1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
|
// Copyright 2013, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "mozilla/DebugOnly.h"
#include "jit/arm64/vixl/Debugger-vixl.h"
#include "jit/arm64/vixl/MozCachingDecoder.h"
#include "jit/arm64/vixl/Simulator-vixl.h"
#include "jit/IonTypes.h"
#include "js/UniquePtr.h"
#include "js/Utility.h"
#include "threading/LockGuard.h"
#include "vm/JSContext.h"
#include "vm/Runtime.h"
js::jit::SimulatorProcess* js::jit::SimulatorProcess::singleton_ = nullptr;
namespace vixl {
using mozilla::DebugOnly;
using js::jit::ABIFunctionType;
using js::jit::JitActivation;
using js::jit::SimulatorProcess;
Simulator::Simulator(Decoder* decoder, FILE* stream)
: stream_(nullptr)
, print_disasm_(nullptr)
, instrumentation_(nullptr)
, stack_(nullptr)
, stack_limit_(nullptr)
, decoder_(nullptr)
, oom_(false)
{
this->init(decoder, stream);
// If this environment variable is present, trace the executed instructions.
// (Very helpful for debugging code generation crashes.)
if (getenv("VIXL_TRACE")) {
set_trace_parameters(LOG_DISASM);
}
}
Simulator::~Simulator() {
js_free(stack_);
stack_ = nullptr;
// The decoder may outlive the simulator.
if (print_disasm_) {
decoder_->RemoveVisitor(print_disasm_);
js_delete(print_disasm_);
print_disasm_ = nullptr;
}
if (instrumentation_) {
decoder_->RemoveVisitor(instrumentation_);
js_delete(instrumentation_);
instrumentation_ = nullptr;
}
}
void Simulator::ResetState() {
// Reset the system registers.
nzcv_ = SimSystemRegister::DefaultValueFor(NZCV);
fpcr_ = SimSystemRegister::DefaultValueFor(FPCR);
// Reset registers to 0.
pc_ = nullptr;
pc_modified_ = false;
for (unsigned i = 0; i < kNumberOfRegisters; i++) {
set_xreg(i, 0xbadbeef);
}
// Set FP registers to a value that is a NaN in both 32-bit and 64-bit FP.
uint64_t nan_bits = UINT64_C(0x7ff0dead7f8beef1);
VIXL_ASSERT(IsSignallingNaN(RawbitsToDouble(nan_bits & kDRegMask)));
VIXL_ASSERT(IsSignallingNaN(RawbitsToFloat(nan_bits & kSRegMask)));
for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
set_dreg_bits(i, nan_bits);
}
// Returning to address 0 exits the Simulator.
set_lr(kEndOfSimAddress);
}
void Simulator::init(Decoder* decoder, FILE* stream) {
// Ensure that shift operations act as the simulator expects.
VIXL_ASSERT((static_cast<int32_t>(-1) >> 1) == -1);
VIXL_ASSERT((static_cast<uint32_t>(-1) >> 1) == 0x7FFFFFFF);
instruction_stats_ = false;
// Set up the decoder.
decoder_ = decoder;
decoder_->AppendVisitor(this);
stream_ = stream;
print_disasm_ = js_new<PrintDisassembler>(stream_);
if (!print_disasm_) {
oom_ = true;
return;
}
set_coloured_trace(false);
trace_parameters_ = LOG_NONE;
ResetState();
// Allocate and set up the simulator stack.
stack_ = js_pod_malloc<byte>(stack_size_);
if (!stack_) {
oom_ = true;
return;
}
stack_limit_ = stack_ + stack_protection_size_;
// Configure the starting stack pointer.
// - Find the top of the stack.
byte * tos = stack_ + stack_size_;
// - There's a protection region at both ends of the stack.
tos -= stack_protection_size_;
// - The stack pointer must be 16-byte aligned.
tos = AlignDown(tos, 16);
set_sp(tos);
// Set the sample period to 10, as the VIXL examples and tests are short.
if (getenv("VIXL_STATS")) {
instrumentation_ = js_new<Instrument>("vixl_stats.csv", 10);
if (!instrumentation_) {
oom_ = true;
return;
}
}
// Print a warning about exclusive-access instructions, but only the first
// time they are encountered. This warning can be silenced using
// SilenceExclusiveAccessWarning().
print_exclusive_access_warning_ = true;
}
Simulator* Simulator::Current() {
JSContext* cx = js::TlsContext.get();
if (!cx) {
return nullptr;
}
JSRuntime* rt = cx->runtime();
if (!rt) {
return nullptr;
}
if (!js::CurrentThreadCanAccessRuntime(rt)) {
return nullptr;
}
return cx->simulator();
}
Simulator* Simulator::Create() {
Decoder *decoder = js_new<Decoder>();
if (!decoder)
return nullptr;
// FIXME: This just leaks the Decoder object for now, which is probably OK.
// FIXME: We should free it at some point.
// FIXME: Note that it can't be stored in the SimulatorRuntime due to lifetime conflicts.
js::UniquePtr<Simulator> sim;
if (getenv("USE_DEBUGGER") != nullptr) {
sim.reset(js_new<Debugger>(decoder, stdout));
} else {
sim.reset(js_new<Simulator>(decoder, stdout));
}
// Check if Simulator:init ran out of memory.
if (sim && sim->oom()) {
return nullptr;
}
#ifdef JS_CACHE_SIMULATOR_ARM64
// Register the simulator in the Simulator process to handle cache flushes
// across threads.
js::jit::AutoLockSimulatorCache alsc;
if (!SimulatorProcess::registerSimulator(sim.get())) {
return nullptr;
}
#endif
return sim.release();
}
void Simulator::Destroy(Simulator* sim) {
js_delete(sim);
}
void Simulator::ExecuteInstruction() {
// The program counter should always be aligned.
VIXL_ASSERT(IsWordAligned(pc_));
#ifdef JS_CACHE_SIMULATOR_ARM64
if (pendingCacheRequests) {
// We're here emulating the behavior of the membarrier carried over on
// real hardware does; see syscalls to membarrier in MozCpu-vixl.cpp.
// There's a slight difference that the simulator is not being
// interrupted: instead, we effectively run the icache flush request
// before executing the next instruction, which is close enough and
// sufficient for our use case.
js::jit::AutoLockSimulatorCache alsc;
FlushICache();
}
#endif
decoder_->Decode(pc_);
increment_pc();
}
uintptr_t Simulator::stackLimit() const {
return reinterpret_cast<uintptr_t>(stack_limit_);
}
uintptr_t* Simulator::addressOfStackLimit() {
return (uintptr_t*)&stack_limit_;
}
bool Simulator::overRecursed(uintptr_t newsp) const {
if (newsp == 0) {
newsp = get_sp();
}
return newsp <= stackLimit();
}
bool Simulator::overRecursedWithExtra(uint32_t extra) const {
uintptr_t newsp = get_sp() - extra;
return newsp <= stackLimit();
}
JS::ProfilingFrameIterator::RegisterState
Simulator::registerState()
{
JS::ProfilingFrameIterator::RegisterState state;
state.pc = (uint8_t*) get_pc();
state.fp = (uint8_t*) get_fp();
state.lr = (uint8_t*) get_lr();
state.sp = (uint8_t*) get_sp();
return state;
}
int64_t Simulator::call(uint8_t* entry, int argument_count, ...) {
va_list parameters;
va_start(parameters, argument_count);
// First eight arguments passed in registers.
VIXL_ASSERT(argument_count <= 8);
// This code should use the type of the called function
// (with templates, like the callVM machinery), but since the
// number of called functions is miniscule, their types have been
// divined from the number of arguments.
if (argument_count == 8) {
// EnterJitData::jitcode.
set_xreg(0, va_arg(parameters, int64_t));
// EnterJitData::maxArgc.
set_xreg(1, va_arg(parameters, unsigned));
// EnterJitData::maxArgv.
set_xreg(2, va_arg(parameters, int64_t));
// EnterJitData::osrFrame.
set_xreg(3, va_arg(parameters, int64_t));
// EnterJitData::calleeToken.
set_xreg(4, va_arg(parameters, int64_t));
// EnterJitData::scopeChain.
set_xreg(5, va_arg(parameters, int64_t));
// EnterJitData::osrNumStackValues.
set_xreg(6, va_arg(parameters, unsigned));
// Address of EnterJitData::result.
set_xreg(7, va_arg(parameters, int64_t));
} else if (argument_count == 2) {
// EntryArg* args
set_xreg(0, va_arg(parameters, int64_t));
// uint8_t* GlobalData
set_xreg(1, va_arg(parameters, int64_t));
} else if (argument_count == 1) { // irregexp
// InputOutputData& data
set_xreg(0, va_arg(parameters, int64_t));
} else if (argument_count == 0) { // testsJit.cpp
// accept.
} else {
MOZ_CRASH("Unknown number of arguments");
}
va_end(parameters);
// Call must transition back to native code on exit.
VIXL_ASSERT(get_lr() == int64_t(kEndOfSimAddress));
// Execute the simulation.
DebugOnly<int64_t> entryStack = get_sp();
RunFrom((Instruction*)entry);
DebugOnly<int64_t> exitStack = get_sp();
VIXL_ASSERT(entryStack == exitStack);
int64_t result = xreg(0);
if (getenv("USE_DEBUGGER")) {
printf("LEAVE\n");
}
return result;
}
// When the generated code calls a VM function (masm.callWithABI) we need to
// call that function instead of trying to execute it with the simulator
// (because it's x64 code instead of AArch64 code). We do that by redirecting the VM
// call to a svc (Supervisor Call) instruction that is handled by the
// simulator. We write the original destination of the jump just at a known
// offset from the svc instruction so the simulator knows what to call.
class Redirection
{
friend class Simulator;
Redirection(void* nativeFunction, ABIFunctionType type)
: nativeFunction_(nativeFunction),
type_(type),
next_(nullptr)
{
next_ = SimulatorProcess::redirection();
SimulatorProcess::setRedirection(this);
Instruction* instr = (Instruction*)(&svcInstruction_);
vixl::Assembler::svc(instr, kCallRtRedirected);
}
public:
void* addressOfSvcInstruction() { return &svcInstruction_; }
void* nativeFunction() const { return nativeFunction_; }
ABIFunctionType type() const { return type_; }
static Redirection* Get(void* nativeFunction, ABIFunctionType type) {
js::jit::AutoLockSimulatorCache alsr;
// TODO: Store srt_ in the simulator for this assertion.
// VIXL_ASSERT_IF(pt->simulator(), pt->simulator()->srt_ == srt);
Redirection* current = SimulatorProcess::redirection();
for (; current != nullptr; current = current->next_) {
if (current->nativeFunction_ == nativeFunction) {
VIXL_ASSERT(current->type() == type);
return current;
}
}
// Note: we can't use js_new here because the constructor is private.
js::AutoEnterOOMUnsafeRegion oomUnsafe;
Redirection* redir = js_pod_malloc<Redirection>(1);
if (!redir)
oomUnsafe.crash("Simulator redirection");
new(redir) Redirection(nativeFunction, type);
return redir;
}
static const Redirection* FromSvcInstruction(const Instruction* svcInstruction) {
const uint8_t* addrOfSvc = reinterpret_cast<const uint8_t*>(svcInstruction);
const uint8_t* addrOfRedirection = addrOfSvc - offsetof(Redirection, svcInstruction_);
return reinterpret_cast<const Redirection*>(addrOfRedirection);
}
private:
void* nativeFunction_;
uint32_t svcInstruction_;
ABIFunctionType type_;
Redirection* next_;
};
void* Simulator::RedirectNativeFunction(void* nativeFunction, ABIFunctionType type) {
Redirection* redirection = Redirection::Get(nativeFunction, type);
return redirection->addressOfSvcInstruction();
}
void Simulator::VisitException(const Instruction* instr) {
if (instr->InstructionBits() == UNDEFINED_INST_PATTERN) {
uint8_t* newPC;
if (js::wasm::HandleIllegalInstruction(registerState(), &newPC)) {
set_pc((Instruction*)newPC);
return;
}
DoUnreachable(instr);
}
switch (instr->Mask(ExceptionMask)) {
case BRK: {
int lowbit = ImmException_offset;
int highbit = ImmException_offset + ImmException_width - 1;
HostBreakpoint(instr->Bits(highbit, lowbit));
break;
}
case HLT:
switch (instr->ImmException()) {
case kTraceOpcode:
DoTrace(instr);
return;
case kLogOpcode:
DoLog(instr);
return;
case kPrintfOpcode:
DoPrintf(instr);
return;
default:
HostBreakpoint();
return;
}
case SVC:
// The SVC instruction is hijacked by the JIT as a pseudo-instruction
// causing the Simulator to execute host-native code for callWithABI.
switch (instr->ImmException()) {
case kCallRtRedirected:
VisitCallRedirection(instr);
return;
case kMarkStackPointer: {
js::AutoEnterOOMUnsafeRegion oomUnsafe;
if (!spStack_.append(get_sp()))
oomUnsafe.crash("tracking stack for ARM64 simulator");
return;
}
case kCheckStackPointer: {
DebugOnly<int64_t> current = get_sp();
DebugOnly<int64_t> expected = spStack_.popCopy();
VIXL_ASSERT(current == expected);
return;
}
default:
VIXL_UNIMPLEMENTED();
}
break;
default:
VIXL_UNIMPLEMENTED();
}
}
void Simulator::setGPR32Result(int32_t result) {
set_wreg(0, result);
}
void Simulator::setGPR64Result(int64_t result) {
set_xreg(0, result);
}
void Simulator::setFP32Result(float result) {
set_sreg(0, result);
}
void Simulator::setFP64Result(double result) {
set_dreg(0, result);
}
typedef int64_t (*Prototype_General0)();
typedef int64_t (*Prototype_General1)(int64_t arg0);
typedef int64_t (*Prototype_General2)(int64_t arg0, int64_t arg1);
typedef int64_t (*Prototype_General3)(int64_t arg0, int64_t arg1, int64_t arg2);
typedef int64_t (*Prototype_General4)(int64_t arg0, int64_t arg1, int64_t arg2, int64_t arg3);
typedef int64_t (*Prototype_General5)(int64_t arg0, int64_t arg1, int64_t arg2, int64_t arg3,
int64_t arg4);
typedef int64_t (*Prototype_General6)(int64_t arg0, int64_t arg1, int64_t arg2, int64_t arg3,
int64_t arg4, int64_t arg5);
typedef int64_t (*Prototype_General7)(int64_t arg0, int64_t arg1, int64_t arg2, int64_t arg3,
int64_t arg4, int64_t arg5, int64_t arg6);
typedef int64_t (*Prototype_General8)(int64_t arg0, int64_t arg1, int64_t arg2, int64_t arg3,
int64_t arg4, int64_t arg5, int64_t arg6, int64_t arg7);
typedef int64_t (*Prototype_GeneralGeneralGeneralInt64)(int64_t arg0, int64_t arg1, int64_t arg2,
int64_t arg3);
typedef int64_t (*Prototype_GeneralGeneralInt64Int64)(int64_t arg0, int64_t arg1, int64_t arg2,
int64_t arg3);
typedef int64_t (*Prototype_Int_Double)(double arg0);
typedef int64_t (*Prototype_Int_IntDouble)(int64_t arg0, double arg1);
typedef int64_t (*Prototype_Int_DoubleInt)(double arg0, int64_t arg1);
typedef int64_t (*Prototype_Int_DoubleIntInt)(double arg0, uint64_t arg1, uint64_t arg2);
typedef int64_t (*Prototype_Int_IntDoubleIntInt)(uint64_t arg0, double arg1,
uint64_t arg2, uint64_t arg3);
typedef float (*Prototype_Float32_Float32)(float arg0);
typedef int64_t (*Prototype_Int_Float32)(float arg0);
typedef float (*Prototype_Float32_Float32Float32)(float arg0, float arg1);
typedef double (*Prototype_Double_None)();
typedef double (*Prototype_Double_Double)(double arg0);
typedef double (*Prototype_Double_Int)(int64_t arg0);
typedef double (*Prototype_Double_DoubleInt)(double arg0, int64_t arg1);
typedef double (*Prototype_Double_IntDouble)(int64_t arg0, double arg1);
typedef double (*Prototype_Double_DoubleDouble)(double arg0, double arg1);
typedef double (*Prototype_Double_DoubleDoubleDouble)(double arg0, double arg1, double arg2);
typedef double (*Prototype_Double_DoubleDoubleDoubleDouble)(double arg0, double arg1,
double arg2, double arg3);
typedef int32_t (*Prototype_Int32_General)(int64_t);
typedef int32_t (*Prototype_Int32_GeneralInt32)(int64_t, int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt32Int32)(int64_t, int32_t, int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32)(int64_t,
int32_t,
int32_t,
int32_t,
int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32Int32)(int64_t,
int32_t,
int32_t,
int32_t,
int32_t,
int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32General)(int64_t,
int32_t,
int32_t,
int32_t,
int64_t);
typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int64)(int64_t,
int32_t,
int32_t,
int64_t);
typedef int32_t (*Prototype_Int32_GeneralInt32Int32General)(int64_t,
int32_t,
int32_t,
int64_t);
typedef int32_t (*Prototype_Int32_GeneralInt32Int64Int64)(int64_t,
int32_t,
int64_t,
int64_t);
typedef int32_t (*Prototype_Int32_GeneralInt32GeneralInt32)(int64_t,
int32_t,
int64_t,
int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt32GeneralInt32Int32)(int64_t,
int32_t,
int64_t,
int32_t,
int32_t);
typedef int32_t (*Prototype_Int32_GeneralGeneral)(int64_t, int64_t);
typedef int32_t (*Prototype_Int32_GeneralGeneralInt32Int32)(int64_t,
int64_t,
int32_t,
int32_t);
typedef int64_t (*Prototype_General_GeneralInt32)(int64_t, int32_t);
typedef int64_t (*Prototype_General_GeneralInt32Int32)(int64_t,
int32_t,
int32_t);
typedef int64_t (*Prototype_General_GeneralInt32General)(int64_t,
int32_t,
int64_t);
// Simulator support for callWithABI().
void
Simulator::VisitCallRedirection(const Instruction* instr)
{
VIXL_ASSERT(instr->Mask(ExceptionMask) == SVC);
VIXL_ASSERT(instr->ImmException() == kCallRtRedirected);
const Redirection* redir = Redirection::FromSvcInstruction(instr);
uintptr_t nativeFn = reinterpret_cast<uintptr_t>(redir->nativeFunction());
// Stack must be aligned prior to the call.
// FIXME: It's actually our job to perform the alignment...
//VIXL_ASSERT((xreg(31, Reg31IsStackPointer) & (StackAlignment - 1)) == 0);
// Used to assert that callee-saved registers are preserved.
DebugOnly<int64_t> x19 = xreg(19);
DebugOnly<int64_t> x20 = xreg(20);
DebugOnly<int64_t> x21 = xreg(21);
DebugOnly<int64_t> x22 = xreg(22);
DebugOnly<int64_t> x23 = xreg(23);
DebugOnly<int64_t> x24 = xreg(24);
DebugOnly<int64_t> x25 = xreg(25);
DebugOnly<int64_t> x26 = xreg(26);
DebugOnly<int64_t> x27 = xreg(27);
DebugOnly<int64_t> x28 = xreg(28);
DebugOnly<int64_t> x29 = xreg(29);
DebugOnly<int64_t> savedSP = get_sp();
// Remember LR for returning from the "call".
int64_t savedLR = xreg(30);
// Allow recursive Simulator calls: returning from the call must stop
// the simulation and transition back to native Simulator code.
set_xreg(30, int64_t(kEndOfSimAddress));
// Store argument register values in local variables for ease of use below.
int64_t x0 = xreg(0);
int64_t x1 = xreg(1);
int64_t x2 = xreg(2);
int64_t x3 = xreg(3);
int64_t x4 = xreg(4);
int64_t x5 = xreg(5);
int64_t x6 = xreg(6);
int64_t x7 = xreg(7);
double d0 = dreg(0);
double d1 = dreg(1);
double d2 = dreg(2);
double d3 = dreg(3);
float s0 = sreg(0);
float s1 = sreg(1);
// Dispatch the call and set the return value.
switch (redir->type()) {
// Cases with int64_t return type.
case js::jit::Args_General0: {
int64_t ret = reinterpret_cast<Prototype_General0>(nativeFn)();
setGPR64Result(ret);
break;
}
case js::jit::Args_General1: {
int64_t ret = reinterpret_cast<Prototype_General1>(nativeFn)(x0);
setGPR64Result(ret);
break;
}
case js::jit::Args_General2: {
int64_t ret = reinterpret_cast<Prototype_General2>(nativeFn)(x0, x1);
setGPR64Result(ret);
break;
}
case js::jit::Args_General3: {
int64_t ret = reinterpret_cast<Prototype_General3>(nativeFn)(x0, x1, x2);
setGPR64Result(ret);
break;
}
case js::jit::Args_General4: {
int64_t ret = reinterpret_cast<Prototype_General4>(nativeFn)(x0, x1, x2, x3);
setGPR64Result(ret);
break;
}
case js::jit::Args_General5: {
int64_t ret = reinterpret_cast<Prototype_General5>(nativeFn)(x0, x1, x2, x3, x4);
setGPR64Result(ret);
break;
}
case js::jit::Args_General6: {
int64_t ret = reinterpret_cast<Prototype_General6>(nativeFn)(x0, x1, x2, x3, x4, x5);
setGPR64Result(ret);
break;
}
case js::jit::Args_General7: {
int64_t ret = reinterpret_cast<Prototype_General7>(nativeFn)(x0, x1, x2, x3, x4, x5, x6);
setGPR64Result(ret);
break;
}
case js::jit::Args_General8: {
int64_t ret = reinterpret_cast<Prototype_General8>(nativeFn)(x0, x1, x2, x3, x4, x5, x6, x7);
setGPR64Result(ret);
break;
}
case js::jit::Args_Int_GeneralGeneralGeneralInt64: {
int64_t ret = reinterpret_cast<Prototype_GeneralGeneralGeneralInt64>(nativeFn)(x0, x1, x2, x3);
setGPR64Result(ret);
break;
}
case js::jit::Args_Int_GeneralGeneralInt64Int64: {
int64_t ret = reinterpret_cast<Prototype_GeneralGeneralInt64Int64>(nativeFn)(x0, x1, x2, x3);
setGPR64Result(ret);
break;
}
// Cases with GPR return type. This can be int32 or int64, but int64 is a safer assumption.
case js::jit::Args_Int_Double: {
int64_t ret = reinterpret_cast<Prototype_Int_Double>(nativeFn)(d0);
setGPR64Result(ret);
break;
}
case js::jit::Args_Int_IntDouble: {
int64_t ret = reinterpret_cast<Prototype_Int_IntDouble>(nativeFn)(x0, d0);
setGPR64Result(ret);
break;
}
case js::jit::Args_Int_DoubleInt: {
int64_t ret = reinterpret_cast<Prototype_Int_DoubleInt>(nativeFn)(d0, x0);
setGPR64Result(ret);
break;
}
case js::jit::Args_Int_IntDoubleIntInt: {
int64_t ret = reinterpret_cast<Prototype_Int_IntDoubleIntInt>(nativeFn)(x0, d0, x1, x2);
setGPR64Result(ret);
break;
}
case js::jit::Args_Int_DoubleIntInt: {
int64_t ret = reinterpret_cast<Prototype_Int_DoubleIntInt>(nativeFn)(d0, x0, x1);
setGPR64Result(ret);
break;
}
// Cases with float return type.
case js::jit::Args_Float32_Float32: {
float ret = reinterpret_cast<Prototype_Float32_Float32>(nativeFn)(s0);
setFP32Result(ret);
break;
}
case js::jit::Args_Int_Float32: {
int64_t ret = reinterpret_cast<Prototype_Int_Float32>(nativeFn)(s0);
setGPR64Result(ret);
break;
}
case js::jit::Args_Float32_Float32Float32: {
float ret = reinterpret_cast<Prototype_Float32_Float32Float32>(nativeFn)(s0, s1);
setFP32Result(ret);
break;
}
// Cases with double return type.
case js::jit::Args_Double_None: {
double ret = reinterpret_cast<Prototype_Double_None>(nativeFn)();
setFP64Result(ret);
break;
}
case js::jit::Args_Double_Double: {
double ret = reinterpret_cast<Prototype_Double_Double>(nativeFn)(d0);
setFP64Result(ret);
break;
}
case js::jit::Args_Double_Int: {
double ret = reinterpret_cast<Prototype_Double_Int>(nativeFn)(x0);
setFP64Result(ret);
break;
}
case js::jit::Args_Double_DoubleInt: {
double ret = reinterpret_cast<Prototype_Double_DoubleInt>(nativeFn)(d0, x0);
setFP64Result(ret);
break;
}
case js::jit::Args_Double_DoubleDouble: {
double ret = reinterpret_cast<Prototype_Double_DoubleDouble>(nativeFn)(d0, d1);
setFP64Result(ret);
break;
}
case js::jit::Args_Double_DoubleDoubleDouble: {
double ret = reinterpret_cast<Prototype_Double_DoubleDoubleDouble>(nativeFn)(d0, d1, d2);
setFP64Result(ret);
break;
}
case js::jit::Args_Double_DoubleDoubleDoubleDouble: {
double ret = reinterpret_cast<Prototype_Double_DoubleDoubleDoubleDouble>(nativeFn)(d0, d1, d2, d3);
setFP64Result(ret);
break;
}
case js::jit::Args_Double_IntDouble: {
double ret = reinterpret_cast<Prototype_Double_IntDouble>(nativeFn)(x0, d0);
setFP64Result(ret);
break;
}
case js::jit::Args_Int32_General: {
int32_t ret = reinterpret_cast<Prototype_Int32_General>(nativeFn)(x0);
setGPR32Result(ret);
break;
}
case js::jit::Args_Int32_GeneralInt32: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt32>(nativeFn)(x0, x1);
setGPR32Result(ret);
break;
}
case js::jit::Args_Int32_GeneralInt32Int32: {
int32_t ret = reinterpret_cast<Prototype_Int32_GeneralInt32Int32>(
nativeFn)(x0, x1, x2);
setGPR32Result(ret);
break;
}
case js::jit::Args_Int32_GeneralInt32Int32Int32Int32: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int32Int32>(
nativeFn)(x0, x1, x2, x3, x4);
setGPR32Result(ret);
break;
}
case js::jit::Args_Int32_GeneralInt32Int32Int32Int32Int32: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int32Int32Int32>(
nativeFn)(x0, x1, x2, x3, x4, x5);
setGPR32Result(ret);
break;
}
case js::jit::Args_Int32_GeneralInt32Int32Int32General: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int32General>(
nativeFn)(x0, x1, x2, x3, x4);
setGPR32Result(ret);
break;
}
case js::jit::Args_Int32_GeneralInt32Int32Int64: {
int32_t ret = reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int64>(
nativeFn)(x0, x1, x2, x3);
setGPR32Result(ret);
break;
}
case js::jit::Args_Int32_GeneralInt32Int32General: {
int32_t ret = reinterpret_cast<Prototype_Int32_GeneralInt32Int32General>(
nativeFn)(x0, x1, x2, x3);
setGPR32Result(ret);
break;
}
case js::jit::Args_Int32_GeneralInt32Int64Int64: {
int32_t ret = reinterpret_cast<Prototype_Int32_GeneralInt32Int64Int64>(
nativeFn)(x0, x1, x2, x3);
setGPR32Result(ret);
break;
}
case js::jit::Args_Int32_GeneralInt32GeneralInt32: {
int32_t ret = reinterpret_cast<Prototype_Int32_GeneralInt32GeneralInt32>(
nativeFn)(x0, x1, x2, x3);
setGPR32Result(ret);
break;
}
case js::jit::Args_Int32_GeneralInt32GeneralInt32Int32: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt32GeneralInt32Int32>(
nativeFn)(x0, x1, x2, x3, x4);
setGPR32Result(ret);
break;
}
case js::jit::Args_Int32_GeneralGeneral: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralGeneral>(nativeFn)(x0, x1);
setGPR32Result(ret);
break;
}
case js::jit::Args_Int32_GeneralGeneralInt32Int32: {
int32_t ret = reinterpret_cast<Prototype_Int32_GeneralGeneralInt32Int32>(
nativeFn)(x0, x1, x2, x3);
setGPR32Result(ret);
break;
}
case js::jit::Args_General_GeneralInt32: {
int64_t ret =
reinterpret_cast<Prototype_General_GeneralInt32>(nativeFn)(x0, x1);
setGPR64Result(ret);
break;
}
case js::jit::Args_General_GeneralInt32Int32: {
int64_t ret = reinterpret_cast<Prototype_General_GeneralInt32Int32>(
nativeFn)(x0, x1, x2);
setGPR64Result(ret);
break;
}
case js::jit::Args_General_GeneralInt32General: {
int64_t ret =
reinterpret_cast<Prototype_General_GeneralInt32General>(
nativeFn)(x0, x1, x2);
setGPR64Result(ret);
break;
}
default:
MOZ_CRASH("Unknown function type.");
}
// Nuke the volatile registers. x0-x7 are used as result registers, but except
// for x0, none are used in the above signatures.
for (int i = 1; i <= 18; i++) {
// Code feed 1 bad data
set_xreg(i, int64_t(0xc0defeed1badda7a));
}
// Assert that callee-saved registers are unchanged.
VIXL_ASSERT(xreg(19) == x19);
VIXL_ASSERT(xreg(20) == x20);
VIXL_ASSERT(xreg(21) == x21);
VIXL_ASSERT(xreg(22) == x22);
VIXL_ASSERT(xreg(23) == x23);
VIXL_ASSERT(xreg(24) == x24);
VIXL_ASSERT(xreg(25) == x25);
VIXL_ASSERT(xreg(26) == x26);
VIXL_ASSERT(xreg(27) == x27);
VIXL_ASSERT(xreg(28) == x28);
VIXL_ASSERT(xreg(29) == x29);
// Assert that the stack is unchanged.
VIXL_ASSERT(savedSP == get_sp());
// Simulate a return.
set_lr(savedLR);
set_pc((Instruction*)savedLR);
if (getenv("USE_DEBUGGER"))
printf("SVCRET\n");
}
#ifdef JS_CACHE_SIMULATOR_ARM64
void
Simulator::FlushICache()
{
// Flush the caches recorded by the current thread as well as what got
// recorded from other threads before this call.
auto& vec = SimulatorProcess::getICacheFlushes(this);
for (auto& flush : vec) {
decoder_->FlushICache(flush.start, flush.length);
}
vec.clear();
pendingCacheRequests = false;
}
void CachingDecoder::Decode(const Instruction* instr) {
InstDecodedKind state;
if (lastPage_ && lastPage_->contains(instr)) {
state = lastPage_->decode(instr);
} else {
uintptr_t key = SinglePageDecodeCache::PageStart(instr);
ICacheMap::AddPtr p = iCache_.lookupForAdd(key);
if (p) {
lastPage_ = p->value();
state = lastPage_->decode(instr);
} else {
js::AutoEnterOOMUnsafeRegion oomUnsafe;
SinglePageDecodeCache* newPage = js_new<SinglePageDecodeCache>(instr);
if (!newPage || !iCache_.add(p, key, newPage)) {
oomUnsafe.crash("Simulator SinglePageDecodeCache");
}
lastPage_ = newPage;
state = InstDecodedKind::NotDecodedYet;
}
}
switch (state) {
case InstDecodedKind::NotDecodedYet: {
cachingDecoder_.setDecodePtr(lastPage_->decodePtr(instr));
this->Decoder::Decode(instr);
break;
}
#define CASE(A) \
case InstDecodedKind::A: { \
Visit##A(instr); \
break; \
}
VISITOR_LIST(CASE)
#undef CASE
}
}
void CachingDecoder::FlushICache(void* start, size_t size) {
MOZ_ASSERT(uintptr_t(start) % vixl::kInstructionSize == 0);
MOZ_ASSERT(size % vixl::kInstructionSize == 0);
const uint8_t* it = reinterpret_cast<const uint8_t*>(start);
const uint8_t* end = it + size;
SinglePageDecodeCache* last = nullptr;
for (; it < end; it += vixl::kInstructionSize) {
auto instr = reinterpret_cast<const Instruction*>(it);
if (last && last->contains(instr)) {
last->clearDecode(instr);
} else {
uintptr_t key = SinglePageDecodeCache::PageStart(instr);
ICacheMap::Ptr p = iCache_.lookup(key);
if (p) {
last = p->value();
last->clearDecode(instr);
}
}
}
}
#endif
} // namespace vixl
namespace js {
namespace jit {
#ifdef JS_CACHE_SIMULATOR_ARM64
void SimulatorProcess::recordICacheFlush(void* start, size_t length) {
singleton_->lock_.assertOwnedByCurrentThread();
AutoEnterOOMUnsafeRegion oomUnsafe;
ICacheFlush range{start, length};
for (auto& s : singleton_->pendingFlushes_) {
if (!s.records.append(range)) {
oomUnsafe.crash("Simulator recordFlushICache");
}
}
}
void SimulatorProcess::membarrier() {
singleton_->lock_.assertOwnedByCurrentThread();
for (auto& s : singleton_->pendingFlushes_) {
s.thread->pendingCacheRequests = true;
}
}
SimulatorProcess::ICacheFlushes& SimulatorProcess::getICacheFlushes(Simulator* sim) {
singleton_->lock_.assertOwnedByCurrentThread();
for (auto& s : singleton_->pendingFlushes_) {
if (s.thread == sim) {
return s.records;
}
}
MOZ_CRASH("Simulator is not registered in the SimulatorProcess");
}
bool SimulatorProcess::registerSimulator(Simulator* sim) {
singleton_->lock_.assertOwnedByCurrentThread();
ICacheFlushes empty;
SimFlushes simFlushes{sim, std::move(empty)};
return singleton_->pendingFlushes_.append(std::move(simFlushes));
}
void SimulatorProcess::unregisterSimulator(Simulator* sim) {
singleton_->lock_.assertOwnedByCurrentThread();
for (auto& s : singleton_->pendingFlushes_) {
if (s.thread == sim) {
singleton_->pendingFlushes_.erase(&s);
return;
}
}
MOZ_CRASH("Simulator is not registered in the SimulatorProcess");
}
#endif // !JS_CACHE_SIMULATOR_ARM64
} // namespace jit
} // namespace js
vixl::Simulator* JSContext::simulator() const {
return simulator_;
}
|