0) | (1 << r1) | (1 << Registers::r2) |
(1 << Registers::r3)
#if defined(XP_IOS)
// per
// https://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/Articles/ARMv6FunctionCallingConventions.html#//apple_ref/doc/uid/TP40009021-SW4
| (1 << Registers::r9)
#endif
;
static const SetType NonVolatileMask =
(1 << Registers::r4) | (1 << Registers::r5) | (1 << Registers::r6) |
(1 << Registers::r7) | (1 << Registers::r8) |
#if !defined(XP_IOS)
(1 << Registers::r9) |
#endif
(1 << Registers::r10) | (1 << Registers::r11) | (1 << Registers::r12) |
(1 << Registers::r14);
static const SetType WrapperMask = VolatileMask | // = arguments
(1 << Registers::r4) | // = outReg
(1 << Registers::r5); // = argBase
static const SetType SingleByteRegs = VolatileMask | NonVolatileMask;
static const SetType NonAllocatableMask =
(1 << Registers::sp) | (1 << Registers::r12) | // r12 = ip = scratch
(1 << Registers::lr) | (1 << Registers::pc);
// Registers returned from a JS -> JS call.
static const SetType JSCallMask = (1 << Registers::r2) | (1 << Registers::r3);
// Registers returned from a JS -> C call.
static const SetType CallMask =
(1 << Registers::r0) |
(1 << Registers::r1); // Used for double-size returns.
static const SetType AllocatableMask = AllMask & ~NonAllocatableMask;
static uint32_t SetSize(SetType x) {
static_assert(sizeof(SetType) == 4, "SetType must be 32 bits");
return mozilla::CountPopulation32(x);
}
static uint32_t FirstBit(SetType x) {
return mozilla::CountTrailingZeroes32(x);
}
static uint32_t LastBit(SetType x) {
return 31 - mozilla::CountLeadingZeroes32(x);
}
};
// Smallest integer type that can hold a register bitmask.
typedef uint16_t PackedRegisterMask;
class FloatRegisters {
public:
enum FPRegisterID {
s0,
s1,
s2,
s3,
s4,
s5,
s6,
s7,
s8,
s9,
s10,
s11,
s12,
s13,
s14,
s15,
s16,
s17,
s18,
s19,
s20,
s21,
s22,
s23,
s24,
s25,
s26,
s27,
s28,
s29,
s30,
s31,
d0,
d1,
d2,
d3,
d4,
d5,
d6,
d7,
d8,
d9,
d10,
d11,
d12,
d13,
d14,
d15,
d16,
d17,
d18,
d19,
d20,
d21,
d22,
d23,
d24,
d25,
d26,
d27,
d28,
d29,
d30,
d31,
invalid_freg
};
typedef uint32_t Code;
typedef FPRegisterID Encoding;
// Content spilled during bailouts.
union RegisterContent {
double d;
};
static const char* GetDoubleName(Encoding code) {
static const char* const Names[] = {
"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
"d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
"d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"};
return Names[code];
}
static const char* GetSingleName(Encoding code) {
static const char* const Names[] = {
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
"s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
"s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31"};
return Names[code];
}
static Code FromName(const char* name);
static const Encoding Invalid = invalid_freg;
static const uint32_t Total = 48;
static const uint32_t TotalDouble = 16;
static const uint32_t TotalSingle = 32;
static const uint32_t Allocatable = 45;
// There are only 32 places that we can put values.
static const uint32_t TotalPhys = 32;
static uint32_t ActualTotalPhys();
/* clang-format off */
// ARM float registers overlap in a way that for 1 double registers, in the
// range d0-d15, we have 2 singles register in the range s0-s31. d16-d31
// have no single register aliases. The aliasing rule state that d{n}
// aliases s{2n} and s{2n+1}, for n in [0 .. 15].
//
// The register set is used to represent either allocatable register or live
// registers. The register maps d0-d15 and s0-s31 to a single bit each. The
// registers d16-d31 are not used at the moment.
//
// uuuu uuuu uuuu uuuu dddd dddd dddd dddd ssss ssss ssss ssss ssss ssss ssss ssss
// ^ ^ ^ ^
// '-- d15 d0 --' '-- s31 s0 --'
//
// LiveSet are handled by adding the bit of each register without
// considering the aliases.
//
// AllocatableSet are handled by adding and removing the bit of each
// aligned-or-dominated-aliased registers.
//
// ...0...00... : s{2n}, s{2n+1} and d{n} are not available
// ...1...01... : s{2n} is available (*)
// ...0...10... : s{2n+1} is available
// ...1...11... : s{2n}, s{2n+1} and d{n} are available
//
// (*) Note that d{n} bit is set, but is not available because s{2n+1} bit
// is not set, which is required as d{n} dominates s{2n+1}. The d{n} bit is
// set, because s{2n} is aligned.
//
// | d{n} |
// | s{2n+1} | s{2n} |
//
/* clang-format on */
typedef uint64_t SetType;
static const SetType AllSingleMask = (1ull << TotalSingle) - 1;
static const SetType AllDoubleMask = ((1ull << TotalDouble) - 1)
<< TotalSingle;
static const SetType AllMask = AllDoubleMask | AllSingleMask;
// d15 is the ScratchFloatReg.
static const SetType NonVolatileDoubleMask =
((1ULL << d8) | (1ULL << d9) | (1ULL << d10) | (1ULL << d11) |
(1ULL << d12) | (1ULL << d13) | (1ULL << d14));
// s30 and s31 alias d15.
static const SetType NonVolatileMask =
(NonVolatileDoubleMask |
((1 << s16) | (1 << s17) | (1 << s18) | (1 << s19) | (1 << s20) |
(1 << s21) | (1 << s22) | (1 << s23) | (1 << s24) | (1 << s25) |
(1 << s26) | (1 << s27) | (1 << s28) | (1 << s29) | (1 << s30)));
static const SetType VolatileMask = AllMask & ~NonVolatileMask;
static const SetType VolatileDoubleMask =
AllDoubleMask & ~NonVolatileDoubleMask;
static const SetType WrapperMask = VolatileMask;
// d15 is the ARM scratch float register.
// s30 and s31 alias d15.
static const SetType NonAllocatableMask =
((1ULL << d15)) | (1ULL << s30) | (1ULL << s31);
static const SetType AllocatableMask = AllMask & ~NonAllocatableMask;
};
template <typename T>
class TypedRegisterSet;
class VFPRegister {
public:
// What type of data is being stored in this register? UInt / Int are
// specifically for vcvt, where we need to know how the data is supposed to
// be converted.
enum RegType : uint8_t { Single = 0x0, Double = 0x1, UInt = 0x2, Int = 0x3 };
typedef FloatRegisters Codes;
typedef Codes::Code Code;
typedef Codes::Encoding Encoding;
// Bitfields below are all uint32_t to make sure MSVC packs them correctly.
public:
// ARM doesn't have more than 32 registers of each type, so 5 bits should
// suffice.
uint32_t code_ : 5;
protected:
uint32_t kind : 2;
uint32_t _isInvalid : 1;
uint32_t _isMissing : 1;
public:
constexpr VFPRegister(uint32_t r, RegType k)
: code_(Code(r)), kind(k), _isInvalid(false), _isMissing(false) {}
constexpr VFPRegister()
: code_(Code(0)), kind(Double), _isInvalid(true), _isMissing(false) {}
constexpr VFPRegister(RegType k, uint32_t id, bool invalid, bool missing)
: code_(Code(id)), kind(k), _isInvalid(invalid), _isMissing(missing) {}
explicit constexpr VFPRegister(Code id)
: code_(id), kind(Double), _isInvalid(false), _isMissing(false) {}
bool operator==(const VFPRegister& other) const {
return kind == other.kind && code_ == other.code_ &&
isInvalid() == other.isInvalid();
}
bool operator!=(const VFPRegister& other) const { return !operator==(other); }
bool isSingle() const { return kind == Single; }
bool isDouble() const { return kind == Double; }
bool isSimd128() const { return false; }
bool isFloat() const { return (kind == Double) || (kind == Single); }
bool isInt() const { return (kind == UInt) || (kind == Int); }
bool isSInt() const { return kind == Int; }
bool isUInt() const { return kind == UInt; }
bool equiv(const VFPRegister& other) const { return other.kind == kind; }
size_t size() const { return (kind == Double) ? 8 : 4; }
bool isInvalid() const { return _isInvalid; }
bool isMissing() const {
MOZ_ASSERT(!_isInvalid);
return _isMissing;
}
VFPRegister doubleOverlay(unsigned int which = 0) const;
VFPRegister singleOverlay(unsigned int which = 0) const;
VFPRegister sintOverlay(unsigned int which = 0) const;
VFPRegister uintOverlay(unsigned int which = 0) const;
VFPRegister asSingle() const { return singleOverlay(); }
VFPRegister asDouble() const { return doubleOverlay(); }
VFPRegister asSimd128() const { MOZ_CRASH("NYI"); }
struct VFPRegIndexSplit;
VFPRegIndexSplit encode();
// For serializing values.
struct VFPRegIndexSplit {
const uint32_t block : 4;
const uint32_t bit : 1;
private:
friend VFPRegIndexSplit js::jit::VFPRegister::encode();
VFPRegIndexSplit(uint32_t block_, uint32_t bit_)
: block(block_), bit(bit_) {
MOZ_ASSERT(block == block_);
MOZ_ASSERT(bit == bit_);
}
};
Code code() const {
MOZ_ASSERT(!_isInvalid && !_isMissing);
// This should only be used in areas where we only have doubles and
// singles.
MOZ_ASSERT(isFloat());
return Code(code_ | (kind << 5));
}
Encoding encoding() const {
MOZ_ASSERT(!_isInvalid && !_isMissing);
return Encoding(code_);
}
uint32_t id() const { return code_; }
static VFPRegister FromCode(uint32_t i) {
uint32_t code = i & 31;
uint32_t kind = i >> 5;
return VFPRegister(code, RegType(kind));
}
bool volatile_() const {
if (isDouble()) {
return !!((1ULL << (code_ >> 1)) & FloatRegisters::VolatileMask);
}
return !!((1ULL << code_) & FloatRegisters::VolatileMask);
}
const char* name() const {
if (isDouble()) {
return FloatRegisters::GetDoubleName(Encoding(code_));
}
return FloatRegisters::GetSingleName(Encoding(code_));
}
bool aliases(const VFPRegister& other) {
if (kind == other.kind) {
return code_ == other.code_;
}
return doubleOverlay() == other.doubleOverlay();
}
static const int NumAliasedDoubles = 16;
uint32_t numAliased() const {
if (isDouble()) {
if (code_ < NumAliasedDoubles) {
return 3;
}
return 1;
}
return 2;
}
VFPRegister aliased(uint32_t aliasIdx) {
if (aliasIdx == 0) {
return *this;
}
if (isDouble()) {
MOZ_ASSERT(code_ < NumAliasedDoubles);
MOZ_ASSERT(aliasIdx <= 2);
return singleOverlay(aliasIdx - 1);
}
MOZ_ASSERT(aliasIdx == 1);
return doubleOverlay(aliasIdx - 1);
}
uint32_t numAlignedAliased() const {
if (isDouble()) {
if (code_ < NumAliasedDoubles) {
return 2;
}
return 1;
}
// s1 has 0 other aligned aliases, 1 total.
// s0 has 1 other aligned aliase, 2 total.
return 2 - (code_ & 1);
}
// | d0 |
// | s0 | s1 |
// If we've stored s0 and s1 in memory, we also want to say that d0 is
// stored there, but it is only stored at the location where it is aligned
// e.g. at s0, not s1.
VFPRegister alignedAliased(uint32_t aliasIdx) {
if (aliasIdx == 0) {
return *this;
}
MOZ_ASSERT(aliasIdx == 1);
if (isDouble()) {
MOZ_ASSERT(code_ < NumAliasedDoubles);
return singleOverlay(aliasIdx - 1);
}
MOZ_ASSERT((code_ & 1) == 0);
return doubleOverlay(aliasIdx - 1);
}
typedef FloatRegisters::SetType SetType;
// This function is used to ensure that Register set can take all Single
// registers, even if we are taking a mix of either double or single
// registers.
//
// s0.alignedOrDominatedAliasedSet() == s0 | d0.
// s1.alignedOrDominatedAliasedSet() == s1.
// d0.alignedOrDominatedAliasedSet() == s0 | s1 | d0.
//
// This way the Allocatable register set does not have to do any arithmetics
// to know if a register is available or not, as we have the following
// relations:
//
// d0.alignedOrDominatedAliasedSet() ==
// s0.alignedOrDominatedAliasedSet() | s1.alignedOrDominatedAliasedSet()
//
// s0.alignedOrDominatedAliasedSet() & s1.alignedOrDominatedAliasedSet() == 0
//
SetType alignedOrDominatedAliasedSet() const {
if (isSingle()) {
if (code_ % 2 != 0) {
return SetType(1) << code_;
}
return (SetType(1) << code_) | (SetType(1) << (32 + code_ / 2));
}
MOZ_ASSERT(isDouble());
return (SetType(0b11) << (code_ * 2)) | (SetType(1) << (32 + code_));
}
static constexpr RegTypeName DefaultType = RegTypeName::Float64;
template <RegTypeName = DefaultType>
static SetType LiveAsIndexableSet(SetType s) {
return SetType(0);
}
template <RegTypeName Name = DefaultType>
static SetType AllocatableAsIndexableSet(SetType s) {
static_assert(Name != RegTypeName::Any, "Allocatable set are not iterable");
return SetType(0);
}
static uint32_t SetSize(SetType x) {
static_assert(sizeof(SetType) == 8, "SetType must be 64 bits");
return mozilla::CountPopulation32(x);
}
static Code FromName(const char* name) {
return FloatRegisters::FromName(name);
}
static TypedRegisterSet<VFPRegister> ReduceSetForPush(
const TypedRegisterSet<VFPRegister>& s);
static uint32_t GetPushSizeInBytes(const TypedRegisterSet<VFPRegister>& s);
uint32_t getRegisterDumpOffsetInBytes();
static uint32_t FirstBit(SetType x) {
return mozilla::CountTrailingZeroes64(x);
}
static uint32_t LastBit(SetType x) {
return 63 - mozilla::CountLeadingZeroes64(x);
}
};
template <>
inline VFPRegister::SetType
VFPRegister::LiveAsIndexableSet<RegTypeName::Float32>(SetType set) {
return set & FloatRegisters::AllSingleMask;
}
template <>
inline VFPRegister::SetType
VFPRegister::LiveAsIndexableSet<RegTypeName::Float64>(SetType set) {
return set & FloatRegisters::AllDoubleMask;
}
template <>
inline VFPRegister::SetType VFPRegister::LiveAsIndexableSet<RegTypeName::Any>(
SetType set) {
return set;
}
template <>
inline VFPRegister::SetType
VFPRegister::AllocatableAsIndexableSet<RegTypeName::Float32>(SetType set) {
// Single registers are not dominating any smaller registers, thus masking
// is enough to convert an allocatable set into a set of register list all
// single register available.
return set & FloatRegisters::AllSingleMask;
}
template <>
inline VFPRegister::SetType
VFPRegister::AllocatableAsIndexableSet<RegTypeName::Float64>(SetType set) {
/* clang-format off */
// An allocatable float register set is represented as follow:
//
// uuuu uuuu uuuu uuuu dddd dddd dddd dddd ssss ssss ssss ssss ssss ssss ssss ssss
// ^ ^ ^ ^
// '-- d15 d0 --' '-- s31 s0 --'
//
// ...0...00... : s{2n}, s{2n+1} and d{n} are not available
// ...1...01... : s{2n} is available
// ...0...10... : s{2n+1} is available
// ...1...11... : s{2n}, s{2n+1} and d{n} are available
//
// The goal of this function is to return the set of double registers which
// are available as an indexable bit set. This implies that iff a double bit
// is set in the returned set, then the register is available.
//
// To do so, this functions converts the 32 bits set of single registers
// into a 16 bits set of equivalent double registers. Then, we mask out
// double registers which do not have all the single register that compose
// them. As d{n} bit is set when s{2n} is available, we only need to take
// s{2n+1} into account.
/* clang-format on */
// Convert s7s6s5s4 s3s2s1s0 into s7s5s3s1, for all s0-s31.
SetType s2d = AllocatableAsIndexableSet<RegTypeName::Float32>(set);
static_assert(FloatRegisters::TotalSingle == 32, "Wrong mask");
s2d = (0xaaaaaaaa & s2d) >> 1; // Filter s{2n+1} registers.
// Group adjacent bits as follow:
// 0.0.s3.s1 == ((0.s3.0.s1) >> 1 | (0.s3.0.s1)) & 0b0011;
s2d = ((s2d >> 1) | s2d) & 0x33333333; // 0a0b --> 00ab
s2d = ((s2d >> 2) | s2d) & 0x0f0f0f0f; // 00ab00cd --> 0000abcd
s2d = ((s2d >> 4) | s2d) & 0x00ff00ff;
s2d = ((s2d >> 8) | s2d) & 0x0000ffff;
// Move the s7s5s3s1 to the aliased double positions.
s2d = s2d << FloatRegisters::TotalSingle;
// Note: We currently do not use any representation for d16-d31.
static_assert(FloatRegisters::TotalDouble == 16,
"d16-d31 do not have a single register mapping");
// Filter out any double register which are not allocatable due to
// non-aligned dominated single registers.
return set & s2d;
}
// The only floating point register set that we work with are the VFP Registers.
typedef VFPRegister FloatRegister;
uint32_t GetARMFlags();
bool HasARMv7();
bool HasMOVWT();
bool HasLDSTREXBHD(); // {LD,ST}REX{B,H,D}
bool HasDMBDSBISB(); // DMB, DSB, and ISB
bool HasVFPv3();
bool HasVFP();
bool Has32DP();
bool HasIDIV();
extern volatile uint32_t armHwCapFlags;
// Not part of the HWCAP flag, but we need to know these and these bits are not
// used. Define these here so that their use can be inlined by the simulator.
// A bit to flag when signaled alignment faults are to be fixed up.
#define HWCAP_FIXUP_FAULT (1 << 24)
// A bit to flag when the flags are uninitialized, so they can be atomically
// set.
#define HWCAP_UNINITIALIZED (1 << 25)
// A bit to flag when alignment faults are enabled and signal.
#define HWCAP_ALIGNMENT_FAULT (1 << 26)
// A bit to flag the use of the hardfp ABI.
#define HWCAP_USE_HARDFP_ABI (1 << 27)
// A bit to flag the use of the ARMv7 arch, otherwise ARMv6.
#define HWCAP_ARMv7 (1 << 28)
// Top three bits are reserved, do not use them.
// Returns true when cpu alignment faults are enabled and signaled, and thus we
// should ensure loads and stores are aligned.
inline bool HasAlignmentFault() {
MOZ_ASSERT(armHwCapFlags != HWCAP_UNINITIALIZED);
return armHwCapFlags & HWCAP_ALIGNMENT_FAULT;
}
#ifdef JS_SIMULATOR_ARM
// Returns true when cpu alignment faults will be fixed up by the
// "operating system", which functionality we will emulate.
inline bool FixupFault() {
MOZ_ASSERT(armHwCapFlags != HWCAP_UNINITIALIZED);
return armHwCapFlags & HWCAP_FIXUP_FAULT;
}
#endif
// Arm/D32 has double registers that can NOT be treated as float32 and this
// requires some dances in lowering.
inline bool hasUnaliasedDouble() { return Has32DP(); }
// On ARM, Dn aliases both S2n and S2n+1, so if you need to convert a float32 to
// a double as a temporary, you need a temporary double register.
inline bool hasMultiAlias() { return true; }
// InitARMFlags is called from the JitContext constructor to read the hardware
// flags. The call is a no-op after the first call, or if the JS shell has
// already set the flags (it has a command line switch for this, see
// ParseARMHwCapFlags).
//
// If the environment variable ARMHWCAP is set then the flags are read from it
// instead; see ParseARMHwCapFlags.
void InitARMFlags();
// Parse a string denoting ARM hardware flags and unconditionally set the flags.
// Doing this after the flags have been observed is likely to cause problems, as
// code is allowed to assume that the flags are stable.
bool ParseARMHwCapFlags(const char* armHwCap);
// Retrive the ARM hardware flags at a bitmask. They must have been set.
uint32_t GetARMFlags();
// If the simulator is used then the ABI choice is dynamic. Otherwise the ABI is
// static and useHardFpABI is inlined so that unused branches can be optimized
// away.
#ifdef JS_SIMULATOR_ARM
bool UseHardFpABI();
#else
static inline bool UseHardFpABI() {
# if defined(JS_CODEGEN_ARM_HARDFP)
return true;
# else
return false;
# endif
}
#endif
// In order to handle SoftFp ABI calls, we need to be able to express that we
// have ABIArg which are represented by pair of general purpose registers.
#define JS_CODEGEN_REGISTER_PAIR 1
} // namespace jit
} // namespace js
#endif /* jit_arm_Architecture_arm_h */
|