1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
|
// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef VIXL_A64_MACRO_ASSEMBLER_A64_H_
#define VIXL_A64_MACRO_ASSEMBLER_A64_H_
#include <algorithm>
#include <limits>
#include "jit/arm64/Assembler-arm64.h"
#include "jit/arm64/vixl/Debugger-vixl.h"
#include "jit/arm64/vixl/Globals-vixl.h"
#include "jit/arm64/vixl/Instrument-vixl.h"
#include "jit/arm64/vixl/Simulator-Constants-vixl.h"
#define LS_MACRO_LIST(V) \
V(Ldrb, Register&, rt, LDRB_w) \
V(Strb, Register&, rt, STRB_w) \
V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w) \
V(Ldrh, Register&, rt, LDRH_w) \
V(Strh, Register&, rt, STRH_w) \
V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w) \
V(Ldr, CPURegister&, rt, LoadOpFor(rt)) \
V(Str, CPURegister&, rt, StoreOpFor(rt)) \
V(Ldrsw, Register&, rt, LDRSW_x)
#define LSPAIR_MACRO_LIST(V) \
V(Ldp, CPURegister&, rt, rt2, LoadPairOpFor(rt, rt2)) \
V(Stp, CPURegister&, rt, rt2, StorePairOpFor(rt, rt2)) \
V(Ldpsw, CPURegister&, rt, rt2, LDPSW_x)
namespace vixl {
// Forward declaration
class MacroAssembler;
class UseScratchRegisterScope;
// This scope has the following purposes:
// * Acquire/Release the underlying assembler's code buffer.
// * This is mandatory before emitting.
// * Emit the literal or veneer pools if necessary before emitting the
// macro-instruction.
// * Ensure there is enough space to emit the macro-instruction.
class EmissionCheckScope {
public:
EmissionCheckScope(MacroAssembler* masm, size_t size)
: masm_(masm)
{ }
protected:
MacroAssembler* masm_;
#ifdef DEBUG
Label start_;
size_t size_;
#endif
};
// Helper for common Emission checks.
// The macro-instruction maps to a single instruction.
class SingleEmissionCheckScope : public EmissionCheckScope {
public:
explicit SingleEmissionCheckScope(MacroAssembler* masm)
: EmissionCheckScope(masm, kInstructionSize) {}
};
// The macro instruction is a "typical" macro-instruction. Typical macro-
// instruction only emit a few instructions, a few being defined as 8 here.
class MacroEmissionCheckScope : public EmissionCheckScope {
public:
explicit MacroEmissionCheckScope(MacroAssembler* masm)
: EmissionCheckScope(masm, kTypicalMacroInstructionMaxSize) {}
private:
static const size_t kTypicalMacroInstructionMaxSize = 8 * kInstructionSize;
};
enum BranchType {
// Copies of architectural conditions.
// The associated conditions can be used in place of those, the code will
// take care of reinterpreting them with the correct type.
integer_eq = eq,
integer_ne = ne,
integer_hs = hs,
integer_lo = lo,
integer_mi = mi,
integer_pl = pl,
integer_vs = vs,
integer_vc = vc,
integer_hi = hi,
integer_ls = ls,
integer_ge = ge,
integer_lt = lt,
integer_gt = gt,
integer_le = le,
integer_al = al,
integer_nv = nv,
// These two are *different* from the architectural codes al and nv.
// 'always' is used to generate unconditional branches.
// 'never' is used to not generate a branch (generally as the inverse
// branch type of 'always).
always, never,
// cbz and cbnz
reg_zero, reg_not_zero,
// tbz and tbnz
reg_bit_clear, reg_bit_set,
// Aliases.
kBranchTypeFirstCondition = eq,
kBranchTypeLastCondition = nv,
kBranchTypeFirstUsingReg = reg_zero,
kBranchTypeFirstUsingBit = reg_bit_clear
};
enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg };
// The macro assembler supports moving automatically pre-shifted immediates for
// arithmetic and logical instructions, and then applying a post shift in the
// instruction to undo the modification, in order to reduce the code emitted for
// an operation. For example:
//
// Add(x0, x0, 0x1f7de) => movz x16, 0xfbef; add x0, x0, x16, lsl #1.
//
// This optimisation can be only partially applied when the stack pointer is an
// operand or destination, so this enumeration is used to control the shift.
enum PreShiftImmMode {
kNoShift, // Don't pre-shift.
kLimitShiftForSP, // Limit pre-shift for add/sub extend use.
kAnyShift // Allow any pre-shift.
};
class MacroAssembler : public js::jit::Assembler {
public:
MacroAssembler();
// Finalize a code buffer of generated instructions. This function must be
// called before executing or copying code from the buffer.
void FinalizeCode();
// Constant generation helpers.
// These functions return the number of instructions required to move the
// immediate into the destination register. Also, if the masm pointer is
// non-null, it generates the code to do so.
// The two features are implemented using one function to avoid duplication of
// the logic.
// The function can be used to evaluate the cost of synthesizing an
// instruction using 'mov immediate' instructions. A user might prefer loading
// a constant using the literal pool instead of using multiple 'mov immediate'
// instructions.
static int MoveImmediateHelper(MacroAssembler* masm,
const Register &rd,
uint64_t imm);
static bool OneInstrMoveImmediateHelper(MacroAssembler* masm,
const Register& dst,
int64_t imm);
// Logical macros.
void And(const Register& rd,
const Register& rn,
const Operand& operand);
void Ands(const Register& rd,
const Register& rn,
const Operand& operand);
void Bic(const Register& rd,
const Register& rn,
const Operand& operand);
void Bics(const Register& rd,
const Register& rn,
const Operand& operand);
void Orr(const Register& rd,
const Register& rn,
const Operand& operand);
void Orn(const Register& rd,
const Register& rn,
const Operand& operand);
void Eor(const Register& rd,
const Register& rn,
const Operand& operand);
void Eon(const Register& rd,
const Register& rn,
const Operand& operand);
void Tst(const Register& rn, const Operand& operand);
void LogicalMacro(const Register& rd,
const Register& rn,
const Operand& operand,
LogicalOp op);
// Add and sub macros.
void Add(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S = LeaveFlags);
void Adds(const Register& rd,
const Register& rn,
const Operand& operand);
void Sub(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S = LeaveFlags);
void Subs(const Register& rd,
const Register& rn,
const Operand& operand);
void Cmn(const Register& rn, const Operand& operand);
void Cmp(const Register& rn, const Operand& operand);
void Neg(const Register& rd,
const Operand& operand);
void Negs(const Register& rd,
const Operand& operand);
void AddSubMacro(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
AddSubOp op);
// Add/sub with carry macros.
void Adc(const Register& rd,
const Register& rn,
const Operand& operand);
void Adcs(const Register& rd,
const Register& rn,
const Operand& operand);
void Sbc(const Register& rd,
const Register& rn,
const Operand& operand);
void Sbcs(const Register& rd,
const Register& rn,
const Operand& operand);
void Ngc(const Register& rd,
const Operand& operand);
void Ngcs(const Register& rd,
const Operand& operand);
void AddSubWithCarryMacro(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
AddSubWithCarryOp op);
// Move macros.
void Mov(const Register& rd, uint64_t imm);
void Mov(const Register& rd,
const Operand& operand,
DiscardMoveMode discard_mode = kDontDiscardForSameWReg);
void Mvn(const Register& rd, uint64_t imm) {
Mov(rd, (rd.size() == kXRegSize) ? ~imm : (~imm & kWRegMask));
}
void Mvn(const Register& rd, const Operand& operand);
// Try to move an immediate into the destination register in a single
// instruction. Returns true for success, and updates the contents of dst.
// Returns false, otherwise.
bool TryOneInstrMoveImmediate(const Register& dst, int64_t imm);
// Move an immediate into register dst, and return an Operand object for
// use with a subsequent instruction that accepts a shift. The value moved
// into dst is not necessarily equal to imm; it may have had a shifting
// operation applied to it that will be subsequently undone by the shift
// applied in the Operand.
Operand MoveImmediateForShiftedOp(const Register& dst,
int64_t imm,
PreShiftImmMode mode);
// Synthesises the address represented by a MemOperand into a register.
void ComputeAddress(const Register& dst, const MemOperand& mem_op);
// Conditional macros.
void Ccmp(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond);
void Ccmn(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond);
void ConditionalCompareMacro(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond,
ConditionalCompareOp op);
void Csel(const Register& rd,
const Register& rn,
const Operand& operand,
Condition cond);
// Load/store macros.
#define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \
void FN(const REGTYPE REG, const MemOperand& addr);
LS_MACRO_LIST(DECLARE_FUNCTION)
#undef DECLARE_FUNCTION
void LoadStoreMacro(const CPURegister& rt,
const MemOperand& addr,
LoadStoreOp op);
#define DECLARE_FUNCTION(FN, REGTYPE, REG, REG2, OP) \
void FN(const REGTYPE REG, const REGTYPE REG2, const MemOperand& addr);
LSPAIR_MACRO_LIST(DECLARE_FUNCTION)
#undef DECLARE_FUNCTION
void LoadStorePairMacro(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& addr,
LoadStorePairOp op);
void Prfm(PrefetchOperation op, const MemOperand& addr);
// Push or pop up to 4 registers of the same width to or from the stack,
// using the current stack pointer as set by SetStackPointer.
//
// If an argument register is 'NoReg', all further arguments are also assumed
// to be 'NoReg', and are thus not pushed or popped.
//
// Arguments are ordered such that "Push(a, b);" is functionally equivalent
// to "Push(a); Push(b);".
//
// It is valid to push the same register more than once, and there is no
// restriction on the order in which registers are specified.
//
// It is not valid to pop into the same register more than once in one
// operation, not even into the zero register.
//
// If the current stack pointer (as set by SetStackPointer) is sp, then it
// must be aligned to 16 bytes on entry and the total size of the specified
// registers must also be a multiple of 16 bytes.
//
// Even if the current stack pointer is not the system stack pointer (sp),
// Push (and derived methods) will still modify the system stack pointer in
// order to comply with ABI rules about accessing memory below the system
// stack pointer.
//
// Other than the registers passed into Pop, the stack pointer and (possibly)
// the system stack pointer, these methods do not modify any other registers.
void Push(const CPURegister& src0, const CPURegister& src1 = NoReg,
const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg);
void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg,
const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg);
void PushStackPointer();
// Alternative forms of Push and Pop, taking a RegList or CPURegList that
// specifies the registers that are to be pushed or popped. Higher-numbered
// registers are associated with higher memory addresses (as in the A32 push
// and pop instructions).
//
// (Push|Pop)SizeRegList allow you to specify the register size as a
// parameter. Only kXRegSize, kWRegSize, kDRegSize and kSRegSize are
// supported.
//
// Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred.
void PushCPURegList(CPURegList registers);
void PopCPURegList(CPURegList registers);
void PushSizeRegList(RegList registers, unsigned reg_size,
CPURegister::RegisterType type = CPURegister::kRegister) {
PushCPURegList(CPURegList(type, reg_size, registers));
}
void PopSizeRegList(RegList registers, unsigned reg_size,
CPURegister::RegisterType type = CPURegister::kRegister) {
PopCPURegList(CPURegList(type, reg_size, registers));
}
void PushXRegList(RegList regs) {
PushSizeRegList(regs, kXRegSize);
}
void PopXRegList(RegList regs) {
PopSizeRegList(regs, kXRegSize);
}
void PushWRegList(RegList regs) {
PushSizeRegList(regs, kWRegSize);
}
void PopWRegList(RegList regs) {
PopSizeRegList(regs, kWRegSize);
}
void PushDRegList(RegList regs) {
PushSizeRegList(regs, kDRegSize, CPURegister::kVRegister);
}
void PopDRegList(RegList regs) {
PopSizeRegList(regs, kDRegSize, CPURegister::kVRegister);
}
void PushSRegList(RegList regs) {
PushSizeRegList(regs, kSRegSize, CPURegister::kVRegister);
}
void PopSRegList(RegList regs) {
PopSizeRegList(regs, kSRegSize, CPURegister::kVRegister);
}
// Push the specified register 'count' times.
void PushMultipleTimes(int count, Register src);
// Poke 'src' onto the stack. The offset is in bytes.
//
// If the current stack pointer (as set by SetStackPointer) is sp, then sp
// must be aligned to 16 bytes.
void Poke(const Register& src, const Operand& offset);
// Peek at a value on the stack, and put it in 'dst'. The offset is in bytes.
//
// If the current stack pointer (as set by SetStackPointer) is sp, then sp
// must be aligned to 16 bytes.
void Peek(const Register& dst, const Operand& offset);
// Alternative forms of Peek and Poke, taking a RegList or CPURegList that
// specifies the registers that are to be pushed or popped. Higher-numbered
// registers are associated with higher memory addresses.
//
// (Peek|Poke)SizeRegList allow you to specify the register size as a
// parameter. Only kXRegSize, kWRegSize, kDRegSize and kSRegSize are
// supported.
//
// Otherwise, (Peek|Poke)(CPU|X|W|D|S)RegList is preferred.
void PeekCPURegList(CPURegList registers, int64_t offset) {
LoadCPURegList(registers, MemOperand(StackPointer(), offset));
}
void PokeCPURegList(CPURegList registers, int64_t offset) {
StoreCPURegList(registers, MemOperand(StackPointer(), offset));
}
void PeekSizeRegList(RegList registers, int64_t offset, unsigned reg_size,
CPURegister::RegisterType type = CPURegister::kRegister) {
PeekCPURegList(CPURegList(type, reg_size, registers), offset);
}
void PokeSizeRegList(RegList registers, int64_t offset, unsigned reg_size,
CPURegister::RegisterType type = CPURegister::kRegister) {
PokeCPURegList(CPURegList(type, reg_size, registers), offset);
}
void PeekXRegList(RegList regs, int64_t offset) {
PeekSizeRegList(regs, offset, kXRegSize);
}
void PokeXRegList(RegList regs, int64_t offset) {
PokeSizeRegList(regs, offset, kXRegSize);
}
void PeekWRegList(RegList regs, int64_t offset) {
PeekSizeRegList(regs, offset, kWRegSize);
}
void PokeWRegList(RegList regs, int64_t offset) {
PokeSizeRegList(regs, offset, kWRegSize);
}
void PeekDRegList(RegList regs, int64_t offset) {
PeekSizeRegList(regs, offset, kDRegSize, CPURegister::kVRegister);
}
void PokeDRegList(RegList regs, int64_t offset) {
PokeSizeRegList(regs, offset, kDRegSize, CPURegister::kVRegister);
}
void PeekSRegList(RegList regs, int64_t offset) {
PeekSizeRegList(regs, offset, kSRegSize, CPURegister::kVRegister);
}
void PokeSRegList(RegList regs, int64_t offset) {
PokeSizeRegList(regs, offset, kSRegSize, CPURegister::kVRegister);
}
// Claim or drop stack space without actually accessing memory.
//
// If the current stack pointer (as set by SetStackPointer) is sp, then it
// must be aligned to 16 bytes and the size claimed or dropped must be a
// multiple of 16 bytes.
void Claim(const Operand& size);
void Drop(const Operand& size);
// Preserve the callee-saved registers (as defined by AAPCS64).
//
// Higher-numbered registers are pushed before lower-numbered registers, and
// thus get higher addresses.
// Floating-point registers are pushed before general-purpose registers, and
// thus get higher addresses.
//
// This method must not be called unless StackPointer() is sp, and it is
// aligned to 16 bytes.
void PushCalleeSavedRegisters();
// Restore the callee-saved registers (as defined by AAPCS64).
//
// Higher-numbered registers are popped after lower-numbered registers, and
// thus come from higher addresses.
// Floating-point registers are popped after general-purpose registers, and
// thus come from higher addresses.
//
// This method must not be called unless StackPointer() is sp, and it is
// aligned to 16 bytes.
void PopCalleeSavedRegisters();
void LoadCPURegList(CPURegList registers, const MemOperand& src);
void StoreCPURegList(CPURegList registers, const MemOperand& dst);
// Remaining instructions are simple pass-through calls to the assembler.
void Adr(const Register& rd, Label* label) {
VIXL_ASSERT(!rd.IsZero());
SingleEmissionCheckScope guard(this);
adr(rd, label);
}
void Adrp(const Register& rd, Label* label) {
VIXL_ASSERT(!rd.IsZero());
SingleEmissionCheckScope guard(this);
adrp(rd, label);
}
void Asr(const Register& rd, const Register& rn, unsigned shift) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
asr(rd, rn, shift);
}
void Asr(const Register& rd, const Register& rn, const Register& rm) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
SingleEmissionCheckScope guard(this);
asrv(rd, rn, rm);
}
// Branch type inversion relies on these relations.
VIXL_STATIC_ASSERT((reg_zero == (reg_not_zero ^ 1)) &&
(reg_bit_clear == (reg_bit_set ^ 1)) &&
(always == (never ^ 1)));
BranchType InvertBranchType(BranchType type) {
if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
return static_cast<BranchType>(
InvertCondition(static_cast<Condition>(type)));
} else {
return static_cast<BranchType>(type ^ 1);
}
}
void B(Label* label, BranchType type, Register reg = NoReg, int bit = -1);
void B(Label* label);
void B(Label* label, Condition cond);
void B(Condition cond, Label* label) {
B(label, cond);
}
void Bfm(const Register& rd,
const Register& rn,
unsigned immr,
unsigned imms) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
bfm(rd, rn, immr, imms);
}
void Bfi(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
bfi(rd, rn, lsb, width);
}
void Bfxil(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
bfxil(rd, rn, lsb, width);
}
void Bind(Label* label);
// Bind a label to a specified offset from the start of the buffer.
void BindToOffset(Label* label, ptrdiff_t offset);
void Bl(Label* label) {
SingleEmissionCheckScope guard(this);
bl(label);
}
void Blr(const Register& xn) {
VIXL_ASSERT(!xn.IsZero());
SingleEmissionCheckScope guard(this);
blr(xn);
}
void Br(const Register& xn) {
VIXL_ASSERT(!xn.IsZero());
SingleEmissionCheckScope guard(this);
br(xn);
}
void Brk(int code = 0) {
SingleEmissionCheckScope guard(this);
brk(code);
}
void Cbnz(const Register& rt, Label* label);
void Cbz(const Register& rt, Label* label);
void Cinc(const Register& rd, const Register& rn, Condition cond) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
cinc(rd, rn, cond);
}
void Cinv(const Register& rd, const Register& rn, Condition cond) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
cinv(rd, rn, cond);
}
void Clrex() {
SingleEmissionCheckScope guard(this);
clrex();
}
void Cls(const Register& rd, const Register& rn) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
cls(rd, rn);
}
void Clz(const Register& rd, const Register& rn) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
clz(rd, rn);
}
void Cneg(const Register& rd, const Register& rn, Condition cond) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
cneg(rd, rn, cond);
}
void Cset(const Register& rd, Condition cond) {
VIXL_ASSERT(!rd.IsZero());
SingleEmissionCheckScope guard(this);
cset(rd, cond);
}
void Csetm(const Register& rd, Condition cond) {
VIXL_ASSERT(!rd.IsZero());
SingleEmissionCheckScope guard(this);
csetm(rd, cond);
}
void Csinc(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
VIXL_ASSERT(!rd.IsZero());
// The VIXL source code contains these assertions, but the AArch64 ISR
// explicitly permits the use of zero registers. CSET itself is defined
// in terms of CSINC with WZR/XZR.
//
// VIXL_ASSERT(!rn.IsZero());
// VIXL_ASSERT(!rm.IsZero());
VIXL_ASSERT((cond != al) && (cond != nv));
SingleEmissionCheckScope guard(this);
csinc(rd, rn, rm, cond);
}
void Csinv(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
VIXL_ASSERT((cond != al) && (cond != nv));
SingleEmissionCheckScope guard(this);
csinv(rd, rn, rm, cond);
}
void Csneg(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
VIXL_ASSERT((cond != al) && (cond != nv));
SingleEmissionCheckScope guard(this);
csneg(rd, rn, rm, cond);
}
void Dmb(BarrierDomain domain, BarrierType type) {
SingleEmissionCheckScope guard(this);
dmb(domain, type);
}
void Dsb(BarrierDomain domain, BarrierType type) {
SingleEmissionCheckScope guard(this);
dsb(domain, type);
}
void Extr(const Register& rd,
const Register& rn,
const Register& rm,
unsigned lsb) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
SingleEmissionCheckScope guard(this);
extr(rd, rn, rm, lsb);
}
void Fadd(const VRegister& vd, const VRegister& vn, const VRegister& vm) {
SingleEmissionCheckScope guard(this);
fadd(vd, vn, vm);
}
void Fccmp(const VRegister& vn,
const VRegister& vm,
StatusFlags nzcv,
Condition cond,
FPTrapFlags trap = DisableTrap) {
VIXL_ASSERT((cond != al) && (cond != nv));
SingleEmissionCheckScope guard(this);
FPCCompareMacro(vn, vm, nzcv, cond, trap);
}
void Fccmpe(const VRegister& vn,
const VRegister& vm,
StatusFlags nzcv,
Condition cond) {
Fccmp(vn, vm, nzcv, cond, EnableTrap);
}
void Fcmp(const VRegister& vn, const VRegister& vm,
FPTrapFlags trap = DisableTrap) {
SingleEmissionCheckScope guard(this);
FPCompareMacro(vn, vm, trap);
}
void Fcmp(const VRegister& vn, double value,
FPTrapFlags trap = DisableTrap);
void Fcmpe(const VRegister& vn, double value);
void Fcmpe(const VRegister& vn, const VRegister& vm) {
Fcmp(vn, vm, EnableTrap);
}
void Fcsel(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
Condition cond) {
VIXL_ASSERT((cond != al) && (cond != nv));
SingleEmissionCheckScope guard(this);
fcsel(vd, vn, vm, cond);
}
void Fcvt(const VRegister& vd, const VRegister& vn) {
SingleEmissionCheckScope guard(this);
fcvt(vd, vn);
}
void Fcvtl(const VRegister& vd, const VRegister& vn) {
SingleEmissionCheckScope guard(this);
fcvtl(vd, vn);
}
void Fcvtl2(const VRegister& vd, const VRegister& vn) {
SingleEmissionCheckScope guard(this);
fcvtl2(vd, vn);
}
void Fcvtn(const VRegister& vd, const VRegister& vn) {
SingleEmissionCheckScope guard(this);
fcvtn(vd, vn);
}
void Fcvtn2(const VRegister& vd, const VRegister& vn) {
SingleEmissionCheckScope guard(this);
fcvtn2(vd, vn);
}
void Fcvtxn(const VRegister& vd, const VRegister& vn) {
SingleEmissionCheckScope guard(this);
fcvtxn(vd, vn);
}
void Fcvtxn2(const VRegister& vd, const VRegister& vn) {
SingleEmissionCheckScope guard(this);
fcvtxn2(vd, vn);
}
void Fcvtas(const Register& rd, const VRegister& vn) {
VIXL_ASSERT(!rd.IsZero());
SingleEmissionCheckScope guard(this);
fcvtas(rd, vn);
}
void Fcvtau(const Register& rd, const VRegister& vn) {
VIXL_ASSERT(!rd.IsZero());
SingleEmissionCheckScope guard(this);
fcvtau(rd, vn);
}
void Fcvtms(const Register& rd, const VRegister& vn) {
VIXL_ASSERT(!rd.IsZero());
SingleEmissionCheckScope guard(this);
fcvtms(rd, vn);
}
void Fcvtmu(const Register& rd, const VRegister& vn) {
VIXL_ASSERT(!rd.IsZero());
SingleEmissionCheckScope guard(this);
fcvtmu(rd, vn);
}
void Fcvtns(const Register& rd, const VRegister& vn) {
VIXL_ASSERT(!rd.IsZero());
SingleEmissionCheckScope guard(this);
fcvtns(rd, vn);
}
void Fcvtnu(const Register& rd, const VRegister& vn) {
VIXL_ASSERT(!rd.IsZero());
SingleEmissionCheckScope guard(this);
fcvtnu(rd, vn);
}
void Fcvtps(const Register& rd, const VRegister& vn) {
VIXL_ASSERT(!rd.IsZero());
SingleEmissionCheckScope guard(this);
fcvtps(rd, vn);
}
void Fcvtpu(const Register& rd, const VRegister& vn) {
VIXL_ASSERT(!rd.IsZero());
SingleEmissionCheckScope guard(this);
fcvtpu(rd, vn);
}
void Fcvtzs(const Register& rd, const VRegister& vn, int fbits = 0) {
VIXL_ASSERT(!rd.IsZero());
SingleEmissionCheckScope guard(this);
fcvtzs(rd, vn, fbits);
}
void Fjcvtzs(const Register& rd, const VRegister& vn) {
VIXL_ASSERT(!rd.IsZero());
SingleEmissionCheckScope guard(this);
fjcvtzs(rd, vn);
}
void Fcvtzu(const Register& rd, const VRegister& vn, int fbits = 0) {
VIXL_ASSERT(!rd.IsZero());
SingleEmissionCheckScope guard(this);
fcvtzu(rd, vn, fbits);
}
void Fdiv(const VRegister& vd, const VRegister& vn, const VRegister& vm) {
SingleEmissionCheckScope guard(this);
fdiv(vd, vn, vm);
}
void Fmax(const VRegister& vd, const VRegister& vn, const VRegister& vm) {
SingleEmissionCheckScope guard(this);
fmax(vd, vn, vm);
}
void Fmaxnm(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
SingleEmissionCheckScope guard(this);
fmaxnm(vd, vn, vm);
}
void Fmin(const VRegister& vd, const VRegister& vn, const VRegister& vm) {
SingleEmissionCheckScope guard(this);
fmin(vd, vn, vm);
}
void Fminnm(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
SingleEmissionCheckScope guard(this);
fminnm(vd, vn, vm);
}
void Fmov(VRegister vd, VRegister vn) {
SingleEmissionCheckScope guard(this);
// Only emit an instruction if vd and vn are different, and they are both D
// registers. fmov(s0, s0) is not a no-op because it clears the top word of
// d0. Technically, fmov(d0, d0) is not a no-op either because it clears
// the top of q0, but VRegister does not currently support Q registers.
if (!vd.Is(vn) || !vd.Is64Bits()) {
fmov(vd, vn);
}
}
void Fmov(VRegister vd, Register rn) {
SingleEmissionCheckScope guard(this);
fmov(vd, rn);
}
void Fmov(const VRegister& vd, int index, const Register& rn) {
SingleEmissionCheckScope guard(this);
fmov(vd, index, rn);
}
void Fmov(const Register& rd, const VRegister& vn, int index) {
SingleEmissionCheckScope guard(this);
fmov(rd, vn, index);
}
// Provide explicit double and float interfaces for FP immediate moves, rather
// than relying on implicit C++ casts. This allows signalling NaNs to be
// preserved when the immediate matches the format of vd. Most systems convert
// signalling NaNs to quiet NaNs when converting between float and double.
void Fmov(VRegister vd, double imm);
void Fmov(VRegister vd, float imm);
// Provide a template to allow other types to be converted automatically.
template<typename T>
void Fmov(VRegister vd, T imm) {
Fmov(vd, static_cast<double>(imm));
}
void Fmov(Register rd, VRegister vn) {
VIXL_ASSERT(!rd.IsZero());
SingleEmissionCheckScope guard(this);
fmov(rd, vn);
}
void Fmul(const VRegister& vd, const VRegister& vn, const VRegister& vm) {
SingleEmissionCheckScope guard(this);
fmul(vd, vn, vm);
}
void Fnmul(const VRegister& vd, const VRegister& vn,
const VRegister& vm) {
SingleEmissionCheckScope guard(this);
fnmul(vd, vn, vm);
}
void Fmadd(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
const VRegister& va) {
SingleEmissionCheckScope guard(this);
fmadd(vd, vn, vm, va);
}
void Fmsub(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
const VRegister& va) {
SingleEmissionCheckScope guard(this);
fmsub(vd, vn, vm, va);
}
void Fnmadd(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
const VRegister& va) {
SingleEmissionCheckScope guard(this);
fnmadd(vd, vn, vm, va);
}
void Fnmsub(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
const VRegister& va) {
SingleEmissionCheckScope guard(this);
fnmsub(vd, vn, vm, va);
}
void Fsub(const VRegister& vd, const VRegister& vn, const VRegister& vm) {
SingleEmissionCheckScope guard(this);
fsub(vd, vn, vm);
}
void Hint(SystemHint code) {
SingleEmissionCheckScope guard(this);
hint(code);
}
void Hlt(int code) {
SingleEmissionCheckScope guard(this);
hlt(code);
}
void Isb() {
SingleEmissionCheckScope guard(this);
isb();
}
void Ldar(const Register& rt, const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ldar(rt, src);
}
void Ldarb(const Register& rt, const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ldarb(rt, src);
}
void Ldarh(const Register& rt, const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ldarh(rt, src);
}
void Ldaxp(const Register& rt, const Register& rt2, const MemOperand& src) {
VIXL_ASSERT(!rt.Aliases(rt2));
SingleEmissionCheckScope guard(this);
ldaxp(rt, rt2, src);
}
void Ldaxr(const Register& rt, const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ldaxr(rt, src);
}
void Ldaxrb(const Register& rt, const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ldaxrb(rt, src);
}
void Ldaxrh(const Register& rt, const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ldaxrh(rt, src);
}
void Ldnp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ldnp(rt, rt2, src);
}
// Provide both double and float interfaces for FP immediate loads, rather
// than relying on implicit C++ casts. This allows signalling NaNs to be
// preserved when the immediate matches the format of fd. Most systems convert
// signalling NaNs to quiet NaNs when converting between float and double.
void Ldr(const VRegister& vt, double imm) {
SingleEmissionCheckScope guard(this);
if (vt.Is64Bits()) {
ldr(vt, imm);
} else {
ldr(vt, static_cast<float>(imm));
}
}
void Ldr(const VRegister& vt, float imm) {
SingleEmissionCheckScope guard(this);
if (vt.Is32Bits()) {
ldr(vt, imm);
} else {
ldr(vt, static_cast<double>(imm));
}
}
/*
void Ldr(const VRegister& vt, uint64_t high64, uint64_t low64) {
VIXL_ASSERT(vt.IsQ());
SingleEmissionCheckScope guard(this);
ldr(vt, new Literal<uint64_t>(high64, low64,
&literal_pool_,
RawLiteral::kDeletedOnPlacementByPool));
}
*/
void Ldr(const Register& rt, uint64_t imm) {
VIXL_ASSERT(!rt.IsZero());
SingleEmissionCheckScope guard(this);
ldr(rt, imm);
}
void Ldrsw(const Register& rt, uint32_t imm) {
VIXL_ASSERT(!rt.IsZero());
SingleEmissionCheckScope guard(this);
ldrsw(rt, imm);
}
void Ldxp(const Register& rt, const Register& rt2, const MemOperand& src) {
VIXL_ASSERT(!rt.Aliases(rt2));
SingleEmissionCheckScope guard(this);
ldxp(rt, rt2, src);
}
void Ldxr(const Register& rt, const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ldxr(rt, src);
}
void Ldxrb(const Register& rt, const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ldxrb(rt, src);
}
void Ldxrh(const Register& rt, const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ldxrh(rt, src);
}
void Lsl(const Register& rd, const Register& rn, unsigned shift) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
lsl(rd, rn, shift);
}
void Lsl(const Register& rd, const Register& rn, const Register& rm) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
SingleEmissionCheckScope guard(this);
lslv(rd, rn, rm);
}
void Lsr(const Register& rd, const Register& rn, unsigned shift) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
lsr(rd, rn, shift);
}
void Lsr(const Register& rd, const Register& rn, const Register& rm) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
SingleEmissionCheckScope guard(this);
lsrv(rd, rn, rm);
}
void Madd(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
VIXL_ASSERT(!ra.IsZero());
SingleEmissionCheckScope guard(this);
madd(rd, rn, rm, ra);
}
void Mneg(const Register& rd, const Register& rn, const Register& rm) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
SingleEmissionCheckScope guard(this);
mneg(rd, rn, rm);
}
void Mov(const Register& rd, const Register& rn) {
SingleEmissionCheckScope guard(this);
mov(rd, rn);
}
void Movk(const Register& rd, uint64_t imm, int shift = -1) {
VIXL_ASSERT(!rd.IsZero());
SingleEmissionCheckScope guard(this);
movk(rd, imm, shift);
}
void Mrs(const Register& rt, SystemRegister sysreg) {
VIXL_ASSERT(!rt.IsZero());
SingleEmissionCheckScope guard(this);
mrs(rt, sysreg);
}
void Msr(SystemRegister sysreg, const Register& rt) {
VIXL_ASSERT(!rt.IsZero());
SingleEmissionCheckScope guard(this);
msr(sysreg, rt);
}
void Sys(int op1, int crn, int crm, int op2, const Register& rt = xzr) {
SingleEmissionCheckScope guard(this);
sys(op1, crn, crm, op2, rt);
}
void Dc(DataCacheOp op, const Register& rt) {
SingleEmissionCheckScope guard(this);
dc(op, rt);
}
void Ic(InstructionCacheOp op, const Register& rt) {
SingleEmissionCheckScope guard(this);
ic(op, rt);
}
void Msub(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
VIXL_ASSERT(!ra.IsZero());
SingleEmissionCheckScope guard(this);
msub(rd, rn, rm, ra);
}
void Mul(const Register& rd, const Register& rn, const Register& rm) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
SingleEmissionCheckScope guard(this);
mul(rd, rn, rm);
}
void Nop() {
SingleEmissionCheckScope guard(this);
nop();
}
void Csdb() {
SingleEmissionCheckScope guard(this);
csdb();
}
void Rbit(const Register& rd, const Register& rn) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
rbit(rd, rn);
}
void Ret(const Register& xn = lr) {
VIXL_ASSERT(!xn.IsZero());
SingleEmissionCheckScope guard(this);
ret(xn);
}
void Rev(const Register& rd, const Register& rn) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
rev(rd, rn);
}
void Rev16(const Register& rd, const Register& rn) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
rev16(rd, rn);
}
void Rev32(const Register& rd, const Register& rn) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
rev32(rd, rn);
}
void Ror(const Register& rd, const Register& rs, unsigned shift) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rs.IsZero());
SingleEmissionCheckScope guard(this);
ror(rd, rs, shift);
}
void Ror(const Register& rd, const Register& rn, const Register& rm) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
SingleEmissionCheckScope guard(this);
rorv(rd, rn, rm);
}
void Sbfiz(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
sbfiz(rd, rn, lsb, width);
}
void Sbfm(const Register& rd,
const Register& rn,
unsigned immr,
unsigned imms) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
sbfm(rd, rn, immr, imms);
}
void Sbfx(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
sbfx(rd, rn, lsb, width);
}
void Scvtf(const VRegister& vd, const Register& rn, int fbits = 0) {
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
scvtf(vd, rn, fbits);
}
void Sdiv(const Register& rd, const Register& rn, const Register& rm) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
SingleEmissionCheckScope guard(this);
sdiv(rd, rn, rm);
}
void Smaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
VIXL_ASSERT(!ra.IsZero());
SingleEmissionCheckScope guard(this);
smaddl(rd, rn, rm, ra);
}
void Smsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
VIXL_ASSERT(!ra.IsZero());
SingleEmissionCheckScope guard(this);
smsubl(rd, rn, rm, ra);
}
void Smull(const Register& rd, const Register& rn, const Register& rm) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
SingleEmissionCheckScope guard(this);
smull(rd, rn, rm);
}
void Smulh(const Register& xd, const Register& xn, const Register& xm) {
VIXL_ASSERT(!xd.IsZero());
VIXL_ASSERT(!xn.IsZero());
VIXL_ASSERT(!xm.IsZero());
SingleEmissionCheckScope guard(this);
smulh(xd, xn, xm);
}
void Stlr(const Register& rt, const MemOperand& dst) {
SingleEmissionCheckScope guard(this);
stlr(rt, dst);
}
void Stlrb(const Register& rt, const MemOperand& dst) {
SingleEmissionCheckScope guard(this);
stlrb(rt, dst);
}
void Stlrh(const Register& rt, const MemOperand& dst) {
SingleEmissionCheckScope guard(this);
stlrh(rt, dst);
}
void Stlxp(const Register& rs,
const Register& rt,
const Register& rt2,
const MemOperand& dst) {
VIXL_ASSERT(!rs.Aliases(dst.base()));
VIXL_ASSERT(!rs.Aliases(rt));
VIXL_ASSERT(!rs.Aliases(rt2));
SingleEmissionCheckScope guard(this);
stlxp(rs, rt, rt2, dst);
}
void Stlxr(const Register& rs, const Register& rt, const MemOperand& dst) {
VIXL_ASSERT(!rs.Aliases(dst.base()));
VIXL_ASSERT(!rs.Aliases(rt));
SingleEmissionCheckScope guard(this);
stlxr(rs, rt, dst);
}
void Stlxrb(const Register& rs, const Register& rt, const MemOperand& dst) {
VIXL_ASSERT(!rs.Aliases(dst.base()));
VIXL_ASSERT(!rs.Aliases(rt));
SingleEmissionCheckScope guard(this);
stlxrb(rs, rt, dst);
}
void Stlxrh(const Register& rs, const Register& rt, const MemOperand& dst) {
VIXL_ASSERT(!rs.Aliases(dst.base()));
VIXL_ASSERT(!rs.Aliases(rt));
SingleEmissionCheckScope guard(this);
stlxrh(rs, rt, dst);
}
void Stnp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& dst) {
SingleEmissionCheckScope guard(this);
stnp(rt, rt2, dst);
}
void Stxp(const Register& rs,
const Register& rt,
const Register& rt2,
const MemOperand& dst) {
VIXL_ASSERT(!rs.Aliases(dst.base()));
VIXL_ASSERT(!rs.Aliases(rt));
VIXL_ASSERT(!rs.Aliases(rt2));
SingleEmissionCheckScope guard(this);
stxp(rs, rt, rt2, dst);
}
void Stxr(const Register& rs, const Register& rt, const MemOperand& dst) {
VIXL_ASSERT(!rs.Aliases(dst.base()));
VIXL_ASSERT(!rs.Aliases(rt));
SingleEmissionCheckScope guard(this);
stxr(rs, rt, dst);
}
void Stxrb(const Register& rs, const Register& rt, const MemOperand& dst) {
VIXL_ASSERT(!rs.Aliases(dst.base()));
VIXL_ASSERT(!rs.Aliases(rt));
SingleEmissionCheckScope guard(this);
stxrb(rs, rt, dst);
}
void Stxrh(const Register& rs, const Register& rt, const MemOperand& dst) {
VIXL_ASSERT(!rs.Aliases(dst.base()));
VIXL_ASSERT(!rs.Aliases(rt));
SingleEmissionCheckScope guard(this);
stxrh(rs, rt, dst);
}
void Svc(int code) {
SingleEmissionCheckScope guard(this);
svc(code);
}
void Sxtb(const Register& rd, const Register& rn) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
sxtb(rd, rn);
}
void Sxth(const Register& rd, const Register& rn) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
sxth(rd, rn);
}
void Sxtw(const Register& rd, const Register& rn) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
sxtw(rd, rn);
}
void Tbl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
SingleEmissionCheckScope guard(this);
tbl(vd, vn, vm);
}
void Tbl(const VRegister& vd,
const VRegister& vn,
const VRegister& vn2,
const VRegister& vm) {
SingleEmissionCheckScope guard(this);
tbl(vd, vn, vn2, vm);
}
void Tbl(const VRegister& vd,
const VRegister& vn,
const VRegister& vn2,
const VRegister& vn3,
const VRegister& vm) {
SingleEmissionCheckScope guard(this);
tbl(vd, vn, vn2, vn3, vm);
}
void Tbl(const VRegister& vd,
const VRegister& vn,
const VRegister& vn2,
const VRegister& vn3,
const VRegister& vn4,
const VRegister& vm) {
SingleEmissionCheckScope guard(this);
tbl(vd, vn, vn2, vn3, vn4, vm);
}
void Tbx(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
SingleEmissionCheckScope guard(this);
tbx(vd, vn, vm);
}
void Tbx(const VRegister& vd,
const VRegister& vn,
const VRegister& vn2,
const VRegister& vm) {
SingleEmissionCheckScope guard(this);
tbx(vd, vn, vn2, vm);
}
void Tbx(const VRegister& vd,
const VRegister& vn,
const VRegister& vn2,
const VRegister& vn3,
const VRegister& vm) {
SingleEmissionCheckScope guard(this);
tbx(vd, vn, vn2, vn3, vm);
}
void Tbx(const VRegister& vd,
const VRegister& vn,
const VRegister& vn2,
const VRegister& vn3,
const VRegister& vn4,
const VRegister& vm) {
SingleEmissionCheckScope guard(this);
tbx(vd, vn, vn2, vn3, vn4, vm);
}
void Tbnz(const Register& rt, unsigned bit_pos, Label* label);
void Tbz(const Register& rt, unsigned bit_pos, Label* label);
void Ubfiz(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
ubfiz(rd, rn, lsb, width);
}
void Ubfm(const Register& rd,
const Register& rn,
unsigned immr,
unsigned imms) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
ubfm(rd, rn, immr, imms);
}
void Ubfx(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
ubfx(rd, rn, lsb, width);
}
void Ucvtf(const VRegister& vd, const Register& rn, int fbits = 0) {
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
ucvtf(vd, rn, fbits);
}
void Udiv(const Register& rd, const Register& rn, const Register& rm) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
SingleEmissionCheckScope guard(this);
udiv(rd, rn, rm);
}
void Umaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
VIXL_ASSERT(!ra.IsZero());
SingleEmissionCheckScope guard(this);
umaddl(rd, rn, rm, ra);
}
void Umull(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
SingleEmissionCheckScope guard(this);
umull(rd, rn, rm);
}
void Umulh(const Register& xd, const Register& xn, const Register& xm) {
VIXL_ASSERT(!xd.IsZero());
VIXL_ASSERT(!xn.IsZero());
VIXL_ASSERT(!xm.IsZero());
SingleEmissionCheckScope guard(this);
umulh(xd, xn, xm);
}
void Umsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
VIXL_ASSERT(!rm.IsZero());
VIXL_ASSERT(!ra.IsZero());
SingleEmissionCheckScope guard(this);
umsubl(rd, rn, rm, ra);
}
void Unreachable() {
SingleEmissionCheckScope guard(this);
Emit(UNDEFINED_INST_PATTERN);
}
void Uxtb(const Register& rd, const Register& rn) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
uxtb(rd, rn);
}
void Uxth(const Register& rd, const Register& rn) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
uxth(rd, rn);
}
void Uxtw(const Register& rd, const Register& rn) {
VIXL_ASSERT(!rd.IsZero());
VIXL_ASSERT(!rn.IsZero());
SingleEmissionCheckScope guard(this);
uxtw(rd, rn);
}
// NEON 3 vector register instructions.
#define NEON_3VREG_MACRO_LIST(V) \
V(add, Add) \
V(addhn, Addhn) \
V(addhn2, Addhn2) \
V(addp, Addp) \
V(and_, And) \
V(bic, Bic) \
V(bif, Bif) \
V(bit, Bit) \
V(bsl, Bsl) \
V(cmeq, Cmeq) \
V(cmge, Cmge) \
V(cmgt, Cmgt) \
V(cmhi, Cmhi) \
V(cmhs, Cmhs) \
V(cmtst, Cmtst) \
V(eor, Eor) \
V(fabd, Fabd) \
V(facge, Facge) \
V(facgt, Facgt) \
V(faddp, Faddp) \
V(fcmeq, Fcmeq) \
V(fcmge, Fcmge) \
V(fcmgt, Fcmgt) \
V(fmaxnmp, Fmaxnmp) \
V(fmaxp, Fmaxp) \
V(fminnmp, Fminnmp) \
V(fminp, Fminp) \
V(fmla, Fmla) \
V(fmls, Fmls) \
V(fmulx, Fmulx) \
V(frecps, Frecps) \
V(frsqrts, Frsqrts) \
V(mla, Mla) \
V(mls, Mls) \
V(mul, Mul) \
V(orn, Orn) \
V(orr, Orr) \
V(pmul, Pmul) \
V(pmull, Pmull) \
V(pmull2, Pmull2) \
V(raddhn, Raddhn) \
V(raddhn2, Raddhn2) \
V(rsubhn, Rsubhn) \
V(rsubhn2, Rsubhn2) \
V(saba, Saba) \
V(sabal, Sabal) \
V(sabal2, Sabal2) \
V(sabd, Sabd) \
V(sabdl, Sabdl) \
V(sabdl2, Sabdl2) \
V(saddl, Saddl) \
V(saddl2, Saddl2) \
V(saddw, Saddw) \
V(saddw2, Saddw2) \
V(shadd, Shadd) \
V(shsub, Shsub) \
V(smax, Smax) \
V(smaxp, Smaxp) \
V(smin, Smin) \
V(sminp, Sminp) \
V(smlal, Smlal) \
V(smlal2, Smlal2) \
V(smlsl, Smlsl) \
V(smlsl2, Smlsl2) \
V(smull, Smull) \
V(smull2, Smull2) \
V(sqadd, Sqadd) \
V(sqdmlal, Sqdmlal) \
V(sqdmlal2, Sqdmlal2) \
V(sqdmlsl, Sqdmlsl) \
V(sqdmlsl2, Sqdmlsl2) \
V(sqdmulh, Sqdmulh) \
V(sqdmull, Sqdmull) \
V(sqdmull2, Sqdmull2) \
V(sqrdmulh, Sqrdmulh) \
V(sqrshl, Sqrshl) \
V(sqshl, Sqshl) \
V(sqsub, Sqsub) \
V(srhadd, Srhadd) \
V(srshl, Srshl) \
V(sshl, Sshl) \
V(ssubl, Ssubl) \
V(ssubl2, Ssubl2) \
V(ssubw, Ssubw) \
V(ssubw2, Ssubw2) \
V(sub, Sub) \
V(subhn, Subhn) \
V(subhn2, Subhn2) \
V(trn1, Trn1) \
V(trn2, Trn2) \
V(uaba, Uaba) \
V(uabal, Uabal) \
V(uabal2, Uabal2) \
V(uabd, Uabd) \
V(uabdl, Uabdl) \
V(uabdl2, Uabdl2) \
V(uaddl, Uaddl) \
V(uaddl2, Uaddl2) \
V(uaddw, Uaddw) \
V(uaddw2, Uaddw2) \
V(uhadd, Uhadd) \
V(uhsub, Uhsub) \
V(umax, Umax) \
V(umaxp, Umaxp) \
V(umin, Umin) \
V(uminp, Uminp) \
V(umlal, Umlal) \
V(umlal2, Umlal2) \
V(umlsl, Umlsl) \
V(umlsl2, Umlsl2) \
V(umull, Umull) \
V(umull2, Umull2) \
V(uqadd, Uqadd) \
V(uqrshl, Uqrshl) \
V(uqshl, Uqshl) \
V(uqsub, Uqsub) \
V(urhadd, Urhadd) \
V(urshl, Urshl) \
V(ushl, Ushl) \
V(usubl, Usubl) \
V(usubl2, Usubl2) \
V(usubw, Usubw) \
V(usubw2, Usubw2) \
V(uzp1, Uzp1) \
V(uzp2, Uzp2) \
V(zip1, Zip1) \
V(zip2, Zip2)
#define DEFINE_MACRO_ASM_FUNC(ASM, MASM) \
void MASM(const VRegister& vd, \
const VRegister& vn, \
const VRegister& vm) { \
SingleEmissionCheckScope guard(this); \
ASM(vd, vn, vm); \
}
NEON_3VREG_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
#undef DEFINE_MACRO_ASM_FUNC
// NEON 2 vector register instructions.
#define NEON_2VREG_MACRO_LIST(V) \
V(abs, Abs) \
V(addp, Addp) \
V(addv, Addv) \
V(cls, Cls) \
V(clz, Clz) \
V(cnt, Cnt) \
V(fabs, Fabs) \
V(faddp, Faddp) \
V(fcvtas, Fcvtas) \
V(fcvtau, Fcvtau) \
V(fcvtms, Fcvtms) \
V(fcvtmu, Fcvtmu) \
V(fcvtns, Fcvtns) \
V(fcvtnu, Fcvtnu) \
V(fcvtps, Fcvtps) \
V(fcvtpu, Fcvtpu) \
V(fmaxnmp, Fmaxnmp) \
V(fmaxnmv, Fmaxnmv) \
V(fmaxp, Fmaxp) \
V(fmaxv, Fmaxv) \
V(fminnmp, Fminnmp) \
V(fminnmv, Fminnmv) \
V(fminp, Fminp) \
V(fminv, Fminv) \
V(fneg, Fneg) \
V(frecpe, Frecpe) \
V(frecpx, Frecpx) \
V(frinta, Frinta) \
V(frinti, Frinti) \
V(frintm, Frintm) \
V(frintn, Frintn) \
V(frintp, Frintp) \
V(frintx, Frintx) \
V(frintz, Frintz) \
V(frsqrte, Frsqrte) \
V(fsqrt, Fsqrt) \
V(mov, Mov) \
V(mvn, Mvn) \
V(neg, Neg) \
V(not_, Not) \
V(rbit, Rbit) \
V(rev16, Rev16) \
V(rev32, Rev32) \
V(rev64, Rev64) \
V(sadalp, Sadalp) \
V(saddlp, Saddlp) \
V(saddlv, Saddlv) \
V(smaxv, Smaxv) \
V(sminv, Sminv) \
V(sqabs, Sqabs) \
V(sqneg, Sqneg) \
V(sqxtn, Sqxtn) \
V(sqxtn2, Sqxtn2) \
V(sqxtun, Sqxtun) \
V(sqxtun2, Sqxtun2) \
V(suqadd, Suqadd) \
V(sxtl, Sxtl) \
V(sxtl2, Sxtl2) \
V(uadalp, Uadalp) \
V(uaddlp, Uaddlp) \
V(uaddlv, Uaddlv) \
V(umaxv, Umaxv) \
V(uminv, Uminv) \
V(uqxtn, Uqxtn) \
V(uqxtn2, Uqxtn2) \
V(urecpe, Urecpe) \
V(ursqrte, Ursqrte) \
V(usqadd, Usqadd) \
V(uxtl, Uxtl) \
V(uxtl2, Uxtl2) \
V(xtn, Xtn) \
V(xtn2, Xtn2)
#define DEFINE_MACRO_ASM_FUNC(ASM, MASM) \
void MASM(const VRegister& vd, \
const VRegister& vn) { \
SingleEmissionCheckScope guard(this); \
ASM(vd, vn); \
}
NEON_2VREG_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
#undef DEFINE_MACRO_ASM_FUNC
// NEON 2 vector register with immediate instructions.
#define NEON_2VREG_FPIMM_MACRO_LIST(V) \
V(fcmeq, Fcmeq) \
V(fcmge, Fcmge) \
V(fcmgt, Fcmgt) \
V(fcmle, Fcmle) \
V(fcmlt, Fcmlt)
#define DEFINE_MACRO_ASM_FUNC(ASM, MASM) \
void MASM(const VRegister& vd, \
const VRegister& vn, \
double imm) { \
SingleEmissionCheckScope guard(this); \
ASM(vd, vn, imm); \
}
NEON_2VREG_FPIMM_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
#undef DEFINE_MACRO_ASM_FUNC
// NEON by element instructions.
#define NEON_BYELEMENT_MACRO_LIST(V) \
V(fmul, Fmul) \
V(fmla, Fmla) \
V(fmls, Fmls) \
V(fmulx, Fmulx) \
V(mul, Mul) \
V(mla, Mla) \
V(mls, Mls) \
V(sqdmulh, Sqdmulh) \
V(sqrdmulh, Sqrdmulh) \
V(sqdmull, Sqdmull) \
V(sqdmull2, Sqdmull2) \
V(sqdmlal, Sqdmlal) \
V(sqdmlal2, Sqdmlal2) \
V(sqdmlsl, Sqdmlsl) \
V(sqdmlsl2, Sqdmlsl2) \
V(smull, Smull) \
V(smull2, Smull2) \
V(smlal, Smlal) \
V(smlal2, Smlal2) \
V(smlsl, Smlsl) \
V(smlsl2, Smlsl2) \
V(umull, Umull) \
V(umull2, Umull2) \
V(umlal, Umlal) \
V(umlal2, Umlal2) \
V(umlsl, Umlsl) \
V(umlsl2, Umlsl2)
#define DEFINE_MACRO_ASM_FUNC(ASM, MASM) \
void MASM(const VRegister& vd, \
const VRegister& vn, \
const VRegister& vm, \
int vm_index \
) { \
SingleEmissionCheckScope guard(this); \
ASM(vd, vn, vm, vm_index); \
}
NEON_BYELEMENT_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
#undef DEFINE_MACRO_ASM_FUNC
#define NEON_2VREG_SHIFT_MACRO_LIST(V) \
V(rshrn, Rshrn) \
V(rshrn2, Rshrn2) \
V(shl, Shl) \
V(shll, Shll) \
V(shll2, Shll2) \
V(shrn, Shrn) \
V(shrn2, Shrn2) \
V(sli, Sli) \
V(sqrshrn, Sqrshrn) \
V(sqrshrn2, Sqrshrn2) \
V(sqrshrun, Sqrshrun) \
V(sqrshrun2, Sqrshrun2) \
V(sqshl, Sqshl) \
V(sqshlu, Sqshlu) \
V(sqshrn, Sqshrn) \
V(sqshrn2, Sqshrn2) \
V(sqshrun, Sqshrun) \
V(sqshrun2, Sqshrun2) \
V(sri, Sri) \
V(srshr, Srshr) \
V(srsra, Srsra) \
V(sshll, Sshll) \
V(sshll2, Sshll2) \
V(sshr, Sshr) \
V(ssra, Ssra) \
V(uqrshrn, Uqrshrn) \
V(uqrshrn2, Uqrshrn2) \
V(uqshl, Uqshl) \
V(uqshrn, Uqshrn) \
V(uqshrn2, Uqshrn2) \
V(urshr, Urshr) \
V(ursra, Ursra) \
V(ushll, Ushll) \
V(ushll2, Ushll2) \
V(ushr, Ushr) \
V(usra, Usra) \
#define DEFINE_MACRO_ASM_FUNC(ASM, MASM) \
void MASM(const VRegister& vd, \
const VRegister& vn, \
int shift) { \
SingleEmissionCheckScope guard(this); \
ASM(vd, vn, shift); \
}
NEON_2VREG_SHIFT_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
#undef DEFINE_MACRO_ASM_FUNC
void Bic(const VRegister& vd,
const int imm8,
const int left_shift = 0) {
SingleEmissionCheckScope guard(this);
bic(vd, imm8, left_shift);
}
void Cmeq(const VRegister& vd,
const VRegister& vn,
int imm) {
SingleEmissionCheckScope guard(this);
cmeq(vd, vn, imm);
}
void Cmge(const VRegister& vd,
const VRegister& vn,
int imm) {
SingleEmissionCheckScope guard(this);
cmge(vd, vn, imm);
}
void Cmgt(const VRegister& vd,
const VRegister& vn,
int imm) {
SingleEmissionCheckScope guard(this);
cmgt(vd, vn, imm);
}
void Cmle(const VRegister& vd,
const VRegister& vn,
int imm) {
SingleEmissionCheckScope guard(this);
cmle(vd, vn, imm);
}
void Cmlt(const VRegister& vd,
const VRegister& vn,
int imm) {
SingleEmissionCheckScope guard(this);
cmlt(vd, vn, imm);
}
void Dup(const VRegister& vd,
const VRegister& vn,
int index) {
SingleEmissionCheckScope guard(this);
dup(vd, vn, index);
}
void Dup(const VRegister& vd,
const Register& rn) {
SingleEmissionCheckScope guard(this);
dup(vd, rn);
}
void Ext(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int index) {
SingleEmissionCheckScope guard(this);
ext(vd, vn, vm, index);
}
void Ins(const VRegister& vd,
int vd_index,
const VRegister& vn,
int vn_index) {
SingleEmissionCheckScope guard(this);
ins(vd, vd_index, vn, vn_index);
}
void Ins(const VRegister& vd,
int vd_index,
const Register& rn) {
SingleEmissionCheckScope guard(this);
ins(vd, vd_index, rn);
}
void Ld1(const VRegister& vt,
const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ld1(vt, src);
}
void Ld1(const VRegister& vt,
const VRegister& vt2,
const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ld1(vt, vt2, src);
}
void Ld1(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ld1(vt, vt2, vt3, src);
}
void Ld1(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ld1(vt, vt2, vt3, vt4, src);
}
void Ld1(const VRegister& vt,
int lane,
const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ld1(vt, lane, src);
}
void Ld1r(const VRegister& vt,
const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ld1r(vt, src);
}
void Ld2(const VRegister& vt,
const VRegister& vt2,
const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ld2(vt, vt2, src);
}
void Ld2(const VRegister& vt,
const VRegister& vt2,
int lane,
const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ld2(vt, vt2, lane, src);
}
void Ld2r(const VRegister& vt,
const VRegister& vt2,
const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ld2r(vt, vt2, src);
}
void Ld3(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ld3(vt, vt2, vt3, src);
}
void Ld3(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
int lane,
const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ld3(vt, vt2, vt3, lane, src);
}
void Ld3r(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ld3r(vt, vt2, vt3, src);
}
void Ld4(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ld4(vt, vt2, vt3, vt4, src);
}
void Ld4(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
int lane,
const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ld4(vt, vt2, vt3, vt4, lane, src);
}
void Ld4r(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
const MemOperand& src) {
SingleEmissionCheckScope guard(this);
ld4r(vt, vt2, vt3, vt4, src);
}
void Mov(const VRegister& vd,
int vd_index,
const VRegister& vn,
int vn_index) {
SingleEmissionCheckScope guard(this);
mov(vd, vd_index, vn, vn_index);
}
void Mov(const VRegister& vd,
const VRegister& vn,
int index) {
SingleEmissionCheckScope guard(this);
mov(vd, vn, index);
}
void Mov(const VRegister& vd,
int vd_index,
const Register& rn) {
SingleEmissionCheckScope guard(this);
mov(vd, vd_index, rn);
}
void Mov(const Register& rd,
const VRegister& vn,
int vn_index) {
SingleEmissionCheckScope guard(this);
mov(rd, vn, vn_index);
}
void Movi(const VRegister& vd,
uint64_t imm,
Shift shift = LSL,
int shift_amount = 0);
void Movi(const VRegister& vd, uint64_t hi, uint64_t lo);
void Mvni(const VRegister& vd,
const int imm8,
Shift shift = LSL,
const int shift_amount = 0) {
SingleEmissionCheckScope guard(this);
mvni(vd, imm8, shift, shift_amount);
}
void Orr(const VRegister& vd,
const int imm8,
const int left_shift = 0) {
SingleEmissionCheckScope guard(this);
orr(vd, imm8, left_shift);
}
void Scvtf(const VRegister& vd,
const VRegister& vn,
int fbits = 0) {
SingleEmissionCheckScope guard(this);
scvtf(vd, vn, fbits);
}
void Ucvtf(const VRegister& vd,
const VRegister& vn,
int fbits = 0) {
SingleEmissionCheckScope guard(this);
ucvtf(vd, vn, fbits);
}
void Fcvtzs(const VRegister& vd,
const VRegister& vn,
int fbits = 0) {
SingleEmissionCheckScope guard(this);
fcvtzs(vd, vn, fbits);
}
void Fcvtzu(const VRegister& vd,
const VRegister& vn,
int fbits = 0) {
SingleEmissionCheckScope guard(this);
fcvtzu(vd, vn, fbits);
}
void St1(const VRegister& vt,
const MemOperand& dst) {
SingleEmissionCheckScope guard(this);
st1(vt, dst);
}
void St1(const VRegister& vt,
const VRegister& vt2,
const MemOperand& dst) {
SingleEmissionCheckScope guard(this);
st1(vt, vt2, dst);
}
void St1(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const MemOperand& dst) {
SingleEmissionCheckScope guard(this);
st1(vt, vt2, vt3, dst);
}
void St1(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
const MemOperand& dst) {
SingleEmissionCheckScope guard(this);
st1(vt, vt2, vt3, vt4, dst);
}
void St1(const VRegister& vt,
int lane,
const MemOperand& dst) {
SingleEmissionCheckScope guard(this);
st1(vt, lane, dst);
}
void St2(const VRegister& vt,
const VRegister& vt2,
const MemOperand& dst) {
SingleEmissionCheckScope guard(this);
st2(vt, vt2, dst);
}
void St3(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const MemOperand& dst) {
SingleEmissionCheckScope guard(this);
st3(vt, vt2, vt3, dst);
}
void St4(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
const MemOperand& dst) {
SingleEmissionCheckScope guard(this);
st4(vt, vt2, vt3, vt4, dst);
}
void St2(const VRegister& vt,
const VRegister& vt2,
int lane,
const MemOperand& dst) {
SingleEmissionCheckScope guard(this);
st2(vt, vt2, lane, dst);
}
void St3(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
int lane,
const MemOperand& dst) {
SingleEmissionCheckScope guard(this);
st3(vt, vt2, vt3, lane, dst);
}
void St4(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
int lane,
const MemOperand& dst) {
SingleEmissionCheckScope guard(this);
st4(vt, vt2, vt3, vt4, lane, dst);
}
void Smov(const Register& rd,
const VRegister& vn,
int vn_index) {
SingleEmissionCheckScope guard(this);
smov(rd, vn, vn_index);
}
void Umov(const Register& rd,
const VRegister& vn,
int vn_index) {
SingleEmissionCheckScope guard(this);
umov(rd, vn, vn_index);
}
void Crc32b(const Register& rd,
const Register& rn,
const Register& rm) {
SingleEmissionCheckScope guard(this);
crc32b(rd, rn, rm);
}
void Crc32h(const Register& rd,
const Register& rn,
const Register& rm) {
SingleEmissionCheckScope guard(this);
crc32h(rd, rn, rm);
}
void Crc32w(const Register& rd,
const Register& rn,
const Register& rm) {
SingleEmissionCheckScope guard(this);
crc32w(rd, rn, rm);
}
void Crc32x(const Register& rd,
const Register& rn,
const Register& rm) {
SingleEmissionCheckScope guard(this);
crc32x(rd, rn, rm);
}
void Crc32cb(const Register& rd,
const Register& rn,
const Register& rm) {
SingleEmissionCheckScope guard(this);
crc32cb(rd, rn, rm);
}
void Crc32ch(const Register& rd,
const Register& rn,
const Register& rm) {
SingleEmissionCheckScope guard(this);
crc32ch(rd, rn, rm);
}
void Crc32cw(const Register& rd,
const Register& rn,
const Register& rm) {
SingleEmissionCheckScope guard(this);
crc32cw(rd, rn, rm);
}
void Crc32cx(const Register& rd,
const Register& rn,
const Register& rm) {
SingleEmissionCheckScope guard(this);
crc32cx(rd, rn, rm);
}
// Push the system stack pointer (sp) down to allow the same to be done to
// the current stack pointer (according to StackPointer()). This must be
// called _before_ accessing the memory.
//
// This is necessary when pushing or otherwise adding things to the stack, to
// satisfy the AAPCS64 constraint that the memory below the system stack
// pointer is not accessed.
//
// This method asserts that StackPointer() is not sp, since the call does
// not make sense in that context.
//
// TODO: This method can only accept values of 'space' that can be encoded in
// one instruction. Refer to the implementation for details.
void BumpSystemStackPointer(const Operand& space);
// Set the current stack pointer, but don't generate any code.
void SetStackPointer64(const Register& stack_pointer) {
VIXL_ASSERT(!TmpList()->IncludesAliasOf(stack_pointer));
sp_ = stack_pointer;
}
// Return the current stack pointer, as set by SetStackPointer.
const Register& StackPointer() const {
return sp_;
}
const Register& GetStackPointer64() const {
return sp_;
}
js::jit::RegisterOrSP getStackPointer() const {
return js::jit::RegisterOrSP(sp_.code());
}
CPURegList* TmpList() { return &tmp_list_; }
CPURegList* FPTmpList() { return &fptmp_list_; }
// Trace control when running the debug simulator.
//
// For example:
//
// __ Trace(LOG_REGS, TRACE_ENABLE);
// Will add registers to the trace if it wasn't already the case.
//
// __ Trace(LOG_DISASM, TRACE_DISABLE);
// Will stop logging disassembly. It has no effect if the disassembly wasn't
// already being logged.
void Trace(TraceParameters parameters, TraceCommand command);
// Log the requested data independently of what is being traced.
//
// For example:
//
// __ Log(LOG_FLAGS)
// Will output the flags.
void Log(TraceParameters parameters);
// Enable or disable instrumentation when an Instrument visitor is attached to
// the simulator.
void EnableInstrumentation();
void DisableInstrumentation();
// Add a marker to the instrumentation data produced by an Instrument visitor.
// The name is a two character string that will be attached to the marker in
// the output data.
void AnnotateInstrumentation(const char* marker_name);
private:
// The actual Push and Pop implementations. These don't generate any code
// other than that required for the push or pop. This allows
// (Push|Pop)CPURegList to bundle together setup code for a large block of
// registers.
//
// Note that size is per register, and is specified in bytes.
void PushHelper(int count, int size,
const CPURegister& src0, const CPURegister& src1,
const CPURegister& src2, const CPURegister& src3);
void PopHelper(int count, int size,
const CPURegister& dst0, const CPURegister& dst1,
const CPURegister& dst2, const CPURegister& dst3);
void Movi16bitHelper(const VRegister& vd, uint64_t imm);
void Movi32bitHelper(const VRegister& vd, uint64_t imm);
void Movi64bitHelper(const VRegister& vd, uint64_t imm);
// Perform necessary maintenance operations before a push or pop.
//
// Note that size is per register, and is specified in bytes.
void PrepareForPush(int count, int size);
void PrepareForPop(int count, int size);
// The actual implementation of load and store operations for CPURegList.
enum LoadStoreCPURegListAction {
kLoad,
kStore
};
void LoadStoreCPURegListHelper(LoadStoreCPURegListAction operation,
CPURegList registers,
const MemOperand& mem);
// Returns a MemOperand suitable for loading or storing a CPURegList at `dst`.
// This helper may allocate registers from `scratch_scope` and generate code
// to compute an intermediate address. The resulting MemOperand is only valid
// as long as `scratch_scope` remains valid.
MemOperand BaseMemOperandForLoadStoreCPURegList(
const CPURegList& registers,
const MemOperand& mem,
UseScratchRegisterScope* scratch_scope);
bool LabelIsOutOfRange(Label* label, ImmBranchType branch_type) {
return !Instruction::IsValidImmPCOffset(branch_type, nextOffset().getOffset() - label->offset());
}
// The register to use as a stack pointer for stack operations.
Register sp_;
// Scratch registers available for use by the MacroAssembler.
CPURegList tmp_list_;
CPURegList fptmp_list_;
ptrdiff_t checkpoint_;
ptrdiff_t recommended_checkpoint_;
};
// All Assembler emits MUST acquire/release the underlying code buffer. The
// helper scope below will do so and optionally ensure the buffer is big enough
// to receive the emit. It is possible to request the scope not to perform any
// checks (kNoCheck) if for example it is known in advance the buffer size is
// adequate or there is some other size checking mechanism in place.
class CodeBufferCheckScope {
public:
// Tell whether or not the scope needs to ensure the associated CodeBuffer
// has enough space for the requested size.
enum CheckPolicy {
kNoCheck,
kCheck
};
// Tell whether or not the scope should assert the amount of code emitted
// within the scope is consistent with the requested amount.
enum AssertPolicy {
kNoAssert, // No assert required.
kExactSize, // The code emitted must be exactly size bytes.
kMaximumSize // The code emitted must be at most size bytes.
};
CodeBufferCheckScope(Assembler* assm,
size_t size,
CheckPolicy check_policy = kCheck,
AssertPolicy assert_policy = kMaximumSize)
{ }
// This is a shortcut for CodeBufferCheckScope(assm, 0, kNoCheck, kNoAssert).
explicit CodeBufferCheckScope(Assembler* assm) {}
};
// Use this scope when you need a one-to-one mapping between methods and
// instructions. This scope prevents the MacroAssembler from being called and
// literal pools from being emitted. It also asserts the number of instructions
// emitted is what you specified when creating the scope.
// FIXME: Because of the disabled calls below, this class asserts nothing.
class InstructionAccurateScope : public CodeBufferCheckScope {
public:
InstructionAccurateScope(MacroAssembler* masm,
int64_t count,
AssertPolicy policy = kExactSize)
: CodeBufferCheckScope(masm,
(count * kInstructionSize),
kCheck,
policy) {
}
};
// This scope utility allows scratch registers to be managed safely. The
// MacroAssembler's TmpList() (and FPTmpList()) is used as a pool of scratch
// registers. These registers can be allocated on demand, and will be returned
// at the end of the scope.
//
// When the scope ends, the MacroAssembler's lists will be restored to their
// original state, even if the lists were modified by some other means.
class UseScratchRegisterScope {
public:
// This constructor implicitly calls the `Open` function to initialise the
// scope, so it is ready to use immediately after it has been constructed.
explicit UseScratchRegisterScope(MacroAssembler* masm);
// This constructor allows deferred and optional initialisation of the scope.
// The user is required to explicitly call the `Open` function before using
// the scope.
UseScratchRegisterScope();
// This function performs the actual initialisation work.
void Open(MacroAssembler* masm);
// The destructor always implicitly calls the `Close` function.
~UseScratchRegisterScope();
// This function performs the cleaning-up work. It must succeed even if the
// scope has not been opened. It is safe to call multiple times.
void Close();
bool IsAvailable(const CPURegister& reg) const;
// Take a register from the appropriate temps list. It will be returned
// automatically when the scope ends.
Register AcquireW() { return AcquireNextAvailable(available_).W(); }
Register AcquireX() { return AcquireNextAvailable(available_).X(); }
VRegister AcquireS() { return AcquireNextAvailable(availablefp_).S(); }
VRegister AcquireD() { return AcquireNextAvailable(availablefp_).D(); }
Register AcquireSameSizeAs(const Register& reg);
VRegister AcquireSameSizeAs(const VRegister& reg);
// Explicitly release an acquired (or excluded) register, putting it back in
// the appropriate temps list.
void Release(const CPURegister& reg);
// Make the specified registers available as scratch registers for the
// duration of this scope.
void Include(const CPURegList& list);
void Include(const Register& reg1,
const Register& reg2 = NoReg,
const Register& reg3 = NoReg,
const Register& reg4 = NoReg);
void Include(const VRegister& reg1,
const VRegister& reg2 = NoVReg,
const VRegister& reg3 = NoVReg,
const VRegister& reg4 = NoVReg);
// Make sure that the specified registers are not available in this scope.
// This can be used to prevent helper functions from using sensitive
// registers, for example.
void Exclude(const CPURegList& list);
void Exclude(const Register& reg1,
const Register& reg2 = NoReg,
const Register& reg3 = NoReg,
const Register& reg4 = NoReg);
void Exclude(const VRegister& reg1,
const VRegister& reg2 = NoVReg,
const VRegister& reg3 = NoVReg,
const VRegister& reg4 = NoVReg);
void Exclude(const CPURegister& reg1,
const CPURegister& reg2 = NoCPUReg,
const CPURegister& reg3 = NoCPUReg,
const CPURegister& reg4 = NoCPUReg);
// Prevent any scratch registers from being used in this scope.
void ExcludeAll();
private:
static CPURegister AcquireNextAvailable(CPURegList* available);
static void ReleaseByCode(CPURegList* available, int code);
static void ReleaseByRegList(CPURegList* available,
RegList regs);
static void IncludeByRegList(CPURegList* available,
RegList exclude);
static void ExcludeByRegList(CPURegList* available,
RegList exclude);
// Available scratch registers.
CPURegList* available_; // kRegister
CPURegList* availablefp_; // kVRegister
// The state of the available lists at the start of this scope.
RegList old_available_; // kRegister
RegList old_availablefp_; // kVRegister
#ifdef DEBUG
bool initialised_;
#endif
// Disallow copy constructor and operator=.
UseScratchRegisterScope(const UseScratchRegisterScope&) {
VIXL_UNREACHABLE();
}
void operator=(const UseScratchRegisterScope&) {
VIXL_UNREACHABLE();
}
};
} // namespace vixl
#endif // VIXL_A64_MACRO_ASSEMBLER_A64_H_
|