summaryrefslogtreecommitdiffstats
path: root/js/src/jit/arm64/vixl/Simulator-vixl.cpp
blob: c06572370a6c2fa2d9ce9382f977a11741c6bb14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//   * Redistributions of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//   * Redistributions in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//   * Neither the name of ARM Limited nor the names of its contributors may be
//     used to endorse or promote products derived from this software without
//     specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "js-config.h"

#ifdef JS_SIMULATOR_ARM64

#include "jit/arm64/vixl/Simulator-vixl.h"

#include <cmath>
#include <string.h>

#include "jit/AtomicOperations.h"

namespace vixl {

const Instruction* Simulator::kEndOfSimAddress = NULL;

void SimSystemRegister::SetBits(int msb, int lsb, uint32_t bits) {
  int width = msb - lsb + 1;
  VIXL_ASSERT(IsUintN(width, bits) || IsIntN(width, bits));

  bits <<= lsb;
  uint32_t mask = ((1 << width) - 1) << lsb;
  VIXL_ASSERT((mask & write_ignore_mask_) == 0);

  value_ = (value_ & ~mask) | (bits & mask);
}


SimSystemRegister SimSystemRegister::DefaultValueFor(SystemRegister id) {
  switch (id) {
    case NZCV:
      return SimSystemRegister(0x00000000, NZCVWriteIgnoreMask);
    case FPCR:
      return SimSystemRegister(0x00000000, FPCRWriteIgnoreMask);
    default:
      VIXL_UNREACHABLE();
      return SimSystemRegister();
  }
}


void Simulator::Run() {
  pc_modified_ = false;
  while (pc_ != kEndOfSimAddress) {
    ExecuteInstruction();
    LogAllWrittenRegisters();
  }
}


void Simulator::RunFrom(const Instruction* first) {
  set_pc(first);
  Run();
}


const char* Simulator::xreg_names[] = {
"x0",  "x1",  "x2",  "x3",  "x4",  "x5",  "x6",  "x7",
"x8",  "x9",  "x10", "x11", "x12", "x13", "x14", "x15",
"x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
"x24", "x25", "x26", "x27", "x28", "x29", "lr",  "xzr", "sp"};

const char* Simulator::wreg_names[] = {
"w0",  "w1",  "w2",  "w3",  "w4",  "w5",  "w6",  "w7",
"w8",  "w9",  "w10", "w11", "w12", "w13", "w14", "w15",
"w16", "w17", "w18", "w19", "w20", "w21", "w22", "w23",
"w24", "w25", "w26", "w27", "w28", "w29", "w30", "wzr", "wsp"};

const char* Simulator::sreg_names[] = {
"s0",  "s1",  "s2",  "s3",  "s4",  "s5",  "s6",  "s7",
"s8",  "s9",  "s10", "s11", "s12", "s13", "s14", "s15",
"s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
"s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31"};

const char* Simulator::dreg_names[] = {
"d0",  "d1",  "d2",  "d3",  "d4",  "d5",  "d6",  "d7",
"d8",  "d9",  "d10", "d11", "d12", "d13", "d14", "d15",
"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
"d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"};

const char* Simulator::vreg_names[] = {
"v0",  "v1",  "v2",  "v3",  "v4",  "v5",  "v6",  "v7",
"v8",  "v9",  "v10", "v11", "v12", "v13", "v14", "v15",
"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"};



const char* Simulator::WRegNameForCode(unsigned code, Reg31Mode mode) {
  VIXL_ASSERT(code < kNumberOfRegisters);
  // If the code represents the stack pointer, index the name after zr.
  if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) {
    code = kZeroRegCode + 1;
  }
  return wreg_names[code];
}


const char* Simulator::XRegNameForCode(unsigned code, Reg31Mode mode) {
  VIXL_ASSERT(code < kNumberOfRegisters);
  // If the code represents the stack pointer, index the name after zr.
  if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) {
    code = kZeroRegCode + 1;
  }
  return xreg_names[code];
}


const char* Simulator::SRegNameForCode(unsigned code) {
  VIXL_ASSERT(code < kNumberOfFPRegisters);
  return sreg_names[code];
}


const char* Simulator::DRegNameForCode(unsigned code) {
  VIXL_ASSERT(code < kNumberOfFPRegisters);
  return dreg_names[code];
}


const char* Simulator::VRegNameForCode(unsigned code) {
  VIXL_ASSERT(code < kNumberOfVRegisters);
  return vreg_names[code];
}


#define COLOUR(colour_code)       "\033[0;" colour_code "m"
#define COLOUR_BOLD(colour_code)  "\033[1;" colour_code "m"
#define NORMAL  ""
#define GREY    "30"
#define RED     "31"
#define GREEN   "32"
#define YELLOW  "33"
#define BLUE    "34"
#define MAGENTA "35"
#define CYAN    "36"
#define WHITE   "37"
void Simulator::set_coloured_trace(bool value) {
  coloured_trace_ = value;

  clr_normal          = value ? COLOUR(NORMAL)        : "";
  clr_flag_name       = value ? COLOUR_BOLD(WHITE)    : "";
  clr_flag_value      = value ? COLOUR(NORMAL)        : "";
  clr_reg_name        = value ? COLOUR_BOLD(CYAN)     : "";
  clr_reg_value       = value ? COLOUR(CYAN)          : "";
  clr_vreg_name       = value ? COLOUR_BOLD(MAGENTA)  : "";
  clr_vreg_value      = value ? COLOUR(MAGENTA)       : "";
  clr_memory_address  = value ? COLOUR_BOLD(BLUE)     : "";
  clr_warning         = value ? COLOUR_BOLD(YELLOW)   : "";
  clr_warning_message = value ? COLOUR(YELLOW)        : "";
  clr_printf          = value ? COLOUR(GREEN)         : "";
}
#undef COLOUR
#undef COLOUR_BOLD
#undef NORMAL
#undef GREY
#undef RED
#undef GREEN
#undef YELLOW
#undef BLUE
#undef MAGENTA
#undef CYAN
#undef WHITE


void Simulator::set_trace_parameters(int parameters) {
  bool disasm_before = trace_parameters_ & LOG_DISASM;
  trace_parameters_ = parameters;
  bool disasm_after = trace_parameters_ & LOG_DISASM;

  if (disasm_before != disasm_after) {
    if (disasm_after) {
      decoder_->InsertVisitorBefore(print_disasm_, this);
    } else {
      decoder_->RemoveVisitor(print_disasm_);
    }
  }
}


void Simulator::set_instruction_stats(bool value) {
  if (instrumentation_ == nullptr) {
    return;
  }

  if (value != instruction_stats_) {
    if (value) {
      decoder_->AppendVisitor(instrumentation_);
    } else {
      decoder_->RemoveVisitor(instrumentation_);
    }
    instruction_stats_ = value;
  }
}

// Helpers ---------------------------------------------------------------------
uint64_t Simulator::AddWithCarry(unsigned reg_size,
                                 bool set_flags,
                                 uint64_t left,
                                 uint64_t right,
                                 int carry_in) {
  VIXL_ASSERT((carry_in == 0) || (carry_in == 1));
  VIXL_ASSERT((reg_size == kXRegSize) || (reg_size == kWRegSize));

  uint64_t max_uint = (reg_size == kWRegSize) ? kWMaxUInt : kXMaxUInt;
  uint64_t reg_mask = (reg_size == kWRegSize) ? kWRegMask : kXRegMask;
  uint64_t sign_mask = (reg_size == kWRegSize) ? kWSignMask : kXSignMask;

  left &= reg_mask;
  right &= reg_mask;
  uint64_t result = (left + right + carry_in) & reg_mask;

  if (set_flags) {
    nzcv().SetN(CalcNFlag(result, reg_size));
    nzcv().SetZ(CalcZFlag(result));

    // Compute the C flag by comparing the result to the max unsigned integer.
    uint64_t max_uint_2op = max_uint - carry_in;
    bool C = (left > max_uint_2op) || ((max_uint_2op - left) < right);
    nzcv().SetC(C ? 1 : 0);

    // Overflow iff the sign bit is the same for the two inputs and different
    // for the result.
    uint64_t left_sign = left & sign_mask;
    uint64_t right_sign = right & sign_mask;
    uint64_t result_sign = result & sign_mask;
    bool V = (left_sign == right_sign) && (left_sign != result_sign);
    nzcv().SetV(V ? 1 : 0);

    LogSystemRegister(NZCV);
  }
  return result;
}


int64_t Simulator::ShiftOperand(unsigned reg_size,
                                int64_t value,
                                Shift shift_type,
                                unsigned amount) {
  if (amount == 0) {
    return value;
  }
  int64_t mask = reg_size == kXRegSize ? kXRegMask : kWRegMask;
  switch (shift_type) {
    case LSL:
      return (value << amount) & mask;
    case LSR:
      return static_cast<uint64_t>(value) >> amount;
    case ASR: {
      // Shift used to restore the sign.
      unsigned s_shift = kXRegSize - reg_size;
      // Value with its sign restored.
      int64_t s_value = (value << s_shift) >> s_shift;
      return (s_value >> amount) & mask;
    }
    case ROR: {
      if (reg_size == kWRegSize) {
        value &= kWRegMask;
      }
      return (static_cast<uint64_t>(value) >> amount) |
             ((value & ((INT64_C(1) << amount) - 1)) <<
              (reg_size - amount));
    }
    default:
      VIXL_UNIMPLEMENTED();
      return 0;
  }
}


int64_t Simulator::ExtendValue(unsigned reg_size,
                               int64_t value,
                               Extend extend_type,
                               unsigned left_shift) {
  switch (extend_type) {
    case UXTB:
      value &= kByteMask;
      break;
    case UXTH:
      value &= kHalfWordMask;
      break;
    case UXTW:
      value &= kWordMask;
      break;
    case SXTB:
      value = (value << 56) >> 56;
      break;
    case SXTH:
      value = (value << 48) >> 48;
      break;
    case SXTW:
      value = (value << 32) >> 32;
      break;
    case UXTX:
    case SXTX:
      break;
    default:
      VIXL_UNREACHABLE();
  }
  int64_t mask = (reg_size == kXRegSize) ? kXRegMask : kWRegMask;
  return (value << left_shift) & mask;
}


void Simulator::FPCompare(double val0, double val1, FPTrapFlags trap) {
  AssertSupportedFPCR();

  // TODO: This assumes that the C++ implementation handles comparisons in the
  // way that we expect (as per AssertSupportedFPCR()).
  bool process_exception = false;
  if ((std::isnan(val0) != 0) || (std::isnan(val1) != 0)) {
    nzcv().SetRawValue(FPUnorderedFlag);
    if (IsSignallingNaN(val0) || IsSignallingNaN(val1) ||
        (trap == EnableTrap)) {
      process_exception = true;
    }
  } else if (val0 < val1) {
    nzcv().SetRawValue(FPLessThanFlag);
  } else if (val0 > val1) {
    nzcv().SetRawValue(FPGreaterThanFlag);
  } else if (val0 == val1) {
    nzcv().SetRawValue(FPEqualFlag);
  } else {
    VIXL_UNREACHABLE();
  }
  LogSystemRegister(NZCV);
  if (process_exception) FPProcessException();
}


Simulator::PrintRegisterFormat Simulator::GetPrintRegisterFormatForSize(
    unsigned reg_size, unsigned lane_size) {
  VIXL_ASSERT(reg_size >= lane_size);

  uint32_t format = 0;
  if (reg_size != lane_size) {
    switch (reg_size) {
      default: VIXL_UNREACHABLE(); break;
      case kQRegSizeInBytes: format = kPrintRegAsQVector; break;
      case kDRegSizeInBytes: format = kPrintRegAsDVector; break;
    }
  }

  switch (lane_size) {
    default: VIXL_UNREACHABLE(); break;
    case kQRegSizeInBytes: format |= kPrintReg1Q; break;
    case kDRegSizeInBytes: format |= kPrintReg1D; break;
    case kSRegSizeInBytes: format |= kPrintReg1S; break;
    case kHRegSizeInBytes: format |= kPrintReg1H; break;
    case kBRegSizeInBytes: format |= kPrintReg1B; break;
  }
  // These sizes would be duplicate case labels.
  VIXL_STATIC_ASSERT(kXRegSizeInBytes == kDRegSizeInBytes);
  VIXL_STATIC_ASSERT(kWRegSizeInBytes == kSRegSizeInBytes);
  VIXL_STATIC_ASSERT(kPrintXReg == kPrintReg1D);
  VIXL_STATIC_ASSERT(kPrintWReg == kPrintReg1S);

  return static_cast<PrintRegisterFormat>(format);
}


Simulator::PrintRegisterFormat Simulator::GetPrintRegisterFormat(
    VectorFormat vform) {
  switch (vform) {
    default: VIXL_UNREACHABLE(); return kPrintReg16B;
    case kFormat16B: return kPrintReg16B;
    case kFormat8B: return kPrintReg8B;
    case kFormat8H: return kPrintReg8H;
    case kFormat4H: return kPrintReg4H;
    case kFormat4S: return kPrintReg4S;
    case kFormat2S: return kPrintReg2S;
    case kFormat2D: return kPrintReg2D;
    case kFormat1D: return kPrintReg1D;
  }
}


void Simulator::PrintWrittenRegisters() {
  for (unsigned i = 0; i < kNumberOfRegisters; i++) {
    if (registers_[i].WrittenSinceLastLog()) PrintRegister(i);
  }
}


void Simulator::PrintWrittenVRegisters() {
  for (unsigned i = 0; i < kNumberOfVRegisters; i++) {
    // At this point there is no type information, so print as a raw 1Q.
    if (vregisters_[i].WrittenSinceLastLog()) PrintVRegister(i, kPrintReg1Q);
  }
}


void Simulator::PrintSystemRegisters() {
  PrintSystemRegister(NZCV);
  PrintSystemRegister(FPCR);
}


void Simulator::PrintRegisters() {
  for (unsigned i = 0; i < kNumberOfRegisters; i++) {
    PrintRegister(i);
  }
}


void Simulator::PrintVRegisters() {
  for (unsigned i = 0; i < kNumberOfVRegisters; i++) {
    // At this point there is no type information, so print as a raw 1Q.
    PrintVRegister(i, kPrintReg1Q);
  }
}


// Print a register's name and raw value.
//
// Only the least-significant `size_in_bytes` bytes of the register are printed,
// but the value is aligned as if the whole register had been printed.
//
// For typical register updates, size_in_bytes should be set to kXRegSizeInBytes
// -- the default -- so that the whole register is printed. Other values of
// size_in_bytes are intended for use when the register hasn't actually been
// updated (such as in PrintWrite).
//
// No newline is printed. This allows the caller to print more details (such as
// a memory access annotation).
void Simulator::PrintRegisterRawHelper(unsigned code, Reg31Mode r31mode,
                                       int size_in_bytes) {
  // The template for all supported sizes.
  //   "# x{code}: 0xffeeddccbbaa9988"
  //   "# w{code}:         0xbbaa9988"
  //   "# w{code}<15:0>:       0x9988"
  //   "# w{code}<7:0>:          0x88"
  unsigned padding_chars = (kXRegSizeInBytes - size_in_bytes) * 2;

  const char * name = "";
  const char * suffix = "";
  switch (size_in_bytes) {
    case kXRegSizeInBytes: name = XRegNameForCode(code, r31mode); break;
    case kWRegSizeInBytes: name = WRegNameForCode(code, r31mode); break;
    case 2:
      name = WRegNameForCode(code, r31mode);
      suffix = "<15:0>";
      padding_chars -= strlen(suffix);
      break;
    case 1:
      name = WRegNameForCode(code, r31mode);
      suffix = "<7:0>";
      padding_chars -= strlen(suffix);
      break;
    default:
      VIXL_UNREACHABLE();
  }
  fprintf(stream_, "# %s%5s%s: ", clr_reg_name, name, suffix);

  // Print leading padding spaces.
  VIXL_ASSERT(padding_chars < (kXRegSizeInBytes * 2));
  for (unsigned i = 0; i < padding_chars; i++) {
    putc(' ', stream_);
  }

  // Print the specified bits in hexadecimal format.
  uint64_t bits = reg<uint64_t>(code, r31mode);
  bits &= kXRegMask >> ((kXRegSizeInBytes - size_in_bytes) * 8);
  VIXL_STATIC_ASSERT(sizeof(bits) == kXRegSizeInBytes);

  int chars = size_in_bytes * 2;
  fprintf(stream_, "%s0x%0*" PRIx64 "%s",
          clr_reg_value, chars, bits, clr_normal);
}


void Simulator::PrintRegister(unsigned code, Reg31Mode r31mode) {
  registers_[code].NotifyRegisterLogged();

  // Don't print writes into xzr.
  if ((code == kZeroRegCode) && (r31mode == Reg31IsZeroRegister)) {
    return;
  }

  // The template for all x and w registers:
  //   "# x{code}: 0x{value}"
  //   "# w{code}: 0x{value}"

  PrintRegisterRawHelper(code, r31mode);
  fprintf(stream_, "\n");
}


// Print a register's name and raw value.
//
// The `bytes` and `lsb` arguments can be used to limit the bytes that are
// printed. These arguments are intended for use in cases where register hasn't
// actually been updated (such as in PrintVWrite).
//
// No newline is printed. This allows the caller to print more details (such as
// a floating-point interpretation or a memory access annotation).
void Simulator::PrintVRegisterRawHelper(unsigned code, int bytes, int lsb) {
  // The template for vector types:
  //   "# v{code}: 0xffeeddccbbaa99887766554433221100".
  // An example with bytes=4 and lsb=8:
  //   "# v{code}:         0xbbaa9988                ".
  fprintf(stream_, "# %s%5s: %s",
          clr_vreg_name, VRegNameForCode(code), clr_vreg_value);

  int msb = lsb + bytes - 1;
  int byte = kQRegSizeInBytes - 1;

  // Print leading padding spaces. (Two spaces per byte.)
  while (byte > msb) {
    fprintf(stream_, "  ");
    byte--;
  }

  // Print the specified part of the value, byte by byte.
  qreg_t rawbits = qreg(code);
  fprintf(stream_, "0x");
  while (byte >= lsb) {
    fprintf(stream_, "%02x", rawbits.val[byte]);
    byte--;
  }

  // Print trailing padding spaces.
  while (byte >= 0) {
    fprintf(stream_, "  ");
    byte--;
  }
  fprintf(stream_, "%s", clr_normal);
}


// Print each of the specified lanes of a register as a float or double value.
//
// The `lane_count` and `lslane` arguments can be used to limit the lanes that
// are printed. These arguments are intended for use in cases where register
// hasn't actually been updated (such as in PrintVWrite).
//
// No newline is printed. This allows the caller to print more details (such as
// a memory access annotation).
void Simulator::PrintVRegisterFPHelper(unsigned code,
                                       unsigned lane_size_in_bytes,
                                       int lane_count,
                                       int rightmost_lane) {
  VIXL_ASSERT((lane_size_in_bytes == kSRegSizeInBytes) ||
              (lane_size_in_bytes == kDRegSizeInBytes));

  unsigned msb = ((lane_count + rightmost_lane) * lane_size_in_bytes);
  VIXL_ASSERT(msb <= kQRegSizeInBytes);

  // For scalar types ((lane_count == 1) && (rightmost_lane == 0)), a register
  // name is used:
  //   " (s{code}: {value})"
  //   " (d{code}: {value})"
  // For vector types, "..." is used to represent one or more omitted lanes.
  //   " (..., {value}, {value}, ...)"
  if ((lane_count == 1) && (rightmost_lane == 0)) {
    const char * name =
        (lane_size_in_bytes == kSRegSizeInBytes) ? SRegNameForCode(code)
                                                 : DRegNameForCode(code);
    fprintf(stream_, " (%s%s: ", clr_vreg_name, name);
  } else {
    if (msb < (kQRegSizeInBytes - 1)) {
      fprintf(stream_, " (..., ");
    } else {
      fprintf(stream_, " (");
    }
  }

  // Print the list of values.
  const char * separator = "";
  int leftmost_lane = rightmost_lane + lane_count - 1;
  for (int lane = leftmost_lane; lane >= rightmost_lane; lane--) {
    double value =
        (lane_size_in_bytes == kSRegSizeInBytes) ? vreg(code).Get<float>(lane)
                                                 : vreg(code).Get<double>(lane);
    fprintf(stream_, "%s%s%#g%s", separator, clr_vreg_value, value, clr_normal);
    separator = ", ";
  }

  if (rightmost_lane > 0) {
    fprintf(stream_, ", ...");
  }
  fprintf(stream_, ")");
}


void Simulator::PrintVRegister(unsigned code, PrintRegisterFormat format) {
  vregisters_[code].NotifyRegisterLogged();

  int lane_size_log2 = format & kPrintRegLaneSizeMask;

  int reg_size_log2;
  if (format & kPrintRegAsQVector) {
    reg_size_log2 = kQRegSizeInBytesLog2;
  } else if (format & kPrintRegAsDVector) {
    reg_size_log2 = kDRegSizeInBytesLog2;
  } else {
    // Scalar types.
    reg_size_log2 = lane_size_log2;
  }

  int lane_count = 1 << (reg_size_log2 - lane_size_log2);
  int lane_size = 1 << lane_size_log2;

  // The template for vector types:
  //   "# v{code}: 0x{rawbits} (..., {value}, ...)".
  // The template for scalar types:
  //   "# v{code}: 0x{rawbits} ({reg}:{value})".
  // The values in parentheses after the bit representations are floating-point
  // interpretations. They are displayed only if the kPrintVRegAsFP bit is set.

  PrintVRegisterRawHelper(code);
  if (format & kPrintRegAsFP) {
    PrintVRegisterFPHelper(code, lane_size, lane_count);
  }

  fprintf(stream_, "\n");
}


void Simulator::PrintSystemRegister(SystemRegister id) {
  switch (id) {
    case NZCV:
      fprintf(stream_, "# %sNZCV: %sN:%d Z:%d C:%d V:%d%s\n",
              clr_flag_name, clr_flag_value,
              nzcv().N(), nzcv().Z(), nzcv().C(), nzcv().V(),
              clr_normal);
      break;
    case FPCR: {
      static const char * rmode[] = {
        "0b00 (Round to Nearest)",
        "0b01 (Round towards Plus Infinity)",
        "0b10 (Round towards Minus Infinity)",
        "0b11 (Round towards Zero)"
      };
      VIXL_ASSERT(fpcr().RMode() < (sizeof(rmode) / sizeof(rmode[0])));
      fprintf(stream_,
              "# %sFPCR: %sAHP:%d DN:%d FZ:%d RMode:%s%s\n",
              clr_flag_name, clr_flag_value,
              fpcr().AHP(), fpcr().DN(), fpcr().FZ(), rmode[fpcr().RMode()],
              clr_normal);
      break;
    }
    default:
      VIXL_UNREACHABLE();
  }
}


void Simulator::PrintRead(uintptr_t address,
                          unsigned reg_code,
                          PrintRegisterFormat format) {
  registers_[reg_code].NotifyRegisterLogged();

  USE(format);

  // The template is "# {reg}: 0x{value} <- {address}".
  PrintRegisterRawHelper(reg_code, Reg31IsZeroRegister);
  fprintf(stream_, " <- %s0x%016" PRIxPTR "%s\n",
          clr_memory_address, address, clr_normal);
}


void Simulator::PrintVRead(uintptr_t address,
                           unsigned reg_code,
                           PrintRegisterFormat format,
                           unsigned lane) {
  vregisters_[reg_code].NotifyRegisterLogged();

  // The template is "# v{code}: 0x{rawbits} <- address".
  PrintVRegisterRawHelper(reg_code);
  if (format & kPrintRegAsFP) {
    PrintVRegisterFPHelper(reg_code, GetPrintRegLaneSizeInBytes(format),
                           GetPrintRegLaneCount(format), lane);
  }
  fprintf(stream_, " <- %s0x%016" PRIxPTR "%s\n",
          clr_memory_address, address, clr_normal);
}


void Simulator::PrintWrite(uintptr_t address,
                           unsigned reg_code,
                           PrintRegisterFormat format) {
  VIXL_ASSERT(GetPrintRegLaneCount(format) == 1);

  // The template is "# v{code}: 0x{value} -> {address}". To keep the trace tidy
  // and readable, the value is aligned with the values in the register trace.
  PrintRegisterRawHelper(reg_code, Reg31IsZeroRegister,
                         GetPrintRegSizeInBytes(format));
  fprintf(stream_, " -> %s0x%016" PRIxPTR "%s\n",
          clr_memory_address, address, clr_normal);
}


void Simulator::PrintVWrite(uintptr_t address,
                            unsigned reg_code,
                            PrintRegisterFormat format,
                            unsigned lane) {
  // The templates:
  //   "# v{code}: 0x{rawbits} -> {address}"
  //   "# v{code}: 0x{rawbits} (..., {value}, ...) -> {address}".
  //   "# v{code}: 0x{rawbits} ({reg}:{value}) -> {address}"
  // Because this trace doesn't represent a change to the source register's
  // value, only the relevant part of the value is printed. To keep the trace
  // tidy and readable, the raw value is aligned with the other values in the
  // register trace.
  int lane_count = GetPrintRegLaneCount(format);
  int lane_size = GetPrintRegLaneSizeInBytes(format);
  int reg_size = GetPrintRegSizeInBytes(format);
  PrintVRegisterRawHelper(reg_code, reg_size, lane_size * lane);
  if (format & kPrintRegAsFP) {
    PrintVRegisterFPHelper(reg_code, lane_size, lane_count, lane);
  }
  fprintf(stream_, " -> %s0x%016" PRIxPTR "%s\n",
          clr_memory_address, address, clr_normal);
}


// Visitors---------------------------------------------------------------------

void Simulator::VisitUnimplemented(const Instruction* instr) {
  printf("Unimplemented instruction at %p: 0x%08" PRIx32 "\n",
         reinterpret_cast<const void*>(instr), instr->InstructionBits());
  VIXL_UNIMPLEMENTED();
}


void Simulator::VisitUnallocated(const Instruction* instr) {
  printf("Unallocated instruction at %p: 0x%08" PRIx32 "\n",
         reinterpret_cast<const void*>(instr), instr->InstructionBits());
  VIXL_UNIMPLEMENTED();
}


void Simulator::VisitPCRelAddressing(const Instruction* instr) {
  VIXL_ASSERT((instr->Mask(PCRelAddressingMask) == ADR) ||
              (instr->Mask(PCRelAddressingMask) == ADRP));

  set_reg(instr->Rd(), instr->ImmPCOffsetTarget());
}


void Simulator::VisitUnconditionalBranch(const Instruction* instr) {
  switch (instr->Mask(UnconditionalBranchMask)) {
    case BL:
      set_lr(instr->NextInstruction());
      VIXL_FALLTHROUGH();
    case B:
      set_pc(instr->ImmPCOffsetTarget());
      break;
    default: VIXL_UNREACHABLE();
  }
}


void Simulator::VisitConditionalBranch(const Instruction* instr) {
  VIXL_ASSERT(instr->Mask(ConditionalBranchMask) == B_cond);
  if (ConditionPassed(instr->ConditionBranch())) {
    set_pc(instr->ImmPCOffsetTarget());
  }
}


void Simulator::VisitUnconditionalBranchToRegister(const Instruction* instr) {
  const Instruction* target = Instruction::Cast(xreg(instr->Rn()));

  switch (instr->Mask(UnconditionalBranchToRegisterMask)) {
    case BLR:
      set_lr(instr->NextInstruction());
      VIXL_FALLTHROUGH();
    case BR:
    case RET: set_pc(target); break;
    default: VIXL_UNREACHABLE();
  }
}


void Simulator::VisitTestBranch(const Instruction* instr) {
  unsigned bit_pos = (instr->ImmTestBranchBit5() << 5) |
                     instr->ImmTestBranchBit40();
  bool bit_zero = ((xreg(instr->Rt()) >> bit_pos) & 1) == 0;
  bool take_branch = false;
  switch (instr->Mask(TestBranchMask)) {
    case TBZ: take_branch = bit_zero; break;
    case TBNZ: take_branch = !bit_zero; break;
    default: VIXL_UNIMPLEMENTED();
  }
  if (take_branch) {
    set_pc(instr->ImmPCOffsetTarget());
  }
}


void Simulator::VisitCompareBranch(const Instruction* instr) {
  unsigned rt = instr->Rt();
  bool take_branch = false;
  switch (instr->Mask(CompareBranchMask)) {
    case CBZ_w: take_branch = (wreg(rt) == 0); break;
    case CBZ_x: take_branch = (xreg(rt) == 0); break;
    case CBNZ_w: take_branch = (wreg(rt) != 0); break;
    case CBNZ_x: take_branch = (xreg(rt) != 0); break;
    default: VIXL_UNIMPLEMENTED();
  }
  if (take_branch) {
    set_pc(instr->ImmPCOffsetTarget());
  }
}


void Simulator::AddSubHelper(const Instruction* instr, int64_t op2) {
  unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
  bool set_flags = instr->FlagsUpdate();
  int64_t new_val = 0;
  Instr operation = instr->Mask(AddSubOpMask);

  switch (operation) {
    case ADD:
    case ADDS: {
      new_val = AddWithCarry(reg_size,
                             set_flags,
                             reg(reg_size, instr->Rn(), instr->RnMode()),
                             op2);
      break;
    }
    case SUB:
    case SUBS: {
      new_val = AddWithCarry(reg_size,
                             set_flags,
                             reg(reg_size, instr->Rn(), instr->RnMode()),
                             ~op2,
                             1);
      break;
    }
    default: VIXL_UNREACHABLE();
  }

  set_reg(reg_size, instr->Rd(), new_val, LogRegWrites, instr->RdMode());
}


void Simulator::VisitAddSubShifted(const Instruction* instr) {
  unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
  int64_t op2 = ShiftOperand(reg_size,
                             reg(reg_size, instr->Rm()),
                             static_cast<Shift>(instr->ShiftDP()),
                             instr->ImmDPShift());
  AddSubHelper(instr, op2);
}


void Simulator::VisitAddSubImmediate(const Instruction* instr) {
  int64_t op2 = instr->ImmAddSub() << ((instr->ShiftAddSub() == 1) ? 12 : 0);
  AddSubHelper(instr, op2);
}


void Simulator::VisitAddSubExtended(const Instruction* instr) {
  unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
  int64_t op2 = ExtendValue(reg_size,
                            reg(reg_size, instr->Rm()),
                            static_cast<Extend>(instr->ExtendMode()),
                            instr->ImmExtendShift());
  AddSubHelper(instr, op2);
}


void Simulator::VisitAddSubWithCarry(const Instruction* instr) {
  unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
  int64_t op2 = reg(reg_size, instr->Rm());
  int64_t new_val;

  if ((instr->Mask(AddSubOpMask) == SUB) || instr->Mask(AddSubOpMask) == SUBS) {
    op2 = ~op2;
  }

  new_val = AddWithCarry(reg_size,
                         instr->FlagsUpdate(),
                         reg(reg_size, instr->Rn()),
                         op2,
                         C());

  set_reg(reg_size, instr->Rd(), new_val);
}


void Simulator::VisitLogicalShifted(const Instruction* instr) {
  unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
  Shift shift_type = static_cast<Shift>(instr->ShiftDP());
  unsigned shift_amount = instr->ImmDPShift();
  int64_t op2 = ShiftOperand(reg_size, reg(reg_size, instr->Rm()), shift_type,
                             shift_amount);
  if (instr->Mask(NOT) == NOT) {
    op2 = ~op2;
  }
  LogicalHelper(instr, op2);
}


void Simulator::VisitLogicalImmediate(const Instruction* instr) {
  LogicalHelper(instr, instr->ImmLogical());
}


void Simulator::LogicalHelper(const Instruction* instr, int64_t op2) {
  unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
  int64_t op1 = reg(reg_size, instr->Rn());
  int64_t result = 0;
  bool update_flags = false;

  // Switch on the logical operation, stripping out the NOT bit, as it has a
  // different meaning for logical immediate instructions.
  switch (instr->Mask(LogicalOpMask & ~NOT)) {
    case ANDS: update_flags = true; VIXL_FALLTHROUGH();
    case AND: result = op1 & op2; break;
    case ORR: result = op1 | op2; break;
    case EOR: result = op1 ^ op2; break;
    default:
      VIXL_UNIMPLEMENTED();
  }

  if (update_flags) {
    nzcv().SetN(CalcNFlag(result, reg_size));
    nzcv().SetZ(CalcZFlag(result));
    nzcv().SetC(0);
    nzcv().SetV(0);
    LogSystemRegister(NZCV);
  }

  set_reg(reg_size, instr->Rd(), result, LogRegWrites, instr->RdMode());
}


void Simulator::VisitConditionalCompareRegister(const Instruction* instr) {
  unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
  ConditionalCompareHelper(instr, reg(reg_size, instr->Rm()));
}


void Simulator::VisitConditionalCompareImmediate(const Instruction* instr) {
  ConditionalCompareHelper(instr, instr->ImmCondCmp());
}


void Simulator::ConditionalCompareHelper(const Instruction* instr,
                                         int64_t op2) {
  unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
  int64_t op1 = reg(reg_size, instr->Rn());

  if (ConditionPassed(instr->Condition())) {
    // If the condition passes, set the status flags to the result of comparing
    // the operands.
    if (instr->Mask(ConditionalCompareMask) == CCMP) {
      AddWithCarry(reg_size, true, op1, ~op2, 1);
    } else {
      VIXL_ASSERT(instr->Mask(ConditionalCompareMask) == CCMN);
      AddWithCarry(reg_size, true, op1, op2, 0);
    }
  } else {
    // If the condition fails, set the status flags to the nzcv immediate.
    nzcv().SetFlags(instr->Nzcv());
    LogSystemRegister(NZCV);
  }
}


void Simulator::VisitLoadStoreUnsignedOffset(const Instruction* instr) {
  int offset = instr->ImmLSUnsigned() << instr->SizeLS();
  LoadStoreHelper(instr, offset, Offset);
}


void Simulator::VisitLoadStoreUnscaledOffset(const Instruction* instr) {
  LoadStoreHelper(instr, instr->ImmLS(), Offset);
}


void Simulator::VisitLoadStorePreIndex(const Instruction* instr) {
  LoadStoreHelper(instr, instr->ImmLS(), PreIndex);
}


void Simulator::VisitLoadStorePostIndex(const Instruction* instr) {
  LoadStoreHelper(instr, instr->ImmLS(), PostIndex);
}


void Simulator::VisitLoadStoreRegisterOffset(const Instruction* instr) {
  Extend ext = static_cast<Extend>(instr->ExtendMode());
  VIXL_ASSERT((ext == UXTW) || (ext == UXTX) || (ext == SXTW) || (ext == SXTX));
  unsigned shift_amount = instr->ImmShiftLS() * instr->SizeLS();

  int64_t offset = ExtendValue(kXRegSize, xreg(instr->Rm()), ext,
                               shift_amount);
  LoadStoreHelper(instr, offset, Offset);
}

template<typename T>
static T Faulted() {
    return ~0;
}

template<>
Simulator::qreg_t Faulted() {
    static_assert(kQRegSizeInBytes == 16, "Known constraint");
    static Simulator::qreg_t dummy = { {
	255, 255, 255, 255, 255, 255, 255, 255,
	255, 255, 255, 255, 255, 255, 255, 255
    } };
    return dummy;
}

template<typename T> T
Simulator::Read(uintptr_t address)
{
    address = Memory::AddressUntag(address);
    if (handle_wasm_seg_fault(address, sizeof(T)))
	return Faulted<T>();
    return Memory::Read<T>(address);
}

template <typename T> void
Simulator::Write(uintptr_t address, T value)
{
    address = Memory::AddressUntag(address);
    if (handle_wasm_seg_fault(address, sizeof(T)))
	return;
    Memory::Write<T>(address, value);
}

void Simulator::LoadStoreHelper(const Instruction* instr,
                                int64_t offset,
                                AddrMode addrmode) {
  unsigned srcdst = instr->Rt();
  uintptr_t address = AddressModeHelper(instr->Rn(), offset, addrmode);

  LoadStoreOp op = static_cast<LoadStoreOp>(instr->Mask(LoadStoreMask));
  switch (op) {
    case LDRB_w:
      set_wreg(srcdst, Read<uint8_t>(address), NoRegLog); break;
    case LDRH_w:
      set_wreg(srcdst, Read<uint16_t>(address), NoRegLog); break;
    case LDR_w:
      set_wreg(srcdst, Read<uint32_t>(address), NoRegLog); break;
    case LDR_x:
      set_xreg(srcdst, Read<uint64_t>(address), NoRegLog); break;
    case LDRSB_w:
      set_wreg(srcdst, Read<int8_t>(address), NoRegLog); break;
    case LDRSH_w:
      set_wreg(srcdst, Read<int16_t>(address), NoRegLog); break;
    case LDRSB_x:
      set_xreg(srcdst, Read<int8_t>(address), NoRegLog); break;
    case LDRSH_x:
      set_xreg(srcdst, Read<int16_t>(address), NoRegLog); break;
    case LDRSW_x:
      set_xreg(srcdst, Read<int32_t>(address), NoRegLog); break;
    case LDR_b:
      set_breg(srcdst, Read<uint8_t>(address), NoRegLog); break;
    case LDR_h:
      set_hreg(srcdst, Read<uint16_t>(address), NoRegLog); break;
    case LDR_s:
      set_sreg(srcdst, Read<float>(address), NoRegLog); break;
    case LDR_d:
      set_dreg(srcdst, Read<double>(address), NoRegLog); break;
    case LDR_q:
      set_qreg(srcdst, Read<qreg_t>(address), NoRegLog); break;

    case STRB_w:  Write<uint8_t>(address, wreg(srcdst)); break;
    case STRH_w:  Write<uint16_t>(address, wreg(srcdst)); break;
    case STR_w:   Write<uint32_t>(address, wreg(srcdst)); break;
    case STR_x:   Write<uint64_t>(address, xreg(srcdst)); break;
    case STR_b:   Write<uint8_t>(address, breg(srcdst)); break;
    case STR_h:   Write<uint16_t>(address, hreg(srcdst)); break;
    case STR_s:   Write<float>(address, sreg(srcdst)); break;
    case STR_d:   Write<double>(address, dreg(srcdst)); break;
    case STR_q:   Write<qreg_t>(address, qreg(srcdst)); break;

    // Ignore prfm hint instructions.
    case PRFM: break;

    default: VIXL_UNIMPLEMENTED();
  }

  unsigned access_size = 1 << instr->SizeLS();
  if (instr->IsLoad()) {
    if ((op == LDR_s) || (op == LDR_d)) {
      LogVRead(address, srcdst, GetPrintRegisterFormatForSizeFP(access_size));
    } else if ((op == LDR_b) || (op == LDR_h) || (op == LDR_q)) {
      LogVRead(address, srcdst, GetPrintRegisterFormatForSize(access_size));
    } else {
      LogRead(address, srcdst, GetPrintRegisterFormatForSize(access_size));
    }
  } else {
    if ((op == STR_s) || (op == STR_d)) {
      LogVWrite(address, srcdst, GetPrintRegisterFormatForSizeFP(access_size));
    } else if ((op == STR_b) || (op == STR_h) || (op == STR_q)) {
      LogVWrite(address, srcdst, GetPrintRegisterFormatForSize(access_size));
    } else {
      LogWrite(address, srcdst, GetPrintRegisterFormatForSize(access_size));
    }
  }

  local_monitor_.MaybeClear();
}


void Simulator::VisitLoadStorePairOffset(const Instruction* instr) {
  LoadStorePairHelper(instr, Offset);
}


void Simulator::VisitLoadStorePairPreIndex(const Instruction* instr) {
  LoadStorePairHelper(instr, PreIndex);
}


void Simulator::VisitLoadStorePairPostIndex(const Instruction* instr) {
  LoadStorePairHelper(instr, PostIndex);
}


void Simulator::VisitLoadStorePairNonTemporal(const Instruction* instr) {
  LoadStorePairHelper(instr, Offset);
}


void Simulator::LoadStorePairHelper(const Instruction* instr,
                                    AddrMode addrmode) {
  unsigned rt = instr->Rt();
  unsigned rt2 = instr->Rt2();
  int element_size = 1 << instr->SizeLSPair();
  int64_t offset = instr->ImmLSPair() * element_size;
  uintptr_t address = AddressModeHelper(instr->Rn(), offset, addrmode);
  uintptr_t address2 = address + element_size;

  LoadStorePairOp op =
    static_cast<LoadStorePairOp>(instr->Mask(LoadStorePairMask));

  // 'rt' and 'rt2' can only be aliased for stores.
  VIXL_ASSERT(((op & LoadStorePairLBit) == 0) || (rt != rt2));

  switch (op) {
    // Use NoRegLog to suppress the register trace (LOG_REGS, LOG_FP_REGS). We
    // will print a more detailed log.
    case LDP_w: {
      set_wreg(rt, Read<uint32_t>(address), NoRegLog);
      set_wreg(rt2, Read<uint32_t>(address2), NoRegLog);
      break;
    }
    case LDP_s: {
      set_sreg(rt, Read<float>(address), NoRegLog);
      set_sreg(rt2, Read<float>(address2), NoRegLog);
      break;
    }
    case LDP_x: {
      set_xreg(rt, Read<uint64_t>(address), NoRegLog);
      set_xreg(rt2, Read<uint64_t>(address2), NoRegLog);
      break;
    }
    case LDP_d: {
      set_dreg(rt, Read<double>(address), NoRegLog);
      set_dreg(rt2, Read<double>(address2), NoRegLog);
      break;
    }
    case LDP_q: {
      set_qreg(rt, Read<qreg_t>(address), NoRegLog);
      set_qreg(rt2, Read<qreg_t>(address2), NoRegLog);
      break;
    }
    case LDPSW_x: {
      set_xreg(rt, Read<int32_t>(address), NoRegLog);
      set_xreg(rt2, Read<int32_t>(address2), NoRegLog);
      break;
    }
    case STP_w: {
      Write<uint32_t>(address, wreg(rt));
      Write<uint32_t>(address2, wreg(rt2));
      break;
    }
    case STP_s: {
      Write<float>(address, sreg(rt));
      Write<float>(address2, sreg(rt2));
      break;
    }
    case STP_x: {
      Write<uint64_t>(address, xreg(rt));
      Write<uint64_t>(address2, xreg(rt2));
      break;
    }
    case STP_d: {
      Write<double>(address, dreg(rt));
      Write<double>(address2, dreg(rt2));
      break;
    }
    case STP_q: {
      Write<qreg_t>(address, qreg(rt));
      Write<qreg_t>(address2, qreg(rt2));
      break;
    }
    default: VIXL_UNREACHABLE();
  }

  // Print a detailed trace (including the memory address) instead of the basic
  // register:value trace generated by set_*reg().
  if (instr->IsLoad()) {
    if ((op == LDP_s) || (op == LDP_d)) {
      LogVRead(address, rt, GetPrintRegisterFormatForSizeFP(element_size));
      LogVRead(address2, rt2, GetPrintRegisterFormatForSizeFP(element_size));
    } else if (op == LDP_q) {
      LogVRead(address, rt, GetPrintRegisterFormatForSize(element_size));
      LogVRead(address2, rt2, GetPrintRegisterFormatForSize(element_size));
    } else {
      LogRead(address, rt, GetPrintRegisterFormatForSize(element_size));
      LogRead(address2, rt2, GetPrintRegisterFormatForSize(element_size));
    }
  } else {
    if ((op == STP_s) || (op == STP_d)) {
      LogVWrite(address, rt, GetPrintRegisterFormatForSizeFP(element_size));
      LogVWrite(address2, rt2, GetPrintRegisterFormatForSizeFP(element_size));
    } else if (op == STP_q) {
      LogVWrite(address, rt, GetPrintRegisterFormatForSize(element_size));
      LogVWrite(address2, rt2, GetPrintRegisterFormatForSize(element_size));
    } else {
      LogWrite(address, rt, GetPrintRegisterFormatForSize(element_size));
      LogWrite(address2, rt2, GetPrintRegisterFormatForSize(element_size));
    }
  }

  local_monitor_.MaybeClear();
}


void Simulator::PrintExclusiveAccessWarning() {
  if (print_exclusive_access_warning_) {
    fprintf(
        stderr,
        "%sWARNING:%s VIXL simulator support for load-/store-/clear-exclusive "
        "instructions is limited. Refer to the README for details.%s\n",
        clr_warning, clr_warning_message, clr_normal);
    print_exclusive_access_warning_ = false;
  }
}


void Simulator::VisitLoadStoreExclusive(const Instruction* instr) {
  PrintExclusiveAccessWarning();

  unsigned rs = instr->Rs();
  unsigned rt = instr->Rt();
  unsigned rt2 = instr->Rt2();
  unsigned rn = instr->Rn();

  LoadStoreExclusive op =
      static_cast<LoadStoreExclusive>(instr->Mask(LoadStoreExclusiveMask));

  bool is_acquire_release = instr->LdStXAcquireRelease();
  bool is_exclusive = !instr->LdStXNotExclusive();
  bool is_load = instr->LdStXLoad();
  bool is_pair = instr->LdStXPair();

  unsigned element_size = 1 << instr->LdStXSizeLog2();
  unsigned access_size = is_pair ? element_size * 2 : element_size;
  uint64_t address = reg<uint64_t>(rn, Reg31IsStackPointer);

  // Verify that the address is available to the host.
  VIXL_ASSERT(address == static_cast<uintptr_t>(address));

  // Check the alignment of `address`.
  if (AlignDown(address, access_size) != address) {
    VIXL_ALIGNMENT_EXCEPTION();
  }

  // The sp must be aligned to 16 bytes when it is accessed.
  if ((rn == 31) && (AlignDown(address, 16) != address)) {
    VIXL_ALIGNMENT_EXCEPTION();
  }

  if (is_load) {
    if (is_exclusive) {
      local_monitor_.MarkExclusive(address, access_size);
    } else {
      // Any non-exclusive load can clear the local monitor as a side effect. We
      // don't need to do this, but it is useful to stress the simulated code.
      local_monitor_.Clear();
    }

    // Use NoRegLog to suppress the register trace (LOG_REGS, LOG_FP_REGS). We
    // will print a more detailed log.
    switch (op) {
      case LDXRB_w:
      case LDAXRB_w:
      case LDARB_w:
        set_wreg(rt, Read<uint8_t>(address), NoRegLog);
        break;
      case LDXRH_w:
      case LDAXRH_w:
      case LDARH_w:
        set_wreg(rt, Read<uint16_t>(address), NoRegLog);
        break;
      case LDXR_w:
      case LDAXR_w:
      case LDAR_w:
        set_wreg(rt, Read<uint32_t>(address), NoRegLog);
        break;
      case LDXR_x:
      case LDAXR_x:
      case LDAR_x:
        set_xreg(rt, Read<uint64_t>(address), NoRegLog);
        break;
      case LDXP_w:
      case LDAXP_w:
        set_wreg(rt, Read<uint32_t>(address), NoRegLog);
        set_wreg(rt2, Read<uint32_t>(address + element_size), NoRegLog);
        break;
      case LDXP_x:
      case LDAXP_x:
        set_xreg(rt, Read<uint64_t>(address), NoRegLog);
        set_xreg(rt2, Read<uint64_t>(address + element_size), NoRegLog);
        break;
      default:
        VIXL_UNREACHABLE();
    }

    if (is_acquire_release) {
      // Approximate load-acquire by issuing a full barrier after the load.
      js::jit::AtomicOperations::fenceSeqCst();
    }

    LogRead(address, rt, GetPrintRegisterFormatForSize(element_size));
    if (is_pair) {
      LogRead(address + element_size, rt2,
              GetPrintRegisterFormatForSize(element_size));
    }
  } else {
    if (is_acquire_release) {
      // Approximate store-release by issuing a full barrier before the store.
      js::jit::AtomicOperations::fenceSeqCst();
    }

    bool do_store = true;
    if (is_exclusive) {
      do_store = local_monitor_.IsExclusive(address, access_size) &&
                 global_monitor_.IsExclusive(address, access_size);
      set_wreg(rs, do_store ? 0 : 1);

      //  - All exclusive stores explicitly clear the local monitor.
      local_monitor_.Clear();
    } else {
      //  - Any other store can clear the local monitor as a side effect.
      local_monitor_.MaybeClear();
    }

    if (do_store) {
      switch (op) {
        case STXRB_w:
        case STLXRB_w:
        case STLRB_w:
          Write<uint8_t>(address, wreg(rt));
          break;
        case STXRH_w:
        case STLXRH_w:
        case STLRH_w:
          Write<uint16_t>(address, wreg(rt));
          break;
        case STXR_w:
        case STLXR_w:
        case STLR_w:
          Write<uint32_t>(address, wreg(rt));
          break;
        case STXR_x:
        case STLXR_x:
        case STLR_x:
          Write<uint64_t>(address, xreg(rt));
          break;
        case STXP_w:
        case STLXP_w:
          Write<uint32_t>(address, wreg(rt));
          Write<uint32_t>(address + element_size, wreg(rt2));
          break;
        case STXP_x:
        case STLXP_x:
          Write<uint64_t>(address, xreg(rt));
          Write<uint64_t>(address + element_size, xreg(rt2));
          break;
        default:
          VIXL_UNREACHABLE();
      }

      LogWrite(address, rt, GetPrintRegisterFormatForSize(element_size));
      if (is_pair) {
        LogWrite(address + element_size, rt2,
                 GetPrintRegisterFormatForSize(element_size));
      }
    }
  }
}


void Simulator::VisitLoadLiteral(const Instruction* instr) {
  unsigned rt = instr->Rt();
  uint64_t address = instr->LiteralAddress<uint64_t>();

  // Verify that the calculated address is available to the host.
  VIXL_ASSERT(address == static_cast<uintptr_t>(address));

  switch (instr->Mask(LoadLiteralMask)) {
    // Use NoRegLog to suppress the register trace (LOG_REGS, LOG_VREGS), then
    // print a more detailed log.
    case LDR_w_lit:
      set_wreg(rt, Read<uint32_t>(address), NoRegLog);
      LogRead(address, rt, kPrintWReg);
      break;
    case LDR_x_lit:
      set_xreg(rt, Read<uint64_t>(address), NoRegLog);
      LogRead(address, rt, kPrintXReg);
      break;
    case LDR_s_lit:
      set_sreg(rt, Read<float>(address), NoRegLog);
      LogVRead(address, rt, kPrintSReg);
      break;
    case LDR_d_lit:
      set_dreg(rt, Read<double>(address), NoRegLog);
      LogVRead(address, rt, kPrintDReg);
      break;
    case LDR_q_lit:
      set_qreg(rt, Read<qreg_t>(address), NoRegLog);
      LogVRead(address, rt, kPrintReg1Q);
      break;
    case LDRSW_x_lit:
      set_xreg(rt, Read<int32_t>(address), NoRegLog);
      LogRead(address, rt, kPrintWReg);
      break;

    // Ignore prfm hint instructions.
    case PRFM_lit: break;

    default: VIXL_UNREACHABLE();
  }

  local_monitor_.MaybeClear();
}


uintptr_t Simulator::AddressModeHelper(unsigned addr_reg,
                                       int64_t offset,
                                       AddrMode addrmode) {
  uint64_t address = xreg(addr_reg, Reg31IsStackPointer);

  if ((addr_reg == 31) && ((address % 16) != 0)) {
    // When the base register is SP the stack pointer is required to be
    // quadword aligned prior to the address calculation and write-backs.
    // Misalignment will cause a stack alignment fault.
    VIXL_ALIGNMENT_EXCEPTION();
  }

  if ((addrmode == PreIndex) || (addrmode == PostIndex)) {
    VIXL_ASSERT(offset != 0);
    // Only preindex should log the register update here. For Postindex, the
    // update will be printed automatically by LogWrittenRegisters _after_ the
    // memory access itself is logged.
    RegLogMode log_mode = (addrmode == PreIndex) ? LogRegWrites : NoRegLog;
    set_xreg(addr_reg, address + offset, log_mode, Reg31IsStackPointer);
  }

  if ((addrmode == Offset) || (addrmode == PreIndex)) {
    address += offset;
  }

  // Verify that the calculated address is available to the host.
  VIXL_ASSERT(address == static_cast<uintptr_t>(address));

  return static_cast<uintptr_t>(address);
}


void Simulator::VisitMoveWideImmediate(const Instruction* instr) {
  MoveWideImmediateOp mov_op =
    static_cast<MoveWideImmediateOp>(instr->Mask(MoveWideImmediateMask));
  int64_t new_xn_val = 0;

  bool is_64_bits = instr->SixtyFourBits() == 1;
  // Shift is limited for W operations.
  VIXL_ASSERT(is_64_bits || (instr->ShiftMoveWide() < 2));

  // Get the shifted immediate.
  int64_t shift = instr->ShiftMoveWide() * 16;
  int64_t shifted_imm16 = static_cast<int64_t>(instr->ImmMoveWide()) << shift;

  // Compute the new value.
  switch (mov_op) {
    case MOVN_w:
    case MOVN_x: {
        new_xn_val = ~shifted_imm16;
        if (!is_64_bits) new_xn_val &= kWRegMask;
      break;
    }
    case MOVK_w:
    case MOVK_x: {
        unsigned reg_code = instr->Rd();
        int64_t prev_xn_val = is_64_bits ? xreg(reg_code)
                                         : wreg(reg_code);
        new_xn_val =
            (prev_xn_val & ~(INT64_C(0xffff) << shift)) | shifted_imm16;
      break;
    }
    case MOVZ_w:
    case MOVZ_x: {
        new_xn_val = shifted_imm16;
      break;
    }
    default:
      VIXL_UNREACHABLE();
  }

  // Update the destination register.
  set_xreg(instr->Rd(), new_xn_val);
}


void Simulator::VisitConditionalSelect(const Instruction* instr) {
  uint64_t new_val = xreg(instr->Rn());

  if (ConditionFailed(static_cast<Condition>(instr->Condition()))) {
    new_val = xreg(instr->Rm());
    switch (instr->Mask(ConditionalSelectMask)) {
      case CSEL_w:
      case CSEL_x: break;
      case CSINC_w:
      case CSINC_x: new_val++; break;
      case CSINV_w:
      case CSINV_x: new_val = ~new_val; break;
      case CSNEG_w:
      case CSNEG_x: new_val = -new_val; break;
      default: VIXL_UNIMPLEMENTED();
    }
  }
  unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
  set_reg(reg_size, instr->Rd(), new_val);
}


void Simulator::VisitDataProcessing1Source(const Instruction* instr) {
  unsigned dst = instr->Rd();
  unsigned src = instr->Rn();

  switch (instr->Mask(DataProcessing1SourceMask)) {
    case RBIT_w: set_wreg(dst, ReverseBits(wreg(src))); break;
    case RBIT_x: set_xreg(dst, ReverseBits(xreg(src))); break;
    case REV16_w: set_wreg(dst, ReverseBytes(wreg(src), 1)); break;
    case REV16_x: set_xreg(dst, ReverseBytes(xreg(src), 1)); break;
    case REV_w: set_wreg(dst, ReverseBytes(wreg(src), 2)); break;
    case REV32_x: set_xreg(dst, ReverseBytes(xreg(src), 2)); break;
    case REV_x: set_xreg(dst, ReverseBytes(xreg(src), 3)); break;
    case CLZ_w: set_wreg(dst, CountLeadingZeros(wreg(src))); break;
    case CLZ_x: set_xreg(dst, CountLeadingZeros(xreg(src))); break;
    case CLS_w: {
      set_wreg(dst, CountLeadingSignBits(wreg(src)));
      break;
    }
    case CLS_x: {
      set_xreg(dst, CountLeadingSignBits(xreg(src)));
      break;
    }
    default: VIXL_UNIMPLEMENTED();
  }
}


uint32_t Simulator::Poly32Mod2(unsigned n, uint64_t data, uint32_t poly) {
  VIXL_ASSERT((n > 32) && (n <= 64));
  for (unsigned i = (n - 1); i >= 32; i--) {
    if (((data >> i) & 1) != 0) {
      uint64_t polysh32 = (uint64_t)poly << (i - 32);
      uint64_t mask = (UINT64_C(1) << i) - 1;
      data = ((data & mask) ^ polysh32);
    }
  }
  return data & 0xffffffff;
}


template <typename T>
uint32_t Simulator::Crc32Checksum(uint32_t acc, T val, uint32_t poly) {
  unsigned size = sizeof(val) * 8;  // Number of bits in type T.
  VIXL_ASSERT((size == 8) || (size == 16) || (size == 32));
  uint64_t tempacc = static_cast<uint64_t>(ReverseBits(acc)) << size;
  uint64_t tempval = static_cast<uint64_t>(ReverseBits(val)) << 32;
  return ReverseBits(Poly32Mod2(32 + size, tempacc ^ tempval, poly));
}


uint32_t Simulator::Crc32Checksum(uint32_t acc, uint64_t val, uint32_t poly) {
  // Poly32Mod2 cannot handle inputs with more than 32 bits, so compute
  // the CRC of each 32-bit word sequentially.
  acc = Crc32Checksum(acc, (uint32_t)(val & 0xffffffff), poly);
  return Crc32Checksum(acc, (uint32_t)(val >> 32), poly);
}


void Simulator::VisitDataProcessing2Source(const Instruction* instr) {
  Shift shift_op = NO_SHIFT;
  int64_t result = 0;
  unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;

  switch (instr->Mask(DataProcessing2SourceMask)) {
    case SDIV_w: {
      int32_t rn = wreg(instr->Rn());
      int32_t rm = wreg(instr->Rm());
      if ((rn == kWMinInt) && (rm == -1)) {
        result = kWMinInt;
      } else if (rm == 0) {
        // Division by zero can be trapped, but not on A-class processors.
        result = 0;
      } else {
        result = rn / rm;
      }
      break;
    }
    case SDIV_x: {
      int64_t rn = xreg(instr->Rn());
      int64_t rm = xreg(instr->Rm());
      if ((rn == kXMinInt) && (rm == -1)) {
        result = kXMinInt;
      } else if (rm == 0) {
        // Division by zero can be trapped, but not on A-class processors.
        result = 0;
      } else {
        result = rn / rm;
      }
      break;
    }
    case UDIV_w: {
      uint32_t rn = static_cast<uint32_t>(wreg(instr->Rn()));
      uint32_t rm = static_cast<uint32_t>(wreg(instr->Rm()));
      if (rm == 0) {
        // Division by zero can be trapped, but not on A-class processors.
        result = 0;
      } else {
        result = rn / rm;
      }
      break;
    }
    case UDIV_x: {
      uint64_t rn = static_cast<uint64_t>(xreg(instr->Rn()));
      uint64_t rm = static_cast<uint64_t>(xreg(instr->Rm()));
      if (rm == 0) {
        // Division by zero can be trapped, but not on A-class processors.
        result = 0;
      } else {
        result = rn / rm;
      }
      break;
    }
    case LSLV_w:
    case LSLV_x: shift_op = LSL; break;
    case LSRV_w:
    case LSRV_x: shift_op = LSR; break;
    case ASRV_w:
    case ASRV_x: shift_op = ASR; break;
    case RORV_w:
    case RORV_x: shift_op = ROR; break;
    case CRC32B: {
      uint32_t acc = reg<uint32_t>(instr->Rn());
      uint8_t  val = reg<uint8_t>(instr->Rm());
      result = Crc32Checksum(acc, val, CRC32_POLY);
      break;
    }
    case CRC32H: {
      uint32_t acc = reg<uint32_t>(instr->Rn());
      uint16_t val = reg<uint16_t>(instr->Rm());
      result = Crc32Checksum(acc, val, CRC32_POLY);
      break;
    }
    case CRC32W: {
      uint32_t acc = reg<uint32_t>(instr->Rn());
      uint32_t val = reg<uint32_t>(instr->Rm());
      result = Crc32Checksum(acc, val, CRC32_POLY);
      break;
    }
    case CRC32X: {
      uint32_t acc = reg<uint32_t>(instr->Rn());
      uint64_t val = reg<uint64_t>(instr->Rm());
      result = Crc32Checksum(acc, val, CRC32_POLY);
      reg_size = kWRegSize;
      break;
    }
    case CRC32CB: {
      uint32_t acc = reg<uint32_t>(instr->Rn());
      uint8_t  val = reg<uint8_t>(instr->Rm());
      result = Crc32Checksum(acc, val, CRC32C_POLY);
      break;
    }
    case CRC32CH: {
      uint32_t acc = reg<uint32_t>(instr->Rn());
      uint16_t val = reg<uint16_t>(instr->Rm());
      result = Crc32Checksum(acc, val, CRC32C_POLY);
      break;
    }
    case CRC32CW: {
      uint32_t acc = reg<uint32_t>(instr->Rn());
      uint32_t val = reg<uint32_t>(instr->Rm());
      result = Crc32Checksum(acc, val, CRC32C_POLY);
      break;
    }
    case CRC32CX: {
      uint32_t acc = reg<uint32_t>(instr->Rn());
      uint64_t val = reg<uint64_t>(instr->Rm());
      result = Crc32Checksum(acc, val, CRC32C_POLY);
      reg_size = kWRegSize;
      break;
    }
    default: VIXL_UNIMPLEMENTED();
  }

  if (shift_op != NO_SHIFT) {
    // Shift distance encoded in the least-significant five/six bits of the
    // register.
    int mask = (instr->SixtyFourBits() == 1) ? 0x3f : 0x1f;
    unsigned shift = wreg(instr->Rm()) & mask;
    result = ShiftOperand(reg_size, reg(reg_size, instr->Rn()), shift_op,
                          shift);
  }
  set_reg(reg_size, instr->Rd(), result);
}


// The algorithm used is adapted from the one described in section 8.2 of
//   Hacker's Delight, by Henry S. Warren, Jr.
// It assumes that a right shift on a signed integer is an arithmetic shift.
// Type T must be either uint64_t or int64_t.
template <typename T>
static T MultiplyHigh(T u, T v) {
  uint64_t u0, v0, w0;
  T u1, v1, w1, w2, t;

  VIXL_ASSERT(sizeof(u) == sizeof(u0));

  u0 = u & 0xffffffff;
  u1 = u >> 32;
  v0 = v & 0xffffffff;
  v1 = v >> 32;

  w0 = u0 * v0;
  t = u1 * v0 + (w0 >> 32);
  w1 = t & 0xffffffff;
  w2 = t >> 32;
  w1 = u0 * v1 + w1;

  return u1 * v1 + w2 + (w1 >> 32);
}


void Simulator::VisitDataProcessing3Source(const Instruction* instr) {
  unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;

  int64_t result = 0;
  // Extract and sign- or zero-extend 32-bit arguments for widening operations.
  uint64_t rn_u32 = reg<uint32_t>(instr->Rn());
  uint64_t rm_u32 = reg<uint32_t>(instr->Rm());
  int64_t rn_s32 = reg<int32_t>(instr->Rn());
  int64_t rm_s32 = reg<int32_t>(instr->Rm());
  switch (instr->Mask(DataProcessing3SourceMask)) {
    case MADD_w:
    case MADD_x:
      result = xreg(instr->Ra()) + (xreg(instr->Rn()) * xreg(instr->Rm()));
      break;
    case MSUB_w:
    case MSUB_x:
      result = xreg(instr->Ra()) - (xreg(instr->Rn()) * xreg(instr->Rm()));
      break;
    case SMADDL_x: result = xreg(instr->Ra()) + (rn_s32 * rm_s32); break;
    case SMSUBL_x: result = xreg(instr->Ra()) - (rn_s32 * rm_s32); break;
    case UMADDL_x: result = xreg(instr->Ra()) + (rn_u32 * rm_u32); break;
    case UMSUBL_x: result = xreg(instr->Ra()) - (rn_u32 * rm_u32); break;
    case UMULH_x:
      result = MultiplyHigh(reg<uint64_t>(instr->Rn()),
                            reg<uint64_t>(instr->Rm()));
      break;
    case SMULH_x:
      result = MultiplyHigh(xreg(instr->Rn()), xreg(instr->Rm()));
      break;
    default: VIXL_UNIMPLEMENTED();
  }
  set_reg(reg_size, instr->Rd(), result);
}


void Simulator::VisitBitfield(const Instruction* instr) {
  unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
  int64_t reg_mask = instr->SixtyFourBits() ? kXRegMask : kWRegMask;
  int64_t R = instr->ImmR();
  int64_t S = instr->ImmS();
  int64_t diff = S - R;
  int64_t mask;
  if (diff >= 0) {
    mask = (diff < (reg_size - 1)) ? (INT64_C(1) << (diff + 1)) - 1
                                   : reg_mask;
  } else {
    mask = (INT64_C(1) << (S + 1)) - 1;
    mask = (static_cast<uint64_t>(mask) >> R) | (mask << (reg_size - R));
    diff += reg_size;
  }

  // inzero indicates if the extracted bitfield is inserted into the
  // destination register value or in zero.
  // If extend is true, extend the sign of the extracted bitfield.
  bool inzero = false;
  bool extend = false;
  switch (instr->Mask(BitfieldMask)) {
    case BFM_x:
    case BFM_w:
      break;
    case SBFM_x:
    case SBFM_w:
      inzero = true;
      extend = true;
      break;
    case UBFM_x:
    case UBFM_w:
      inzero = true;
      break;
    default:
      VIXL_UNIMPLEMENTED();
  }

  int64_t dst = inzero ? 0 : reg(reg_size, instr->Rd());
  int64_t src = reg(reg_size, instr->Rn());
  // Rotate source bitfield into place.
  int64_t result = (static_cast<uint64_t>(src) >> R) | (src << (reg_size - R));
  // Determine the sign extension.
  int64_t topbits = ((INT64_C(1) << (reg_size - diff - 1)) - 1) << (diff + 1);
  int64_t signbits = extend && ((src >> S) & 1) ? topbits : 0;

  // Merge sign extension, dest/zero and bitfield.
  result = signbits | (result & mask) | (dst & ~mask);

  set_reg(reg_size, instr->Rd(), result);
}


void Simulator::VisitExtract(const Instruction* instr) {
  unsigned lsb = instr->ImmS();
  unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize
                                                    : kWRegSize;
  uint64_t low_res = static_cast<uint64_t>(reg(reg_size, instr->Rm())) >> lsb;
  uint64_t high_res =
      (lsb == 0) ? 0 : reg(reg_size, instr->Rn()) << (reg_size - lsb);
  set_reg(reg_size, instr->Rd(), low_res | high_res);
}


void Simulator::VisitFPImmediate(const Instruction* instr) {
  AssertSupportedFPCR();

  unsigned dest = instr->Rd();
  switch (instr->Mask(FPImmediateMask)) {
    case FMOV_s_imm: set_sreg(dest, instr->ImmFP32()); break;
    case FMOV_d_imm: set_dreg(dest, instr->ImmFP64()); break;
    default: VIXL_UNREACHABLE();
  }
}


void Simulator::VisitFPIntegerConvert(const Instruction* instr) {
  AssertSupportedFPCR();

  unsigned dst = instr->Rd();
  unsigned src = instr->Rn();

  FPRounding round = RMode();

  switch (instr->Mask(FPIntegerConvertMask)) {
    case FCVTAS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieAway)); break;
    case FCVTAS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieAway)); break;
    case FCVTAS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieAway)); break;
    case FCVTAS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieAway)); break;
    case FCVTAU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieAway)); break;
    case FCVTAU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieAway)); break;
    case FCVTAU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieAway)); break;
    case FCVTAU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieAway)); break;
    case FCVTMS_ws:
      set_wreg(dst, FPToInt32(sreg(src), FPNegativeInfinity));
      break;
    case FCVTMS_xs:
      set_xreg(dst, FPToInt64(sreg(src), FPNegativeInfinity));
      break;
    case FCVTMS_wd:
      set_wreg(dst, FPToInt32(dreg(src), FPNegativeInfinity));
      break;
    case FCVTMS_xd:
      set_xreg(dst, FPToInt64(dreg(src), FPNegativeInfinity));
      break;
    case FCVTMU_ws:
      set_wreg(dst, FPToUInt32(sreg(src), FPNegativeInfinity));
      break;
    case FCVTMU_xs:
      set_xreg(dst, FPToUInt64(sreg(src), FPNegativeInfinity));
      break;
    case FCVTMU_wd:
      set_wreg(dst, FPToUInt32(dreg(src), FPNegativeInfinity));
      break;
    case FCVTMU_xd:
      set_xreg(dst, FPToUInt64(dreg(src), FPNegativeInfinity));
      break;
    case FCVTPS_ws:
      set_wreg(dst, FPToInt32(sreg(src), FPPositiveInfinity));
      break;
    case FCVTPS_xs:
      set_xreg(dst, FPToInt64(sreg(src), FPPositiveInfinity));
      break;
    case FCVTPS_wd:
      set_wreg(dst, FPToInt32(dreg(src), FPPositiveInfinity));
      break;
    case FCVTPS_xd:
      set_xreg(dst, FPToInt64(dreg(src), FPPositiveInfinity));
      break;
    case FCVTPU_ws:
      set_wreg(dst, FPToUInt32(sreg(src), FPPositiveInfinity));
      break;
    case FCVTPU_xs:
      set_xreg(dst, FPToUInt64(sreg(src), FPPositiveInfinity));
      break;
    case FCVTPU_wd:
      set_wreg(dst, FPToUInt32(dreg(src), FPPositiveInfinity));
      break;
    case FCVTPU_xd:
      set_xreg(dst, FPToUInt64(dreg(src), FPPositiveInfinity));
      break;
    case FCVTNS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieEven)); break;
    case FCVTNS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieEven)); break;
    case FCVTNS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieEven)); break;
    case FCVTNS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieEven)); break;
    case FCVTNU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieEven)); break;
    case FCVTNU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieEven)); break;
    case FCVTNU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieEven)); break;
    case FCVTNU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieEven)); break;
    case FCVTZS_ws: set_wreg(dst, FPToInt32(sreg(src), FPZero)); break;
    case FCVTZS_xs: set_xreg(dst, FPToInt64(sreg(src), FPZero)); break;
    case FCVTZS_wd: set_wreg(dst, FPToInt32(dreg(src), FPZero)); break;
    case FCVTZS_xd: set_xreg(dst, FPToInt64(dreg(src), FPZero)); break;
    case FCVTZU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPZero)); break;
    case FCVTZU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPZero)); break;
    case FCVTZU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPZero)); break;
    case FCVTZU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPZero)); break;
    case FJCVTZS: set_wreg(dst, FPToFixedJS(dreg(src))); break;
    case FMOV_ws: set_wreg(dst, sreg_bits(src)); break;
    case FMOV_xd: set_xreg(dst, dreg_bits(src)); break;
    case FMOV_sw: set_sreg_bits(dst, wreg(src)); break;
    case FMOV_dx: set_dreg_bits(dst, xreg(src)); break;
    case FMOV_d1_x:
      LogicVRegister(vreg(dst)).SetUint(kFormatD, 1, xreg(src));
      break;
    case FMOV_x_d1:
      set_xreg(dst, LogicVRegister(vreg(src)).Uint(kFormatD, 1));
      break;

    // A 32-bit input can be handled in the same way as a 64-bit input, since
    // the sign- or zero-extension will not affect the conversion.
    case SCVTF_dx: set_dreg(dst, FixedToDouble(xreg(src), 0, round)); break;
    case SCVTF_dw: set_dreg(dst, FixedToDouble(wreg(src), 0, round)); break;
    case UCVTF_dx: set_dreg(dst, UFixedToDouble(xreg(src), 0, round)); break;
    case UCVTF_dw: {
      set_dreg(dst, UFixedToDouble(static_cast<uint32_t>(wreg(src)), 0, round));
      break;
    }
    case SCVTF_sx: set_sreg(dst, FixedToFloat(xreg(src), 0, round)); break;
    case SCVTF_sw: set_sreg(dst, FixedToFloat(wreg(src), 0, round)); break;
    case UCVTF_sx: set_sreg(dst, UFixedToFloat(xreg(src), 0, round)); break;
    case UCVTF_sw: {
      set_sreg(dst, UFixedToFloat(static_cast<uint32_t>(wreg(src)), 0, round));
      break;
    }

    default: VIXL_UNREACHABLE();
  }
}


void Simulator::VisitFPFixedPointConvert(const Instruction* instr) {
  AssertSupportedFPCR();

  unsigned dst = instr->Rd();
  unsigned src = instr->Rn();
  int fbits = 64 - instr->FPScale();

  FPRounding round = RMode();

  switch (instr->Mask(FPFixedPointConvertMask)) {
    // A 32-bit input can be handled in the same way as a 64-bit input, since
    // the sign- or zero-extension will not affect the conversion.
    case SCVTF_dx_fixed:
      set_dreg(dst, FixedToDouble(xreg(src), fbits, round));
      break;
    case SCVTF_dw_fixed:
      set_dreg(dst, FixedToDouble(wreg(src), fbits, round));
      break;
    case UCVTF_dx_fixed:
      set_dreg(dst, UFixedToDouble(xreg(src), fbits, round));
      break;
    case UCVTF_dw_fixed: {
      set_dreg(dst,
               UFixedToDouble(static_cast<uint32_t>(wreg(src)), fbits, round));
      break;
    }
    case SCVTF_sx_fixed:
      set_sreg(dst, FixedToFloat(xreg(src), fbits, round));
      break;
    case SCVTF_sw_fixed:
      set_sreg(dst, FixedToFloat(wreg(src), fbits, round));
      break;
    case UCVTF_sx_fixed:
      set_sreg(dst, UFixedToFloat(xreg(src), fbits, round));
      break;
    case UCVTF_sw_fixed: {
      set_sreg(dst,
               UFixedToFloat(static_cast<uint32_t>(wreg(src)), fbits, round));
      break;
    }
    case FCVTZS_xd_fixed:
      set_xreg(dst, FPToInt64(dreg(src) * std::pow(2.0, fbits), FPZero));
      break;
    case FCVTZS_wd_fixed:
      set_wreg(dst, FPToInt32(dreg(src) * std::pow(2.0, fbits), FPZero));
      break;
    case FCVTZU_xd_fixed:
      set_xreg(dst, FPToUInt64(dreg(src) * std::pow(2.0, fbits), FPZero));
      break;
    case FCVTZU_wd_fixed:
      set_wreg(dst, FPToUInt32(dreg(src) * std::pow(2.0, fbits), FPZero));
      break;
    case FCVTZS_xs_fixed:
      set_xreg(dst, FPToInt64(sreg(src) * std::pow(2.0f, fbits), FPZero));
      break;
    case FCVTZS_ws_fixed:
      set_wreg(dst, FPToInt32(sreg(src) * std::pow(2.0f, fbits), FPZero));
      break;
    case FCVTZU_xs_fixed:
      set_xreg(dst, FPToUInt64(sreg(src) * std::pow(2.0f, fbits), FPZero));
      break;
    case FCVTZU_ws_fixed:
      set_wreg(dst, FPToUInt32(sreg(src) * std::pow(2.0f, fbits), FPZero));
      break;
    default: VIXL_UNREACHABLE();
  }
}


void Simulator::VisitFPCompare(const Instruction* instr) {
  AssertSupportedFPCR();

  FPTrapFlags trap = DisableTrap;
  switch (instr->Mask(FPCompareMask)) {
    case FCMPE_s: trap = EnableTrap; VIXL_FALLTHROUGH();
    case FCMP_s: FPCompare(sreg(instr->Rn()), sreg(instr->Rm()), trap); break;
    case FCMPE_d: trap = EnableTrap; VIXL_FALLTHROUGH();
    case FCMP_d: FPCompare(dreg(instr->Rn()), dreg(instr->Rm()), trap); break;
    case FCMPE_s_zero: trap = EnableTrap; VIXL_FALLTHROUGH();
    case FCMP_s_zero: FPCompare(sreg(instr->Rn()), 0.0f, trap); break;
    case FCMPE_d_zero: trap = EnableTrap; VIXL_FALLTHROUGH();
    case FCMP_d_zero: FPCompare(dreg(instr->Rn()), 0.0, trap); break;
    default: VIXL_UNIMPLEMENTED();
  }
}


void Simulator::VisitFPConditionalCompare(const Instruction* instr) {
  AssertSupportedFPCR();

  FPTrapFlags trap = DisableTrap;
  switch (instr->Mask(FPConditionalCompareMask)) {
    case FCCMPE_s: trap = EnableTrap;
      VIXL_FALLTHROUGH();
    case FCCMP_s:
      if (ConditionPassed(instr->Condition())) {
        FPCompare(sreg(instr->Rn()), sreg(instr->Rm()), trap);
      } else {
        nzcv().SetFlags(instr->Nzcv());
        LogSystemRegister(NZCV);
      }
      break;
    case FCCMPE_d: trap = EnableTrap;
      VIXL_FALLTHROUGH();
    case FCCMP_d:
      if (ConditionPassed(instr->Condition())) {
        FPCompare(dreg(instr->Rn()), dreg(instr->Rm()), trap);
      } else {
        nzcv().SetFlags(instr->Nzcv());
        LogSystemRegister(NZCV);
      }
      break;
    default: VIXL_UNIMPLEMENTED();
  }
}


void Simulator::VisitFPConditionalSelect(const Instruction* instr) {
  AssertSupportedFPCR();

  Instr selected;
  if (ConditionPassed(instr->Condition())) {
    selected = instr->Rn();
  } else {
    selected = instr->Rm();
  }

  switch (instr->Mask(FPConditionalSelectMask)) {
    case FCSEL_s: set_sreg(instr->Rd(), sreg(selected)); break;
    case FCSEL_d: set_dreg(instr->Rd(), dreg(selected)); break;
    default: VIXL_UNIMPLEMENTED();
  }
}


void Simulator::VisitFPDataProcessing1Source(const Instruction* instr) {
  AssertSupportedFPCR();

  FPRounding fpcr_rounding = static_cast<FPRounding>(fpcr().RMode());
  VectorFormat vform = (instr->Mask(FP64) == FP64) ? kFormatD : kFormatS;
  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());
  bool inexact_exception = false;

  unsigned fd = instr->Rd();
  unsigned fn = instr->Rn();

  switch (instr->Mask(FPDataProcessing1SourceMask)) {
    case FMOV_s: set_sreg(fd, sreg(fn)); return;
    case FMOV_d: set_dreg(fd, dreg(fn)); return;
    case FABS_s: fabs_(kFormatS, vreg(fd), vreg(fn)); return;
    case FABS_d: fabs_(kFormatD, vreg(fd), vreg(fn)); return;
    case FNEG_s: fneg(kFormatS, vreg(fd), vreg(fn)); return;
    case FNEG_d: fneg(kFormatD, vreg(fd), vreg(fn)); return;
    case FCVT_ds:
      set_dreg(fd, FPToDouble(sreg(fn), ReadDN()));
      return;
    case FCVT_sd:
      set_sreg(fd, FPToFloat(dreg(fn), FPTieEven, ReadDN()));
      return;
    case FCVT_hs:
      set_hreg(fd, Float16ToRawbits(FPToFloat16(sreg(fn), FPTieEven, ReadDN())));
      return;
    case FCVT_sh:
      set_sreg(fd, FPToFloat(RawbitsToFloat16(hreg(fn)), ReadDN()));
      return;
    case FCVT_dh:
      set_dreg(fd, FPToDouble(hreg(fn), ReadDN()));
      return;
    case FCVT_hd:
      set_hreg(fd, Float16ToRawbits(FPToFloat16(dreg(fn), FPTieEven, ReadDN())));
      return;
    case FSQRT_s:
    case FSQRT_d: fsqrt(vform, rd, rn); return;
    case FRINTI_s:
    case FRINTI_d: break;  // Use FPCR rounding mode.
    case FRINTX_s:
    case FRINTX_d: inexact_exception = true; break;
    case FRINTA_s:
    case FRINTA_d: fpcr_rounding = FPTieAway; break;
    case FRINTM_s:
    case FRINTM_d: fpcr_rounding = FPNegativeInfinity; break;
    case FRINTN_s:
    case FRINTN_d: fpcr_rounding = FPTieEven; break;
    case FRINTP_s:
    case FRINTP_d: fpcr_rounding = FPPositiveInfinity; break;
    case FRINTZ_s:
    case FRINTZ_d: fpcr_rounding = FPZero; break;
    default: VIXL_UNIMPLEMENTED();
  }

  // Only FRINT* instructions fall through the switch above.
  frint(vform, rd, rn, fpcr_rounding, inexact_exception);
}


void Simulator::VisitFPDataProcessing2Source(const Instruction* instr) {
  AssertSupportedFPCR();

  VectorFormat vform = (instr->Mask(FP64) == FP64) ? kFormatD : kFormatS;
  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());
  SimVRegister& rm = vreg(instr->Rm());

  switch (instr->Mask(FPDataProcessing2SourceMask)) {
    case FADD_s:
    case FADD_d: fadd(vform, rd, rn, rm); break;
    case FSUB_s:
    case FSUB_d: fsub(vform, rd, rn, rm); break;
    case FMUL_s:
    case FMUL_d: fmul(vform, rd, rn, rm); break;
    case FNMUL_s:
    case FNMUL_d: fnmul(vform, rd, rn, rm); break;
    case FDIV_s:
    case FDIV_d: fdiv(vform, rd, rn, rm); break;
    case FMAX_s:
    case FMAX_d: fmax(vform, rd, rn, rm); break;
    case FMIN_s:
    case FMIN_d: fmin(vform, rd, rn, rm); break;
    case FMAXNM_s:
    case FMAXNM_d: fmaxnm(vform, rd, rn, rm); break;
    case FMINNM_s:
    case FMINNM_d: fminnm(vform, rd, rn, rm); break;
    default:
      VIXL_UNREACHABLE();
  }
}


void Simulator::VisitFPDataProcessing3Source(const Instruction* instr) {
  AssertSupportedFPCR();

  unsigned fd = instr->Rd();
  unsigned fn = instr->Rn();
  unsigned fm = instr->Rm();
  unsigned fa = instr->Ra();

  switch (instr->Mask(FPDataProcessing3SourceMask)) {
    // fd = fa +/- (fn * fm)
    case FMADD_s: set_sreg(fd, FPMulAdd(sreg(fa), sreg(fn), sreg(fm))); break;
    case FMSUB_s: set_sreg(fd, FPMulAdd(sreg(fa), -sreg(fn), sreg(fm))); break;
    case FMADD_d: set_dreg(fd, FPMulAdd(dreg(fa), dreg(fn), dreg(fm))); break;
    case FMSUB_d: set_dreg(fd, FPMulAdd(dreg(fa), -dreg(fn), dreg(fm))); break;
    // Negated variants of the above.
    case FNMADD_s:
      set_sreg(fd, FPMulAdd(-sreg(fa), -sreg(fn), sreg(fm)));
      break;
    case FNMSUB_s:
      set_sreg(fd, FPMulAdd(-sreg(fa), sreg(fn), sreg(fm)));
      break;
    case FNMADD_d:
      set_dreg(fd, FPMulAdd(-dreg(fa), -dreg(fn), dreg(fm)));
      break;
    case FNMSUB_d:
      set_dreg(fd, FPMulAdd(-dreg(fa), dreg(fn), dreg(fm)));
      break;
    default: VIXL_UNIMPLEMENTED();
  }
}


bool Simulator::FPProcessNaNs(const Instruction* instr) {
  unsigned fd = instr->Rd();
  unsigned fn = instr->Rn();
  unsigned fm = instr->Rm();
  bool done = false;

  if (instr->Mask(FP64) == FP64) {
    double result = FPProcessNaNs(dreg(fn), dreg(fm));
    if (std::isnan(result)) {
      set_dreg(fd, result);
      done = true;
    }
  } else {
    float result = FPProcessNaNs(sreg(fn), sreg(fm));
    if (std::isnan(result)) {
      set_sreg(fd, result);
      done = true;
    }
  }

  return done;
}


void Simulator::SysOp_W(int op, int64_t val) {
  switch (op) {
    case IVAU:
    case CVAC:
    case CVAU:
    case CIVAC: {
      // Perform a dummy memory access to ensure that we have read access
      // to the specified address.
      volatile uint8_t y = Read<uint8_t>(val);
      USE(y);
      // TODO: Implement "case ZVA:".
      break;
    }
    default:
      VIXL_UNIMPLEMENTED();
  }
}


void Simulator::VisitSystem(const Instruction* instr) {
  // Some system instructions hijack their Op and Cp fields to represent a
  // range of immediates instead of indicating a different instruction. This
  // makes the decoding tricky.
  if (instr->Mask(SystemExclusiveMonitorFMask) == SystemExclusiveMonitorFixed) {
    VIXL_ASSERT(instr->Mask(SystemExclusiveMonitorMask) == CLREX);
    switch (instr->Mask(SystemExclusiveMonitorMask)) {
      case CLREX: {
        PrintExclusiveAccessWarning();
        ClearLocalMonitor();
        break;
      }
    }
  } else if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) {
    switch (instr->Mask(SystemSysRegMask)) {
      case MRS: {
        switch (instr->ImmSystemRegister()) {
          case NZCV: set_xreg(instr->Rt(), nzcv().RawValue()); break;
          case FPCR: set_xreg(instr->Rt(), fpcr().RawValue()); break;
          default: VIXL_UNIMPLEMENTED();
        }
        break;
      }
      case MSR: {
        switch (instr->ImmSystemRegister()) {
          case NZCV:
            nzcv().SetRawValue(wreg(instr->Rt()));
            LogSystemRegister(NZCV);
            break;
          case FPCR:
            fpcr().SetRawValue(wreg(instr->Rt()));
            LogSystemRegister(FPCR);
            break;
          default: VIXL_UNIMPLEMENTED();
        }
        break;
      }
    }
  } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) {
    VIXL_ASSERT(instr->Mask(SystemHintMask) == HINT);
    switch (instr->ImmHint()) {
      case NOP: break;
      case CSDB: break;
      default: VIXL_UNIMPLEMENTED();
    }
  } else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) {
    js::jit::AtomicOperations::fenceSeqCst();
  } else if ((instr->Mask(SystemSysFMask) == SystemSysFixed)) {
    switch (instr->Mask(SystemSysMask)) {
      case SYS: SysOp_W(instr->SysOp(), xreg(instr->Rt())); break;
      default: VIXL_UNIMPLEMENTED();
    }
  } else {
    VIXL_UNIMPLEMENTED();
  }
}


void Simulator::VisitCrypto2RegSHA(const Instruction* instr) {
  VisitUnimplemented(instr);
}


void Simulator::VisitCrypto3RegSHA(const Instruction* instr) {
  VisitUnimplemented(instr);
}


void Simulator::VisitCryptoAES(const Instruction* instr) {
  VisitUnimplemented(instr);
}


void Simulator::VisitNEON2RegMisc(const Instruction* instr) {
  NEONFormatDecoder nfd(instr);
  VectorFormat vf = nfd.GetVectorFormat();

  static const NEONFormatMap map_lp = {
    {23, 22, 30}, {NF_4H, NF_8H, NF_2S, NF_4S, NF_1D, NF_2D}
  };
  VectorFormat vf_lp = nfd.GetVectorFormat(&map_lp);

  static const NEONFormatMap map_fcvtl = {
    {22}, {NF_4S, NF_2D}
  };
  VectorFormat vf_fcvtl = nfd.GetVectorFormat(&map_fcvtl);

  static const NEONFormatMap map_fcvtn = {
    {22, 30}, {NF_4H, NF_8H, NF_2S, NF_4S}
  };
  VectorFormat vf_fcvtn = nfd.GetVectorFormat(&map_fcvtn);

  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());

  if (instr->Mask(NEON2RegMiscOpcode) <= NEON_NEG_opcode) {
    // These instructions all use a two bit size field, except NOT and RBIT,
    // which use the field to encode the operation.
    switch (instr->Mask(NEON2RegMiscMask)) {
      case NEON_REV64:     rev64(vf, rd, rn); break;
      case NEON_REV32:     rev32(vf, rd, rn); break;
      case NEON_REV16:     rev16(vf, rd, rn); break;
      case NEON_SUQADD:    suqadd(vf, rd, rn); break;
      case NEON_USQADD:    usqadd(vf, rd, rn); break;
      case NEON_CLS:       cls(vf, rd, rn); break;
      case NEON_CLZ:       clz(vf, rd, rn); break;
      case NEON_CNT:       cnt(vf, rd, rn); break;
      case NEON_SQABS:     abs(vf, rd, rn).SignedSaturate(vf); break;
      case NEON_SQNEG:     neg(vf, rd, rn).SignedSaturate(vf); break;
      case NEON_CMGT_zero: cmp(vf, rd, rn, 0, gt); break;
      case NEON_CMGE_zero: cmp(vf, rd, rn, 0, ge); break;
      case NEON_CMEQ_zero: cmp(vf, rd, rn, 0, eq); break;
      case NEON_CMLE_zero: cmp(vf, rd, rn, 0, le); break;
      case NEON_CMLT_zero: cmp(vf, rd, rn, 0, lt); break;
      case NEON_ABS:       abs(vf, rd, rn); break;
      case NEON_NEG:       neg(vf, rd, rn); break;
      case NEON_SADDLP:    saddlp(vf_lp, rd, rn); break;
      case NEON_UADDLP:    uaddlp(vf_lp, rd, rn); break;
      case NEON_SADALP:    sadalp(vf_lp, rd, rn); break;
      case NEON_UADALP:    uadalp(vf_lp, rd, rn); break;
      case NEON_RBIT_NOT:
        vf = nfd.GetVectorFormat(nfd.LogicalFormatMap());
        switch (instr->FPType()) {
          case 0: not_(vf, rd, rn); break;
          case 1: rbit(vf, rd, rn);; break;
          default:
            VIXL_UNIMPLEMENTED();
        }
        break;
    }
  } else {
    VectorFormat fpf = nfd.GetVectorFormat(nfd.FPFormatMap());
    FPRounding fpcr_rounding = static_cast<FPRounding>(fpcr().RMode());
    bool inexact_exception = false;

    // These instructions all use a one bit size field, except XTN, SQXTUN,
    // SHLL, SQXTN and UQXTN, which use a two bit size field.
    switch (instr->Mask(NEON2RegMiscFPMask)) {
      case NEON_FABS:   fabs_(fpf, rd, rn); return;
      case NEON_FNEG:   fneg(fpf, rd, rn); return;
      case NEON_FSQRT:  fsqrt(fpf, rd, rn); return;
      case NEON_FCVTL:
        if (instr->Mask(NEON_Q)) {
          fcvtl2(vf_fcvtl, rd, rn);
        } else {
          fcvtl(vf_fcvtl, rd, rn);
        }
        return;
      case NEON_FCVTN:
        if (instr->Mask(NEON_Q)) {
          fcvtn2(vf_fcvtn, rd, rn);
        } else {
          fcvtn(vf_fcvtn, rd, rn);
        }
        return;
      case NEON_FCVTXN:
        if (instr->Mask(NEON_Q)) {
          fcvtxn2(vf_fcvtn, rd, rn);
        } else {
          fcvtxn(vf_fcvtn, rd, rn);
        }
        return;

      // The following instructions break from the switch statement, rather
      // than return.
      case NEON_FRINTI:     break;  // Use FPCR rounding mode.
      case NEON_FRINTX:     inexact_exception = true; break;
      case NEON_FRINTA:     fpcr_rounding = FPTieAway; break;
      case NEON_FRINTM:     fpcr_rounding = FPNegativeInfinity; break;
      case NEON_FRINTN:     fpcr_rounding = FPTieEven; break;
      case NEON_FRINTP:     fpcr_rounding = FPPositiveInfinity; break;
      case NEON_FRINTZ:     fpcr_rounding = FPZero; break;

      case NEON_FCVTNS:     fcvts(fpf, rd, rn, FPTieEven); return;
      case NEON_FCVTNU:     fcvtu(fpf, rd, rn, FPTieEven); return;
      case NEON_FCVTPS:     fcvts(fpf, rd, rn, FPPositiveInfinity); return;
      case NEON_FCVTPU:     fcvtu(fpf, rd, rn, FPPositiveInfinity); return;
      case NEON_FCVTMS:     fcvts(fpf, rd, rn, FPNegativeInfinity); return;
      case NEON_FCVTMU:     fcvtu(fpf, rd, rn, FPNegativeInfinity); return;
      case NEON_FCVTZS:     fcvts(fpf, rd, rn, FPZero); return;
      case NEON_FCVTZU:     fcvtu(fpf, rd, rn, FPZero); return;
      case NEON_FCVTAS:     fcvts(fpf, rd, rn, FPTieAway); return;
      case NEON_FCVTAU:     fcvtu(fpf, rd, rn, FPTieAway); return;
      case NEON_SCVTF:      scvtf(fpf, rd, rn, 0, fpcr_rounding); return;
      case NEON_UCVTF:      ucvtf(fpf, rd, rn, 0, fpcr_rounding); return;
      case NEON_URSQRTE:    ursqrte(fpf, rd, rn); return;
      case NEON_URECPE:     urecpe(fpf, rd, rn); return;
      case NEON_FRSQRTE:    frsqrte(fpf, rd, rn); return;
      case NEON_FRECPE:     frecpe(fpf, rd, rn, fpcr_rounding); return;
      case NEON_FCMGT_zero: fcmp_zero(fpf, rd, rn, gt); return;
      case NEON_FCMGE_zero: fcmp_zero(fpf, rd, rn, ge); return;
      case NEON_FCMEQ_zero: fcmp_zero(fpf, rd, rn, eq); return;
      case NEON_FCMLE_zero: fcmp_zero(fpf, rd, rn, le); return;
      case NEON_FCMLT_zero: fcmp_zero(fpf, rd, rn, lt); return;
      default:
        if ((NEON_XTN_opcode <= instr->Mask(NEON2RegMiscOpcode)) &&
            (instr->Mask(NEON2RegMiscOpcode) <= NEON_UQXTN_opcode)) {
          switch (instr->Mask(NEON2RegMiscMask)) {
            case NEON_XTN: xtn(vf, rd, rn); return;
            case NEON_SQXTN: sqxtn(vf, rd, rn); return;
            case NEON_UQXTN: uqxtn(vf, rd, rn); return;
            case NEON_SQXTUN: sqxtun(vf, rd, rn); return;
            case NEON_SHLL:
              vf = nfd.GetVectorFormat(nfd.LongIntegerFormatMap());
              if (instr->Mask(NEON_Q)) {
                shll2(vf, rd, rn);
              } else {
                shll(vf, rd, rn);
              }
              return;
            default:
              VIXL_UNIMPLEMENTED();
          }
        } else {
          VIXL_UNIMPLEMENTED();
        }
    }

    // Only FRINT* instructions fall through the switch above.
    frint(fpf, rd, rn, fpcr_rounding, inexact_exception);
  }
}


void Simulator::VisitNEON3Same(const Instruction* instr) {
  NEONFormatDecoder nfd(instr);
  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());
  SimVRegister& rm = vreg(instr->Rm());

  if (instr->Mask(NEON3SameLogicalFMask) == NEON3SameLogicalFixed) {
    VectorFormat vf = nfd.GetVectorFormat(nfd.LogicalFormatMap());
    switch (instr->Mask(NEON3SameLogicalMask)) {
      case NEON_AND: and_(vf, rd, rn, rm); break;
      case NEON_ORR: orr(vf, rd, rn, rm); break;
      case NEON_ORN: orn(vf, rd, rn, rm); break;
      case NEON_EOR: eor(vf, rd, rn, rm); break;
      case NEON_BIC: bic(vf, rd, rn, rm); break;
      case NEON_BIF: bif(vf, rd, rn, rm); break;
      case NEON_BIT: bit(vf, rd, rn, rm); break;
      case NEON_BSL: bsl(vf, rd, rn, rm); break;
      default:
        VIXL_UNIMPLEMENTED();
    }
  } else if (instr->Mask(NEON3SameFPFMask) == NEON3SameFPFixed) {
    VectorFormat vf = nfd.GetVectorFormat(nfd.FPFormatMap());
    switch (instr->Mask(NEON3SameFPMask)) {
      case NEON_FADD:    fadd(vf, rd, rn, rm); break;
      case NEON_FSUB:    fsub(vf, rd, rn, rm); break;
      case NEON_FMUL:    fmul(vf, rd, rn, rm); break;
      case NEON_FDIV:    fdiv(vf, rd, rn, rm); break;
      case NEON_FMAX:    fmax(vf, rd, rn, rm); break;
      case NEON_FMIN:    fmin(vf, rd, rn, rm); break;
      case NEON_FMAXNM:  fmaxnm(vf, rd, rn, rm); break;
      case NEON_FMINNM:  fminnm(vf, rd, rn, rm); break;
      case NEON_FMLA:    fmla(vf, rd, rn, rm); break;
      case NEON_FMLS:    fmls(vf, rd, rn, rm); break;
      case NEON_FMULX:   fmulx(vf, rd, rn, rm); break;
      case NEON_FACGE:   fabscmp(vf, rd, rn, rm, ge); break;
      case NEON_FACGT:   fabscmp(vf, rd, rn, rm, gt); break;
      case NEON_FCMEQ:   fcmp(vf, rd, rn, rm, eq); break;
      case NEON_FCMGE:   fcmp(vf, rd, rn, rm, ge); break;
      case NEON_FCMGT:   fcmp(vf, rd, rn, rm, gt); break;
      case NEON_FRECPS:  frecps(vf, rd, rn, rm); break;
      case NEON_FRSQRTS: frsqrts(vf, rd, rn, rm); break;
      case NEON_FABD:    fabd(vf, rd, rn, rm); break;
      case NEON_FADDP:   faddp(vf, rd, rn, rm); break;
      case NEON_FMAXP:   fmaxp(vf, rd, rn, rm); break;
      case NEON_FMAXNMP: fmaxnmp(vf, rd, rn, rm); break;
      case NEON_FMINP:   fminp(vf, rd, rn, rm); break;
      case NEON_FMINNMP: fminnmp(vf, rd, rn, rm); break;
      default:
        VIXL_UNIMPLEMENTED();
    }
  } else {
    VectorFormat vf = nfd.GetVectorFormat();
    switch (instr->Mask(NEON3SameMask)) {
      case NEON_ADD:   add(vf, rd, rn, rm);  break;
      case NEON_ADDP:  addp(vf, rd, rn, rm); break;
      case NEON_CMEQ:  cmp(vf, rd, rn, rm, eq); break;
      case NEON_CMGE:  cmp(vf, rd, rn, rm, ge); break;
      case NEON_CMGT:  cmp(vf, rd, rn, rm, gt); break;
      case NEON_CMHI:  cmp(vf, rd, rn, rm, hi); break;
      case NEON_CMHS:  cmp(vf, rd, rn, rm, hs); break;
      case NEON_CMTST: cmptst(vf, rd, rn, rm); break;
      case NEON_MLS:   mls(vf, rd, rn, rm); break;
      case NEON_MLA:   mla(vf, rd, rn, rm); break;
      case NEON_MUL:   mul(vf, rd, rn, rm); break;
      case NEON_PMUL:  pmul(vf, rd, rn, rm); break;
      case NEON_SMAX:  smax(vf, rd, rn, rm); break;
      case NEON_SMAXP: smaxp(vf, rd, rn, rm); break;
      case NEON_SMIN:  smin(vf, rd, rn, rm); break;
      case NEON_SMINP: sminp(vf, rd, rn, rm); break;
      case NEON_SUB:   sub(vf, rd, rn, rm);  break;
      case NEON_UMAX:  umax(vf, rd, rn, rm); break;
      case NEON_UMAXP: umaxp(vf, rd, rn, rm); break;
      case NEON_UMIN:  umin(vf, rd, rn, rm); break;
      case NEON_UMINP: uminp(vf, rd, rn, rm); break;
      case NEON_SSHL:  sshl(vf, rd, rn, rm); break;
      case NEON_USHL:  ushl(vf, rd, rn, rm); break;
      case NEON_SABD:  absdiff(vf, rd, rn, rm, true); break;
      case NEON_UABD:  absdiff(vf, rd, rn, rm, false); break;
      case NEON_SABA:  saba(vf, rd, rn, rm); break;
      case NEON_UABA:  uaba(vf, rd, rn, rm); break;
      case NEON_UQADD: add(vf, rd, rn, rm).UnsignedSaturate(vf); break;
      case NEON_SQADD: add(vf, rd, rn, rm).SignedSaturate(vf); break;
      case NEON_UQSUB: sub(vf, rd, rn, rm).UnsignedSaturate(vf); break;
      case NEON_SQSUB: sub(vf, rd, rn, rm).SignedSaturate(vf); break;
      case NEON_SQDMULH:  sqdmulh(vf, rd, rn, rm); break;
      case NEON_SQRDMULH: sqrdmulh(vf, rd, rn, rm); break;
      case NEON_UQSHL: ushl(vf, rd, rn, rm).UnsignedSaturate(vf); break;
      case NEON_SQSHL: sshl(vf, rd, rn, rm).SignedSaturate(vf); break;
      case NEON_URSHL: ushl(vf, rd, rn, rm).Round(vf); break;
      case NEON_SRSHL: sshl(vf, rd, rn, rm).Round(vf); break;
      case NEON_UQRSHL:
        ushl(vf, rd, rn, rm).Round(vf).UnsignedSaturate(vf);
        break;
      case NEON_SQRSHL:
        sshl(vf, rd, rn, rm).Round(vf).SignedSaturate(vf);
        break;
      case NEON_UHADD:
        add(vf, rd, rn, rm).Uhalve(vf);
        break;
      case NEON_URHADD:
        add(vf, rd, rn, rm).Uhalve(vf).Round(vf);
        break;
      case NEON_SHADD:
        add(vf, rd, rn, rm).Halve(vf);
        break;
      case NEON_SRHADD:
        add(vf, rd, rn, rm).Halve(vf).Round(vf);
        break;
      case NEON_UHSUB:
        sub(vf, rd, rn, rm).Uhalve(vf);
        break;
      case NEON_SHSUB:
        sub(vf, rd, rn, rm).Halve(vf);
        break;
      default:
        VIXL_UNIMPLEMENTED();
    }
  }
}


void Simulator::VisitNEON3Different(const Instruction* instr) {
  NEONFormatDecoder nfd(instr);
  VectorFormat vf = nfd.GetVectorFormat();
  VectorFormat vf_l = nfd.GetVectorFormat(nfd.LongIntegerFormatMap());

  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());
  SimVRegister& rm = vreg(instr->Rm());

  switch (instr->Mask(NEON3DifferentMask)) {
    case NEON_PMULL:    pmull(vf_l, rd, rn, rm); break;
    case NEON_PMULL2:   pmull2(vf_l, rd, rn, rm); break;
    case NEON_UADDL:    uaddl(vf_l, rd, rn, rm); break;
    case NEON_UADDL2:   uaddl2(vf_l, rd, rn, rm); break;
    case NEON_SADDL:    saddl(vf_l, rd, rn, rm); break;
    case NEON_SADDL2:   saddl2(vf_l, rd, rn, rm); break;
    case NEON_USUBL:    usubl(vf_l, rd, rn, rm); break;
    case NEON_USUBL2:   usubl2(vf_l, rd, rn, rm); break;
    case NEON_SSUBL:    ssubl(vf_l, rd, rn, rm); break;
    case NEON_SSUBL2:   ssubl2(vf_l, rd, rn, rm); break;
    case NEON_SABAL:    sabal(vf_l, rd, rn, rm); break;
    case NEON_SABAL2:   sabal2(vf_l, rd, rn, rm); break;
    case NEON_UABAL:    uabal(vf_l, rd, rn, rm); break;
    case NEON_UABAL2:   uabal2(vf_l, rd, rn, rm); break;
    case NEON_SABDL:    sabdl(vf_l, rd, rn, rm); break;
    case NEON_SABDL2:   sabdl2(vf_l, rd, rn, rm); break;
    case NEON_UABDL:    uabdl(vf_l, rd, rn, rm); break;
    case NEON_UABDL2:   uabdl2(vf_l, rd, rn, rm); break;
    case NEON_SMLAL:    smlal(vf_l, rd, rn, rm); break;
    case NEON_SMLAL2:   smlal2(vf_l, rd, rn, rm); break;
    case NEON_UMLAL:    umlal(vf_l, rd, rn, rm); break;
    case NEON_UMLAL2:   umlal2(vf_l, rd, rn, rm); break;
    case NEON_SMLSL:    smlsl(vf_l, rd, rn, rm); break;
    case NEON_SMLSL2:   smlsl2(vf_l, rd, rn, rm); break;
    case NEON_UMLSL:    umlsl(vf_l, rd, rn, rm); break;
    case NEON_UMLSL2:   umlsl2(vf_l, rd, rn, rm); break;
    case NEON_SMULL:    smull(vf_l, rd, rn, rm); break;
    case NEON_SMULL2:   smull2(vf_l, rd, rn, rm); break;
    case NEON_UMULL:    umull(vf_l, rd, rn, rm); break;
    case NEON_UMULL2:   umull2(vf_l, rd, rn, rm); break;
    case NEON_SQDMLAL:  sqdmlal(vf_l, rd, rn, rm); break;
    case NEON_SQDMLAL2: sqdmlal2(vf_l, rd, rn, rm); break;
    case NEON_SQDMLSL:  sqdmlsl(vf_l, rd, rn, rm); break;
    case NEON_SQDMLSL2: sqdmlsl2(vf_l, rd, rn, rm); break;
    case NEON_SQDMULL:  sqdmull(vf_l, rd, rn, rm); break;
    case NEON_SQDMULL2: sqdmull2(vf_l, rd, rn, rm); break;
    case NEON_UADDW:    uaddw(vf_l, rd, rn, rm); break;
    case NEON_UADDW2:   uaddw2(vf_l, rd, rn, rm); break;
    case NEON_SADDW:    saddw(vf_l, rd, rn, rm); break;
    case NEON_SADDW2:   saddw2(vf_l, rd, rn, rm); break;
    case NEON_USUBW:    usubw(vf_l, rd, rn, rm); break;
    case NEON_USUBW2:   usubw2(vf_l, rd, rn, rm); break;
    case NEON_SSUBW:    ssubw(vf_l, rd, rn, rm); break;
    case NEON_SSUBW2:   ssubw2(vf_l, rd, rn, rm); break;
    case NEON_ADDHN:    addhn(vf, rd, rn, rm); break;
    case NEON_ADDHN2:   addhn2(vf, rd, rn, rm); break;
    case NEON_RADDHN:   raddhn(vf, rd, rn, rm); break;
    case NEON_RADDHN2:  raddhn2(vf, rd, rn, rm); break;
    case NEON_SUBHN:    subhn(vf, rd, rn, rm); break;
    case NEON_SUBHN2:   subhn2(vf, rd, rn, rm); break;
    case NEON_RSUBHN:   rsubhn(vf, rd, rn, rm); break;
    case NEON_RSUBHN2:  rsubhn2(vf, rd, rn, rm); break;
    default:
      VIXL_UNIMPLEMENTED();
  }
}


void Simulator::VisitNEONAcrossLanes(const Instruction* instr) {
  NEONFormatDecoder nfd(instr);

  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());

  // The input operand's VectorFormat is passed for these instructions.
  if (instr->Mask(NEONAcrossLanesFPFMask) == NEONAcrossLanesFPFixed) {
    VectorFormat vf = nfd.GetVectorFormat(nfd.FPFormatMap());

    switch (instr->Mask(NEONAcrossLanesFPMask)) {
      case NEON_FMAXV: fmaxv(vf, rd, rn); break;
      case NEON_FMINV: fminv(vf, rd, rn); break;
      case NEON_FMAXNMV: fmaxnmv(vf, rd, rn); break;
      case NEON_FMINNMV: fminnmv(vf, rd, rn); break;
      default:
        VIXL_UNIMPLEMENTED();
    }
  } else {
    VectorFormat vf = nfd.GetVectorFormat();

    switch (instr->Mask(NEONAcrossLanesMask)) {
      case NEON_ADDV:   addv(vf, rd, rn); break;
      case NEON_SMAXV:  smaxv(vf, rd, rn); break;
      case NEON_SMINV:  sminv(vf, rd, rn); break;
      case NEON_UMAXV:  umaxv(vf, rd, rn); break;
      case NEON_UMINV:  uminv(vf, rd, rn); break;
      case NEON_SADDLV: saddlv(vf, rd, rn); break;
      case NEON_UADDLV: uaddlv(vf, rd, rn); break;
      default:
        VIXL_UNIMPLEMENTED();
    }
  }
}


void Simulator::VisitNEONByIndexedElement(const Instruction* instr) {
  NEONFormatDecoder nfd(instr);
  VectorFormat vf_r = nfd.GetVectorFormat();
  VectorFormat vf = nfd.GetVectorFormat(nfd.LongIntegerFormatMap());

  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());

  ByElementOp Op = NULL;

  int rm_reg = instr->Rm();
  int index = (instr->NEONH() << 1) | instr->NEONL();
  if (instr->NEONSize() == 1) {
    rm_reg &= 0xf;
    index = (index << 1) | instr->NEONM();
  }

  switch (instr->Mask(NEONByIndexedElementMask)) {
    case NEON_MUL_byelement: Op = &Simulator::mul; vf = vf_r; break;
    case NEON_MLA_byelement: Op = &Simulator::mla; vf = vf_r; break;
    case NEON_MLS_byelement: Op = &Simulator::mls; vf = vf_r; break;
    case NEON_SQDMULH_byelement: Op = &Simulator::sqdmulh; vf = vf_r; break;
    case NEON_SQRDMULH_byelement: Op = &Simulator::sqrdmulh; vf = vf_r; break;
    case NEON_SMULL_byelement:
      if (instr->Mask(NEON_Q)) {
        Op = &Simulator::smull2;
      } else {
        Op = &Simulator::smull;
      }
      break;
    case NEON_UMULL_byelement:
      if (instr->Mask(NEON_Q)) {
        Op = &Simulator::umull2;
      } else {
        Op = &Simulator::umull;
      }
      break;
    case NEON_SMLAL_byelement:
      if (instr->Mask(NEON_Q)) {
        Op = &Simulator::smlal2;
      } else {
        Op = &Simulator::smlal;
      }
      break;
    case NEON_UMLAL_byelement:
      if (instr->Mask(NEON_Q)) {
        Op = &Simulator::umlal2;
      } else {
        Op = &Simulator::umlal;
      }
      break;
    case NEON_SMLSL_byelement:
      if (instr->Mask(NEON_Q)) {
        Op = &Simulator::smlsl2;
      } else {
        Op = &Simulator::smlsl;
      }
      break;
    case NEON_UMLSL_byelement:
      if (instr->Mask(NEON_Q)) {
        Op = &Simulator::umlsl2;
      } else {
        Op = &Simulator::umlsl;
      }
      break;
    case NEON_SQDMULL_byelement:
      if (instr->Mask(NEON_Q)) {
        Op = &Simulator::sqdmull2;
      } else {
        Op = &Simulator::sqdmull;
      }
      break;
    case NEON_SQDMLAL_byelement:
      if (instr->Mask(NEON_Q)) {
        Op = &Simulator::sqdmlal2;
      } else {
        Op = &Simulator::sqdmlal;
      }
      break;
    case NEON_SQDMLSL_byelement:
      if (instr->Mask(NEON_Q)) {
        Op = &Simulator::sqdmlsl2;
      } else {
        Op = &Simulator::sqdmlsl;
      }
      break;
    default:
      index = instr->NEONH();
      if ((instr->FPType() & 1) == 0) {
        index = (index << 1) | instr->NEONL();
      }

      vf = nfd.GetVectorFormat(nfd.FPFormatMap());

      switch (instr->Mask(NEONByIndexedElementFPMask)) {
        case NEON_FMUL_byelement: Op = &Simulator::fmul; break;
        case NEON_FMLA_byelement: Op = &Simulator::fmla; break;
        case NEON_FMLS_byelement: Op = &Simulator::fmls; break;
        case NEON_FMULX_byelement: Op = &Simulator::fmulx; break;
        default: VIXL_UNIMPLEMENTED();
      }
  }

  (this->*Op)(vf, rd, rn, vreg(rm_reg), index);
}


void Simulator::VisitNEONCopy(const Instruction* instr) {
  NEONFormatDecoder nfd(instr, NEONFormatDecoder::TriangularFormatMap());
  VectorFormat vf = nfd.GetVectorFormat();

  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());
  int imm5 = instr->ImmNEON5();
  int tz = CountTrailingZeros(imm5, 32);
  int reg_index = imm5 >> (tz + 1);

  if (instr->Mask(NEONCopyInsElementMask) == NEON_INS_ELEMENT) {
    int imm4 = instr->ImmNEON4();
    int rn_index = imm4 >> tz;
    ins_element(vf, rd, reg_index, rn, rn_index);
  } else if (instr->Mask(NEONCopyInsGeneralMask) == NEON_INS_GENERAL) {
    ins_immediate(vf, rd, reg_index, xreg(instr->Rn()));
  } else if (instr->Mask(NEONCopyUmovMask) == NEON_UMOV) {
    uint64_t value = LogicVRegister(rn).Uint(vf, reg_index);
    value &= MaxUintFromFormat(vf);
    set_xreg(instr->Rd(), value);
  } else if (instr->Mask(NEONCopyUmovMask) == NEON_SMOV) {
    int64_t value = LogicVRegister(rn).Int(vf, reg_index);
    if (instr->NEONQ()) {
      set_xreg(instr->Rd(), value);
    } else {
      set_wreg(instr->Rd(), (int32_t)value);
    }
  } else if (instr->Mask(NEONCopyDupElementMask) == NEON_DUP_ELEMENT) {
    dup_element(vf, rd, rn, reg_index);
  } else if (instr->Mask(NEONCopyDupGeneralMask) == NEON_DUP_GENERAL) {
    dup_immediate(vf, rd, xreg(instr->Rn()));
  } else {
    VIXL_UNIMPLEMENTED();
  }
}


void Simulator::VisitNEONExtract(const Instruction* instr) {
  NEONFormatDecoder nfd(instr, NEONFormatDecoder::LogicalFormatMap());
  VectorFormat vf = nfd.GetVectorFormat();
  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());
  SimVRegister& rm = vreg(instr->Rm());
  if (instr->Mask(NEONExtractMask) == NEON_EXT) {
    int index = instr->ImmNEONExt();
    ext(vf, rd, rn, rm, index);
  } else {
    VIXL_UNIMPLEMENTED();
  }
}


void Simulator::NEONLoadStoreMultiStructHelper(const Instruction* instr,
                                               AddrMode addr_mode) {
  NEONFormatDecoder nfd(instr, NEONFormatDecoder::LoadStoreFormatMap());
  VectorFormat vf = nfd.GetVectorFormat();

  uint64_t addr_base = xreg(instr->Rn(), Reg31IsStackPointer);
  int reg_size = RegisterSizeInBytesFromFormat(vf);

  int reg[4];
  uint64_t addr[4];
  for (int i = 0; i < 4; i++) {
    reg[i] = (instr->Rt() + i) % kNumberOfVRegisters;
    addr[i] = addr_base + (i * reg_size);
  }
  int count = 1;
  bool log_read = true;

  Instr itype = instr->Mask(NEONLoadStoreMultiStructMask);
  if (((itype == NEON_LD1_1v) || (itype == NEON_LD1_2v) ||
       (itype == NEON_LD1_3v) || (itype == NEON_LD1_4v) ||
       (itype == NEON_ST1_1v) || (itype == NEON_ST1_2v) ||
       (itype == NEON_ST1_3v) || (itype == NEON_ST1_4v)) &&
      (instr->Bits(20, 16) != 0)) {
    VIXL_UNREACHABLE();
  }

  // We use the PostIndex mask here, as it works in this case for both Offset
  // and PostIndex addressing.
  switch (instr->Mask(NEONLoadStoreMultiStructPostIndexMask)) {
    case NEON_LD1_4v:
    case NEON_LD1_4v_post: ld1(vf, vreg(reg[3]), addr[3]); count++;
      VIXL_FALLTHROUGH();
    case NEON_LD1_3v:
    case NEON_LD1_3v_post: ld1(vf, vreg(reg[2]), addr[2]); count++;
      VIXL_FALLTHROUGH();
    case NEON_LD1_2v:
    case NEON_LD1_2v_post: ld1(vf, vreg(reg[1]), addr[1]); count++;
      VIXL_FALLTHROUGH();
    case NEON_LD1_1v:
    case NEON_LD1_1v_post:
      ld1(vf, vreg(reg[0]), addr[0]);
      log_read = true;
      break;
    case NEON_ST1_4v:
    case NEON_ST1_4v_post: st1(vf, vreg(reg[3]), addr[3]); count++;
      VIXL_FALLTHROUGH();
    case NEON_ST1_3v:
    case NEON_ST1_3v_post: st1(vf, vreg(reg[2]), addr[2]); count++;
      VIXL_FALLTHROUGH();
    case NEON_ST1_2v:
    case NEON_ST1_2v_post: st1(vf, vreg(reg[1]), addr[1]); count++;
      VIXL_FALLTHROUGH();
    case NEON_ST1_1v:
    case NEON_ST1_1v_post:
      st1(vf, vreg(reg[0]), addr[0]);
      log_read = false;
      break;
    case NEON_LD2_post:
    case NEON_LD2:
      ld2(vf, vreg(reg[0]), vreg(reg[1]), addr[0]);
      count = 2;
      break;
    case NEON_ST2:
    case NEON_ST2_post:
      st2(vf, vreg(reg[0]), vreg(reg[1]), addr[0]);
      count = 2;
      break;
    case NEON_LD3_post:
    case NEON_LD3:
      ld3(vf, vreg(reg[0]), vreg(reg[1]), vreg(reg[2]), addr[0]);
      count = 3;
      break;
    case NEON_ST3:
    case NEON_ST3_post:
      st3(vf, vreg(reg[0]), vreg(reg[1]), vreg(reg[2]), addr[0]);
      count = 3;
      break;
    case NEON_ST4:
    case NEON_ST4_post:
      st4(vf, vreg(reg[0]), vreg(reg[1]), vreg(reg[2]), vreg(reg[3]),
          addr[0]);
      count = 4;
      break;
    case NEON_LD4_post:
    case NEON_LD4:
      ld4(vf, vreg(reg[0]), vreg(reg[1]), vreg(reg[2]), vreg(reg[3]),
          addr[0]);
      count = 4;
      break;
    default: VIXL_UNIMPLEMENTED();
  }

  // Explicitly log the register update whilst we have type information.
  for (int i = 0; i < count; i++) {
    // For de-interleaving loads, only print the base address.
    int lane_size = LaneSizeInBytesFromFormat(vf);
    PrintRegisterFormat format = GetPrintRegisterFormatTryFP(
        GetPrintRegisterFormatForSize(reg_size, lane_size));
    if (log_read) {
      LogVRead(addr_base, reg[i], format);
    } else {
      LogVWrite(addr_base, reg[i], format);
    }
  }

  if (addr_mode == PostIndex) {
    int rm = instr->Rm();
    // The immediate post index addressing mode is indicated by rm = 31.
    // The immediate is implied by the number of vector registers used.
    addr_base += (rm == 31) ? RegisterSizeInBytesFromFormat(vf) * count
                            : xreg(rm);
    set_xreg(instr->Rn(), addr_base);
  } else {
    VIXL_ASSERT(addr_mode == Offset);
  }
}


void Simulator::VisitNEONLoadStoreMultiStruct(const Instruction* instr) {
  NEONLoadStoreMultiStructHelper(instr, Offset);
}


void Simulator::VisitNEONLoadStoreMultiStructPostIndex(
    const Instruction* instr) {
  NEONLoadStoreMultiStructHelper(instr, PostIndex);
}


void Simulator::NEONLoadStoreSingleStructHelper(const Instruction* instr,
                                                AddrMode addr_mode) {
  uint64_t addr = xreg(instr->Rn(), Reg31IsStackPointer);
  int rt = instr->Rt();

  Instr itype = instr->Mask(NEONLoadStoreSingleStructMask);
  if (((itype == NEON_LD1_b) || (itype == NEON_LD1_h) ||
       (itype == NEON_LD1_s) || (itype == NEON_LD1_d)) &&
      (instr->Bits(20, 16) != 0)) {
    VIXL_UNREACHABLE();
  }

  // We use the PostIndex mask here, as it works in this case for both Offset
  // and PostIndex addressing.
  bool do_load = false;

  NEONFormatDecoder nfd(instr, NEONFormatDecoder::LoadStoreFormatMap());
  VectorFormat vf_t = nfd.GetVectorFormat();

  VectorFormat vf = kFormat16B;
  switch (instr->Mask(NEONLoadStoreSingleStructPostIndexMask)) {
    case NEON_LD1_b:
    case NEON_LD1_b_post:
    case NEON_LD2_b:
    case NEON_LD2_b_post:
    case NEON_LD3_b:
    case NEON_LD3_b_post:
    case NEON_LD4_b:
    case NEON_LD4_b_post: do_load = true;
      VIXL_FALLTHROUGH();
    case NEON_ST1_b:
    case NEON_ST1_b_post:
    case NEON_ST2_b:
    case NEON_ST2_b_post:
    case NEON_ST3_b:
    case NEON_ST3_b_post:
    case NEON_ST4_b:
    case NEON_ST4_b_post: break;

    case NEON_LD1_h:
    case NEON_LD1_h_post:
    case NEON_LD2_h:
    case NEON_LD2_h_post:
    case NEON_LD3_h:
    case NEON_LD3_h_post:
    case NEON_LD4_h:
    case NEON_LD4_h_post: do_load = true;
      VIXL_FALLTHROUGH();
    case NEON_ST1_h:
    case NEON_ST1_h_post:
    case NEON_ST2_h:
    case NEON_ST2_h_post:
    case NEON_ST3_h:
    case NEON_ST3_h_post:
    case NEON_ST4_h:
    case NEON_ST4_h_post: vf = kFormat8H; break;
    case NEON_LD1_s:
    case NEON_LD1_s_post:
    case NEON_LD2_s:
    case NEON_LD2_s_post:
    case NEON_LD3_s:
    case NEON_LD3_s_post:
    case NEON_LD4_s:
    case NEON_LD4_s_post: do_load = true;
      VIXL_FALLTHROUGH();
    case NEON_ST1_s:
    case NEON_ST1_s_post:
    case NEON_ST2_s:
    case NEON_ST2_s_post:
    case NEON_ST3_s:
    case NEON_ST3_s_post:
    case NEON_ST4_s:
    case NEON_ST4_s_post: {
      VIXL_STATIC_ASSERT((NEON_LD1_s | (1 << NEONLSSize_offset)) == NEON_LD1_d);
      VIXL_STATIC_ASSERT(
          (NEON_LD1_s_post | (1 << NEONLSSize_offset)) == NEON_LD1_d_post);
      VIXL_STATIC_ASSERT((NEON_ST1_s | (1 << NEONLSSize_offset)) == NEON_ST1_d);
      VIXL_STATIC_ASSERT(
          (NEON_ST1_s_post | (1 << NEONLSSize_offset)) == NEON_ST1_d_post);
      vf = ((instr->NEONLSSize() & 1) == 0) ? kFormat4S : kFormat2D;
      break;
    }

    case NEON_LD1R:
    case NEON_LD1R_post: {
      vf = vf_t;
      ld1r(vf, vreg(rt), addr);
      do_load = true;
      break;
    }

    case NEON_LD2R:
    case NEON_LD2R_post: {
      vf = vf_t;
      int rt2 = (rt + 1) % kNumberOfVRegisters;
      ld2r(vf, vreg(rt), vreg(rt2), addr);
      do_load = true;
      break;
    }

    case NEON_LD3R:
    case NEON_LD3R_post: {
      vf = vf_t;
      int rt2 = (rt + 1) % kNumberOfVRegisters;
      int rt3 = (rt2 + 1) % kNumberOfVRegisters;
      ld3r(vf, vreg(rt), vreg(rt2), vreg(rt3), addr);
      do_load = true;
      break;
    }

    case NEON_LD4R:
    case NEON_LD4R_post: {
      vf = vf_t;
      int rt2 = (rt + 1) % kNumberOfVRegisters;
      int rt3 = (rt2 + 1) % kNumberOfVRegisters;
      int rt4 = (rt3 + 1) % kNumberOfVRegisters;
      ld4r(vf, vreg(rt), vreg(rt2), vreg(rt3), vreg(rt4), addr);
      do_load = true;
      break;
    }
    default: VIXL_UNIMPLEMENTED();
  }

  PrintRegisterFormat print_format =
      GetPrintRegisterFormatTryFP(GetPrintRegisterFormat(vf));
  // Make sure that the print_format only includes a single lane.
  print_format =
      static_cast<PrintRegisterFormat>(print_format & ~kPrintRegAsVectorMask);

  int esize = LaneSizeInBytesFromFormat(vf);
  int index_shift = LaneSizeInBytesLog2FromFormat(vf);
  int lane = instr->NEONLSIndex(index_shift);
  int scale = 0;
  int rt2 = (rt + 1) % kNumberOfVRegisters;
  int rt3 = (rt2 + 1) % kNumberOfVRegisters;
  int rt4 = (rt3 + 1) % kNumberOfVRegisters;
  switch (instr->Mask(NEONLoadStoreSingleLenMask)) {
    case NEONLoadStoreSingle1:
      scale = 1;
      if (do_load) {
        ld1(vf, vreg(rt), lane, addr);
        LogVRead(addr, rt, print_format, lane);
      } else {
        st1(vf, vreg(rt), lane, addr);
        LogVWrite(addr, rt, print_format, lane);
      }
      break;
    case NEONLoadStoreSingle2:
      scale = 2;
      if (do_load) {
        ld2(vf, vreg(rt), vreg(rt2), lane, addr);
        LogVRead(addr, rt, print_format, lane);
        LogVRead(addr + esize, rt2, print_format, lane);
      } else {
        st2(vf, vreg(rt), vreg(rt2), lane, addr);
        LogVWrite(addr, rt, print_format, lane);
        LogVWrite(addr + esize, rt2, print_format, lane);
      }
      break;
    case NEONLoadStoreSingle3:
      scale = 3;
      if (do_load) {
        ld3(vf, vreg(rt), vreg(rt2), vreg(rt3), lane, addr);
        LogVRead(addr, rt, print_format, lane);
        LogVRead(addr + esize, rt2, print_format, lane);
        LogVRead(addr + (2 * esize), rt3, print_format, lane);
      } else {
        st3(vf, vreg(rt), vreg(rt2), vreg(rt3), lane, addr);
        LogVWrite(addr, rt, print_format, lane);
        LogVWrite(addr + esize, rt2, print_format, lane);
        LogVWrite(addr + (2 * esize), rt3, print_format, lane);
      }
      break;
    case NEONLoadStoreSingle4:
      scale = 4;
      if (do_load) {
        ld4(vf, vreg(rt), vreg(rt2), vreg(rt3), vreg(rt4), lane, addr);
        LogVRead(addr, rt, print_format, lane);
        LogVRead(addr + esize, rt2, print_format, lane);
        LogVRead(addr + (2 * esize), rt3, print_format, lane);
        LogVRead(addr + (3 * esize), rt4, print_format, lane);
      } else {
        st4(vf, vreg(rt), vreg(rt2), vreg(rt3), vreg(rt4), lane, addr);
        LogVWrite(addr, rt, print_format, lane);
        LogVWrite(addr + esize, rt2, print_format, lane);
        LogVWrite(addr + (2 * esize), rt3, print_format, lane);
        LogVWrite(addr + (3 * esize), rt4, print_format, lane);
      }
      break;
    default: VIXL_UNIMPLEMENTED();
  }

  if (addr_mode == PostIndex) {
    int rm = instr->Rm();
    int lane_size = LaneSizeInBytesFromFormat(vf);
    set_xreg(instr->Rn(), addr + ((rm == 31) ? (scale * lane_size) : xreg(rm)));
  }
}


void Simulator::VisitNEONLoadStoreSingleStruct(const Instruction* instr) {
  NEONLoadStoreSingleStructHelper(instr, Offset);
}


void Simulator::VisitNEONLoadStoreSingleStructPostIndex(
    const Instruction* instr) {
  NEONLoadStoreSingleStructHelper(instr, PostIndex);
}


void Simulator::VisitNEONModifiedImmediate(const Instruction* instr) {
  SimVRegister& rd = vreg(instr->Rd());
  int cmode = instr->NEONCmode();
  int cmode_3_1 = (cmode >> 1) & 7;
  int cmode_3 = (cmode >> 3) & 1;
  int cmode_2 = (cmode >> 2) & 1;
  int cmode_1 = (cmode >> 1) & 1;
  int cmode_0 = cmode & 1;
  int q = instr->NEONQ();
  int op_bit = instr->NEONModImmOp();
  uint64_t imm8  = instr->ImmNEONabcdefgh();

  // Find the format and immediate value
  uint64_t imm = 0;
  VectorFormat vform = kFormatUndefined;
  switch (cmode_3_1) {
    case 0x0:
    case 0x1:
    case 0x2:
    case 0x3:
      vform = (q == 1) ? kFormat4S : kFormat2S;
      imm = imm8 << (8 * cmode_3_1);
      break;
    case 0x4:
    case 0x5:
      vform = (q == 1) ? kFormat8H : kFormat4H;
      imm = imm8 << (8 * cmode_1);
      break;
    case 0x6:
      vform = (q == 1) ? kFormat4S : kFormat2S;
      if (cmode_0 == 0) {
        imm = imm8 << 8  | 0x000000ff;
      } else {
        imm = imm8 << 16 | 0x0000ffff;
      }
      break;
    case 0x7:
      if (cmode_0 == 0 && op_bit == 0) {
        vform = q ? kFormat16B : kFormat8B;
        imm = imm8;
      } else if (cmode_0 == 0 && op_bit == 1) {
        vform = q ? kFormat2D : kFormat1D;
        imm = 0;
        for (int i = 0; i < 8; ++i) {
          if (imm8 & (1ULL << i)) {
            imm |= (UINT64_C(0xff) << (8 * i));
          }
        }
      } else {  // cmode_0 == 1, cmode == 0xf.
        if (op_bit == 0) {
          vform = q ? kFormat4S : kFormat2S;
          imm = FloatToRawbits(instr->ImmNEONFP32());
        } else if (q == 1) {
          vform = kFormat2D;
          imm = DoubleToRawbits(instr->ImmNEONFP64());
        } else {
          VIXL_ASSERT((q == 0) && (op_bit == 1) && (cmode == 0xf));
          VisitUnallocated(instr);
        }
      }
      break;
    default: VIXL_UNREACHABLE(); break;
  }

  // Find the operation
  NEONModifiedImmediateOp op;
  if (cmode_3 == 0) {
    if (cmode_0 == 0) {
      op = op_bit ? NEONModifiedImmediate_MVNI : NEONModifiedImmediate_MOVI;
    } else {  // cmode<0> == '1'
      op = op_bit ? NEONModifiedImmediate_BIC : NEONModifiedImmediate_ORR;
    }
  } else {  // cmode<3> == '1'
    if (cmode_2 == 0) {
      if (cmode_0 == 0) {
        op = op_bit ? NEONModifiedImmediate_MVNI : NEONModifiedImmediate_MOVI;
      } else {  // cmode<0> == '1'
        op = op_bit ? NEONModifiedImmediate_BIC : NEONModifiedImmediate_ORR;
      }
    } else {  // cmode<2> == '1'
       if (cmode_1 == 0) {
         op = op_bit ? NEONModifiedImmediate_MVNI : NEONModifiedImmediate_MOVI;
       } else {  // cmode<1> == '1'
         if (cmode_0 == 0) {
           op = NEONModifiedImmediate_MOVI;
         } else {  // cmode<0> == '1'
           op = NEONModifiedImmediate_MOVI;
         }
       }
    }
  }

  // Call the logic function
  if (op == NEONModifiedImmediate_ORR) {
    orr(vform, rd, rd, imm);
  } else if (op == NEONModifiedImmediate_BIC) {
    bic(vform, rd, rd, imm);
  } else  if (op == NEONModifiedImmediate_MOVI) {
    movi(vform, rd, imm);
  } else if (op == NEONModifiedImmediate_MVNI) {
    mvni(vform, rd, imm);
  } else {
    VisitUnimplemented(instr);
  }
}


void Simulator::VisitNEONScalar2RegMisc(const Instruction* instr) {
  NEONFormatDecoder nfd(instr, NEONFormatDecoder::ScalarFormatMap());
  VectorFormat vf = nfd.GetVectorFormat();

  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());

  if (instr->Mask(NEON2RegMiscOpcode) <= NEON_NEG_scalar_opcode) {
    // These instructions all use a two bit size field, except NOT and RBIT,
    // which use the field to encode the operation.
    switch (instr->Mask(NEONScalar2RegMiscMask)) {
      case NEON_CMEQ_zero_scalar: cmp(vf, rd, rn, 0, eq); break;
      case NEON_CMGE_zero_scalar: cmp(vf, rd, rn, 0, ge); break;
      case NEON_CMGT_zero_scalar: cmp(vf, rd, rn, 0, gt); break;
      case NEON_CMLT_zero_scalar: cmp(vf, rd, rn, 0, lt); break;
      case NEON_CMLE_zero_scalar: cmp(vf, rd, rn, 0, le); break;
      case NEON_ABS_scalar:       abs(vf, rd, rn); break;
      case NEON_SQABS_scalar:     abs(vf, rd, rn).SignedSaturate(vf); break;
      case NEON_NEG_scalar:       neg(vf, rd, rn); break;
      case NEON_SQNEG_scalar:     neg(vf, rd, rn).SignedSaturate(vf); break;
      case NEON_SUQADD_scalar:    suqadd(vf, rd, rn); break;
      case NEON_USQADD_scalar:    usqadd(vf, rd, rn); break;
      default: VIXL_UNIMPLEMENTED(); break;
    }
  } else {
    VectorFormat fpf = nfd.GetVectorFormat(nfd.FPScalarFormatMap());
    FPRounding fpcr_rounding = static_cast<FPRounding>(fpcr().RMode());

    // These instructions all use a one bit size field, except SQXTUN, SQXTN
    // and UQXTN, which use a two bit size field.
    switch (instr->Mask(NEONScalar2RegMiscFPMask)) {
      case NEON_FRECPE_scalar:     frecpe(fpf, rd, rn, fpcr_rounding); break;
      case NEON_FRECPX_scalar:     frecpx(fpf, rd, rn); break;
      case NEON_FRSQRTE_scalar:    frsqrte(fpf, rd, rn); break;
      case NEON_FCMGT_zero_scalar: fcmp_zero(fpf, rd, rn, gt); break;
      case NEON_FCMGE_zero_scalar: fcmp_zero(fpf, rd, rn, ge); break;
      case NEON_FCMEQ_zero_scalar: fcmp_zero(fpf, rd, rn, eq); break;
      case NEON_FCMLE_zero_scalar: fcmp_zero(fpf, rd, rn, le); break;
      case NEON_FCMLT_zero_scalar: fcmp_zero(fpf, rd, rn, lt); break;
      case NEON_SCVTF_scalar:      scvtf(fpf, rd, rn, 0, fpcr_rounding); break;
      case NEON_UCVTF_scalar:      ucvtf(fpf, rd, rn, 0, fpcr_rounding); break;
      case NEON_FCVTNS_scalar: fcvts(fpf, rd, rn, FPTieEven); break;
      case NEON_FCVTNU_scalar: fcvtu(fpf, rd, rn, FPTieEven); break;
      case NEON_FCVTPS_scalar: fcvts(fpf, rd, rn, FPPositiveInfinity); break;
      case NEON_FCVTPU_scalar: fcvtu(fpf, rd, rn, FPPositiveInfinity); break;
      case NEON_FCVTMS_scalar: fcvts(fpf, rd, rn, FPNegativeInfinity); break;
      case NEON_FCVTMU_scalar: fcvtu(fpf, rd, rn, FPNegativeInfinity); break;
      case NEON_FCVTZS_scalar: fcvts(fpf, rd, rn, FPZero); break;
      case NEON_FCVTZU_scalar: fcvtu(fpf, rd, rn, FPZero); break;
      case NEON_FCVTAS_scalar: fcvts(fpf, rd, rn, FPTieAway); break;
      case NEON_FCVTAU_scalar: fcvtu(fpf, rd, rn, FPTieAway); break;
      case NEON_FCVTXN_scalar:
        // Unlike all of the other FP instructions above, fcvtxn encodes dest
        // size S as size<0>=1. There's only one case, so we ignore the form.
        VIXL_ASSERT(instr->Bit(22) == 1);
        fcvtxn(kFormatS, rd, rn);
        break;
      default:
        switch (instr->Mask(NEONScalar2RegMiscMask)) {
          case NEON_SQXTN_scalar:  sqxtn(vf, rd, rn); break;
          case NEON_UQXTN_scalar:  uqxtn(vf, rd, rn); break;
          case NEON_SQXTUN_scalar: sqxtun(vf, rd, rn); break;
          default:
            VIXL_UNIMPLEMENTED();
        }
    }
  }
}


void Simulator::VisitNEONScalar3Diff(const Instruction* instr) {
  NEONFormatDecoder nfd(instr, NEONFormatDecoder::LongScalarFormatMap());
  VectorFormat vf = nfd.GetVectorFormat();

  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());
  SimVRegister& rm = vreg(instr->Rm());
  switch (instr->Mask(NEONScalar3DiffMask)) {
    case NEON_SQDMLAL_scalar: sqdmlal(vf, rd, rn, rm); break;
    case NEON_SQDMLSL_scalar: sqdmlsl(vf, rd, rn, rm); break;
    case NEON_SQDMULL_scalar: sqdmull(vf, rd, rn, rm); break;
    default:
      VIXL_UNIMPLEMENTED();
  }
}


void Simulator::VisitNEONScalar3Same(const Instruction* instr) {
  NEONFormatDecoder nfd(instr, NEONFormatDecoder::ScalarFormatMap());
  VectorFormat vf = nfd.GetVectorFormat();

  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());
  SimVRegister& rm = vreg(instr->Rm());

  if (instr->Mask(NEONScalar3SameFPFMask) == NEONScalar3SameFPFixed) {
    vf = nfd.GetVectorFormat(nfd.FPScalarFormatMap());
    switch (instr->Mask(NEONScalar3SameFPMask)) {
      case NEON_FMULX_scalar:   fmulx(vf, rd, rn, rm); break;
      case NEON_FACGE_scalar:   fabscmp(vf, rd, rn, rm, ge); break;
      case NEON_FACGT_scalar:   fabscmp(vf, rd, rn, rm, gt); break;
      case NEON_FCMEQ_scalar:   fcmp(vf, rd, rn, rm, eq); break;
      case NEON_FCMGE_scalar:   fcmp(vf, rd, rn, rm, ge); break;
      case NEON_FCMGT_scalar:   fcmp(vf, rd, rn, rm, gt); break;
      case NEON_FRECPS_scalar:  frecps(vf, rd, rn, rm); break;
      case NEON_FRSQRTS_scalar: frsqrts(vf, rd, rn, rm); break;
      case NEON_FABD_scalar:    fabd(vf, rd, rn, rm); break;
      default:
        VIXL_UNIMPLEMENTED();
    }
  } else {
    switch (instr->Mask(NEONScalar3SameMask)) {
      case NEON_ADD_scalar:      add(vf, rd, rn, rm); break;
      case NEON_SUB_scalar:      sub(vf, rd, rn, rm); break;
      case NEON_CMEQ_scalar:     cmp(vf, rd, rn, rm, eq); break;
      case NEON_CMGE_scalar:     cmp(vf, rd, rn, rm, ge); break;
      case NEON_CMGT_scalar:     cmp(vf, rd, rn, rm, gt); break;
      case NEON_CMHI_scalar:     cmp(vf, rd, rn, rm, hi); break;
      case NEON_CMHS_scalar:     cmp(vf, rd, rn, rm, hs); break;
      case NEON_CMTST_scalar:    cmptst(vf, rd, rn, rm); break;
      case NEON_USHL_scalar:     ushl(vf, rd, rn, rm); break;
      case NEON_SSHL_scalar:     sshl(vf, rd, rn, rm); break;
      case NEON_SQDMULH_scalar:  sqdmulh(vf, rd, rn, rm); break;
      case NEON_SQRDMULH_scalar: sqrdmulh(vf, rd, rn, rm); break;
      case NEON_UQADD_scalar:
        add(vf, rd, rn, rm).UnsignedSaturate(vf);
        break;
      case NEON_SQADD_scalar:
        add(vf, rd, rn, rm).SignedSaturate(vf);
        break;
      case NEON_UQSUB_scalar:
        sub(vf, rd, rn, rm).UnsignedSaturate(vf);
        break;
      case NEON_SQSUB_scalar:
        sub(vf, rd, rn, rm).SignedSaturate(vf);
        break;
      case NEON_UQSHL_scalar:
        ushl(vf, rd, rn, rm).UnsignedSaturate(vf);
        break;
      case NEON_SQSHL_scalar:
        sshl(vf, rd, rn, rm).SignedSaturate(vf);
        break;
      case NEON_URSHL_scalar:
        ushl(vf, rd, rn, rm).Round(vf);
        break;
      case NEON_SRSHL_scalar:
        sshl(vf, rd, rn, rm).Round(vf);
        break;
      case NEON_UQRSHL_scalar:
        ushl(vf, rd, rn, rm).Round(vf).UnsignedSaturate(vf);
        break;
      case NEON_SQRSHL_scalar:
        sshl(vf, rd, rn, rm).Round(vf).SignedSaturate(vf);
        break;
      default:
        VIXL_UNIMPLEMENTED();
    }
  }
}


void Simulator::VisitNEONScalarByIndexedElement(const Instruction* instr) {
  NEONFormatDecoder nfd(instr, NEONFormatDecoder::LongScalarFormatMap());
  VectorFormat vf = nfd.GetVectorFormat();
  VectorFormat vf_r = nfd.GetVectorFormat(nfd.ScalarFormatMap());

  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());
  ByElementOp Op = NULL;

  int rm_reg = instr->Rm();
  int index = (instr->NEONH() << 1) | instr->NEONL();
  if (instr->NEONSize() == 1) {
    rm_reg &= 0xf;
    index = (index << 1) | instr->NEONM();
  }

  switch (instr->Mask(NEONScalarByIndexedElementMask)) {
    case NEON_SQDMULL_byelement_scalar: Op = &Simulator::sqdmull; break;
    case NEON_SQDMLAL_byelement_scalar: Op = &Simulator::sqdmlal; break;
    case NEON_SQDMLSL_byelement_scalar: Op = &Simulator::sqdmlsl; break;
    case NEON_SQDMULH_byelement_scalar:
      Op = &Simulator::sqdmulh;
      vf = vf_r;
      break;
    case NEON_SQRDMULH_byelement_scalar:
      Op = &Simulator::sqrdmulh;
      vf = vf_r;
      break;
    default:
      vf = nfd.GetVectorFormat(nfd.FPScalarFormatMap());
      index = instr->NEONH();
      if ((instr->FPType() & 1) == 0) {
        index = (index << 1) | instr->NEONL();
      }
      switch (instr->Mask(NEONScalarByIndexedElementFPMask)) {
        case NEON_FMUL_byelement_scalar: Op = &Simulator::fmul; break;
        case NEON_FMLA_byelement_scalar: Op = &Simulator::fmla; break;
        case NEON_FMLS_byelement_scalar: Op = &Simulator::fmls; break;
        case NEON_FMULX_byelement_scalar: Op = &Simulator::fmulx; break;
        default: VIXL_UNIMPLEMENTED();
      }
  }

  (this->*Op)(vf, rd, rn, vreg(rm_reg), index);
}


void Simulator::VisitNEONScalarCopy(const Instruction* instr) {
  NEONFormatDecoder nfd(instr, NEONFormatDecoder::TriangularScalarFormatMap());
  VectorFormat vf = nfd.GetVectorFormat();

  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());

  if (instr->Mask(NEONScalarCopyMask) == NEON_DUP_ELEMENT_scalar) {
    int imm5 = instr->ImmNEON5();
    int tz = CountTrailingZeros(imm5, 32);
    int rn_index = imm5 >> (tz + 1);
    dup_element(vf, rd, rn, rn_index);
  } else {
    VIXL_UNIMPLEMENTED();
  }
}


void Simulator::VisitNEONScalarPairwise(const Instruction* instr) {
  NEONFormatDecoder nfd(instr, NEONFormatDecoder::FPScalarFormatMap());
  VectorFormat vf = nfd.GetVectorFormat();

  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());
  switch (instr->Mask(NEONScalarPairwiseMask)) {
    case NEON_ADDP_scalar:    addp(vf, rd, rn); break;
    case NEON_FADDP_scalar:   faddp(vf, rd, rn); break;
    case NEON_FMAXP_scalar:   fmaxp(vf, rd, rn); break;
    case NEON_FMAXNMP_scalar: fmaxnmp(vf, rd, rn); break;
    case NEON_FMINP_scalar:   fminp(vf, rd, rn); break;
    case NEON_FMINNMP_scalar: fminnmp(vf, rd, rn); break;
    default:
      VIXL_UNIMPLEMENTED();
  }
}


void Simulator::VisitNEONScalarShiftImmediate(const Instruction* instr) {
  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());
  FPRounding fpcr_rounding = static_cast<FPRounding>(fpcr().RMode());

  static const NEONFormatMap map = {
    {22, 21, 20, 19},
    {NF_UNDEF, NF_B, NF_H, NF_H, NF_S, NF_S, NF_S, NF_S,
     NF_D,     NF_D, NF_D, NF_D, NF_D, NF_D, NF_D, NF_D}
  };
  NEONFormatDecoder nfd(instr, &map);
  VectorFormat vf = nfd.GetVectorFormat();

  int highestSetBit = HighestSetBitPosition(instr->ImmNEONImmh());
  int immhimmb = instr->ImmNEONImmhImmb();
  int right_shift = (16 << highestSetBit) - immhimmb;
  int left_shift = immhimmb - (8 << highestSetBit);
  switch (instr->Mask(NEONScalarShiftImmediateMask)) {
    case NEON_SHL_scalar:       shl(vf, rd, rn, left_shift); break;
    case NEON_SLI_scalar:       sli(vf, rd, rn, left_shift); break;
    case NEON_SQSHL_imm_scalar: sqshl(vf, rd, rn, left_shift); break;
    case NEON_UQSHL_imm_scalar: uqshl(vf, rd, rn, left_shift); break;
    case NEON_SQSHLU_scalar:    sqshlu(vf, rd, rn, left_shift); break;
    case NEON_SRI_scalar:       sri(vf, rd, rn, right_shift); break;
    case NEON_SSHR_scalar:      sshr(vf, rd, rn, right_shift); break;
    case NEON_USHR_scalar:      ushr(vf, rd, rn, right_shift); break;
    case NEON_SRSHR_scalar:     sshr(vf, rd, rn, right_shift).Round(vf); break;
    case NEON_URSHR_scalar:     ushr(vf, rd, rn, right_shift).Round(vf); break;
    case NEON_SSRA_scalar:      ssra(vf, rd, rn, right_shift); break;
    case NEON_USRA_scalar:      usra(vf, rd, rn, right_shift); break;
    case NEON_SRSRA_scalar:     srsra(vf, rd, rn, right_shift); break;
    case NEON_URSRA_scalar:     ursra(vf, rd, rn, right_shift); break;
    case NEON_UQSHRN_scalar:    uqshrn(vf, rd, rn, right_shift); break;
    case NEON_UQRSHRN_scalar:   uqrshrn(vf, rd, rn, right_shift); break;
    case NEON_SQSHRN_scalar:    sqshrn(vf, rd, rn, right_shift); break;
    case NEON_SQRSHRN_scalar:   sqrshrn(vf, rd, rn, right_shift); break;
    case NEON_SQSHRUN_scalar:   sqshrun(vf, rd, rn, right_shift); break;
    case NEON_SQRSHRUN_scalar:  sqrshrun(vf, rd, rn, right_shift); break;
    case NEON_FCVTZS_imm_scalar: fcvts(vf, rd, rn, FPZero, right_shift); break;
    case NEON_FCVTZU_imm_scalar: fcvtu(vf, rd, rn, FPZero, right_shift); break;
    case NEON_SCVTF_imm_scalar:
      scvtf(vf, rd, rn, right_shift, fpcr_rounding);
      break;
    case NEON_UCVTF_imm_scalar:
      ucvtf(vf, rd, rn, right_shift, fpcr_rounding);
      break;
    default:
      VIXL_UNIMPLEMENTED();
  }
}


void Simulator::VisitNEONShiftImmediate(const Instruction* instr) {
  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());
  FPRounding fpcr_rounding = static_cast<FPRounding>(fpcr().RMode());

  // 00010->8B, 00011->16B, 001x0->4H, 001x1->8H,
  // 01xx0->2S, 01xx1->4S, 1xxx1->2D, all others undefined.
  static const NEONFormatMap map = {
    {22, 21, 20, 19, 30},
    {NF_UNDEF, NF_UNDEF, NF_8B,    NF_16B, NF_4H,    NF_8H, NF_4H,    NF_8H,
     NF_2S,    NF_4S,    NF_2S,    NF_4S,  NF_2S,    NF_4S, NF_2S,    NF_4S,
     NF_UNDEF, NF_2D,    NF_UNDEF, NF_2D,  NF_UNDEF, NF_2D, NF_UNDEF, NF_2D,
     NF_UNDEF, NF_2D,    NF_UNDEF, NF_2D,  NF_UNDEF, NF_2D, NF_UNDEF, NF_2D}
  };
  NEONFormatDecoder nfd(instr, &map);
  VectorFormat vf = nfd.GetVectorFormat();

  // 0001->8H, 001x->4S, 01xx->2D, all others undefined.
  static const NEONFormatMap map_l = {
    {22, 21, 20, 19},
    {NF_UNDEF, NF_8H, NF_4S, NF_4S, NF_2D, NF_2D, NF_2D, NF_2D}
  };
  VectorFormat vf_l = nfd.GetVectorFormat(&map_l);

  int highestSetBit = HighestSetBitPosition(instr->ImmNEONImmh());
  int immhimmb = instr->ImmNEONImmhImmb();
  int right_shift = (16 << highestSetBit) - immhimmb;
  int left_shift = immhimmb - (8 << highestSetBit);

  switch (instr->Mask(NEONShiftImmediateMask)) {
    case NEON_SHL:    shl(vf, rd, rn, left_shift); break;
    case NEON_SLI:    sli(vf, rd, rn, left_shift); break;
    case NEON_SQSHLU: sqshlu(vf, rd, rn, left_shift); break;
    case NEON_SRI:    sri(vf, rd, rn, right_shift); break;
    case NEON_SSHR:   sshr(vf, rd, rn, right_shift); break;
    case NEON_USHR:   ushr(vf, rd, rn, right_shift); break;
    case NEON_SRSHR:  sshr(vf, rd, rn, right_shift).Round(vf); break;
    case NEON_URSHR:  ushr(vf, rd, rn, right_shift).Round(vf); break;
    case NEON_SSRA:   ssra(vf, rd, rn, right_shift); break;
    case NEON_USRA:   usra(vf, rd, rn, right_shift); break;
    case NEON_SRSRA:  srsra(vf, rd, rn, right_shift); break;
    case NEON_URSRA:  ursra(vf, rd, rn, right_shift); break;
    case NEON_SQSHL_imm: sqshl(vf, rd, rn, left_shift); break;
    case NEON_UQSHL_imm: uqshl(vf, rd, rn, left_shift); break;
    case NEON_SCVTF_imm: scvtf(vf, rd, rn, right_shift, fpcr_rounding); break;
    case NEON_UCVTF_imm: ucvtf(vf, rd, rn, right_shift, fpcr_rounding); break;
    case NEON_FCVTZS_imm: fcvts(vf, rd, rn, FPZero, right_shift); break;
    case NEON_FCVTZU_imm: fcvtu(vf, rd, rn, FPZero, right_shift); break;
    case NEON_SSHLL:
      vf = vf_l;
      if (instr->Mask(NEON_Q)) {
        sshll2(vf, rd, rn, left_shift);
      } else {
        sshll(vf, rd, rn, left_shift);
      }
      break;
    case NEON_USHLL:
      vf = vf_l;
      if (instr->Mask(NEON_Q)) {
        ushll2(vf, rd, rn, left_shift);
      } else {
        ushll(vf, rd, rn, left_shift);
      }
      break;
    case NEON_SHRN:
      if (instr->Mask(NEON_Q)) {
        shrn2(vf, rd, rn, right_shift);
      } else {
        shrn(vf, rd, rn, right_shift);
      }
      break;
    case NEON_RSHRN:
      if (instr->Mask(NEON_Q)) {
        rshrn2(vf, rd, rn, right_shift);
      } else {
        rshrn(vf, rd, rn, right_shift);
      }
      break;
    case NEON_UQSHRN:
      if (instr->Mask(NEON_Q)) {
        uqshrn2(vf, rd, rn, right_shift);
      } else {
        uqshrn(vf, rd, rn, right_shift);
      }
      break;
    case NEON_UQRSHRN:
      if (instr->Mask(NEON_Q)) {
        uqrshrn2(vf, rd, rn, right_shift);
      } else {
        uqrshrn(vf, rd, rn, right_shift);
      }
      break;
    case NEON_SQSHRN:
      if (instr->Mask(NEON_Q)) {
        sqshrn2(vf, rd, rn, right_shift);
      } else {
        sqshrn(vf, rd, rn, right_shift);
      }
      break;
    case NEON_SQRSHRN:
      if (instr->Mask(NEON_Q)) {
        sqrshrn2(vf, rd, rn, right_shift);
      } else {
        sqrshrn(vf, rd, rn, right_shift);
      }
      break;
    case NEON_SQSHRUN:
      if (instr->Mask(NEON_Q)) {
        sqshrun2(vf, rd, rn, right_shift);
      } else {
        sqshrun(vf, rd, rn, right_shift);
      }
      break;
    case NEON_SQRSHRUN:
      if (instr->Mask(NEON_Q)) {
        sqrshrun2(vf, rd, rn, right_shift);
      } else {
        sqrshrun(vf, rd, rn, right_shift);
      }
      break;
    default:
      VIXL_UNIMPLEMENTED();
  }
}


void Simulator::VisitNEONTable(const Instruction* instr) {
  NEONFormatDecoder nfd(instr, NEONFormatDecoder::LogicalFormatMap());
  VectorFormat vf = nfd.GetVectorFormat();

  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());
  SimVRegister& rn2 = vreg((instr->Rn() + 1) % kNumberOfVRegisters);
  SimVRegister& rn3 = vreg((instr->Rn() + 2) % kNumberOfVRegisters);
  SimVRegister& rn4 = vreg((instr->Rn() + 3) % kNumberOfVRegisters);
  SimVRegister& rm = vreg(instr->Rm());

  switch (instr->Mask(NEONTableMask)) {
    case NEON_TBL_1v: tbl(vf, rd, rn, rm); break;
    case NEON_TBL_2v: tbl(vf, rd, rn, rn2, rm); break;
    case NEON_TBL_3v: tbl(vf, rd, rn, rn2, rn3, rm); break;
    case NEON_TBL_4v: tbl(vf, rd, rn, rn2, rn3, rn4, rm); break;
    case NEON_TBX_1v: tbx(vf, rd, rn, rm); break;
    case NEON_TBX_2v: tbx(vf, rd, rn, rn2, rm); break;
    case NEON_TBX_3v: tbx(vf, rd, rn, rn2, rn3, rm); break;
    case NEON_TBX_4v: tbx(vf, rd, rn, rn2, rn3, rn4, rm); break;
    default:
      VIXL_UNIMPLEMENTED();
  }
}


void Simulator::VisitNEONPerm(const Instruction* instr) {
  NEONFormatDecoder nfd(instr);
  VectorFormat vf = nfd.GetVectorFormat();

  SimVRegister& rd = vreg(instr->Rd());
  SimVRegister& rn = vreg(instr->Rn());
  SimVRegister& rm = vreg(instr->Rm());

  switch (instr->Mask(NEONPermMask)) {
    case NEON_TRN1: trn1(vf, rd, rn, rm); break;
    case NEON_TRN2: trn2(vf, rd, rn, rm); break;
    case NEON_UZP1: uzp1(vf, rd, rn, rm); break;
    case NEON_UZP2: uzp2(vf, rd, rn, rm); break;
    case NEON_ZIP1: zip1(vf, rd, rn, rm); break;
    case NEON_ZIP2: zip2(vf, rd, rn, rm); break;
    default:
      VIXL_UNIMPLEMENTED();
  }
}


void Simulator::DoUnreachable(const Instruction* instr) {
  VIXL_ASSERT(instr->InstructionBits() == UNDEFINED_INST_PATTERN);

  fprintf(stream_, "Hit UNREACHABLE marker at pc=%p.\n",
          reinterpret_cast<const void*>(instr));
  abort();
}


void Simulator::DoTrace(const Instruction* instr) {
  VIXL_ASSERT((instr->Mask(ExceptionMask) == HLT) &&
              (instr->ImmException() == kTraceOpcode));

  // Read the arguments encoded inline in the instruction stream.
  uint32_t parameters;
  uint32_t command;

  VIXL_STATIC_ASSERT(sizeof(*instr) == 1);
  memcpy(&parameters, instr + kTraceParamsOffset, sizeof(parameters));
  memcpy(&command, instr + kTraceCommandOffset, sizeof(command));

  switch (command) {
    case TRACE_ENABLE:
      set_trace_parameters(trace_parameters() | parameters);
      break;
    case TRACE_DISABLE:
      set_trace_parameters(trace_parameters() & ~parameters);
      break;
    default:
      VIXL_UNREACHABLE();
  }

  set_pc(instr->InstructionAtOffset(kTraceLength));
}


void Simulator::DoLog(const Instruction* instr) {
  VIXL_ASSERT((instr->Mask(ExceptionMask) == HLT) &&
              (instr->ImmException() == kLogOpcode));

  // Read the arguments encoded inline in the instruction stream.
  uint32_t parameters;

  VIXL_STATIC_ASSERT(sizeof(*instr) == 1);
  memcpy(&parameters, instr + kTraceParamsOffset, sizeof(parameters));

  // We don't support a one-shot LOG_DISASM.
  VIXL_ASSERT((parameters & LOG_DISASM) == 0);
  // Print the requested information.
  if (parameters & LOG_SYSREGS) PrintSystemRegisters();
  if (parameters & LOG_REGS) PrintRegisters();
  if (parameters & LOG_VREGS) PrintVRegisters();

  set_pc(instr->InstructionAtOffset(kLogLength));
}


void Simulator::DoPrintf(const Instruction* instr) {
  VIXL_ASSERT((instr->Mask(ExceptionMask) == HLT) &&
              (instr->ImmException() == kPrintfOpcode));

  // Read the arguments encoded inline in the instruction stream.
  uint32_t arg_count;
  uint32_t arg_pattern_list;
  VIXL_STATIC_ASSERT(sizeof(*instr) == 1);
  memcpy(&arg_count,
         instr + kPrintfArgCountOffset,
         sizeof(arg_count));
  memcpy(&arg_pattern_list,
         instr + kPrintfArgPatternListOffset,
         sizeof(arg_pattern_list));

  VIXL_ASSERT(arg_count <= kPrintfMaxArgCount);
  VIXL_ASSERT((arg_pattern_list >> (kPrintfArgPatternBits * arg_count)) == 0);

  // We need to call the host printf function with a set of arguments defined by
  // arg_pattern_list. Because we don't know the types and sizes of the
  // arguments, this is very difficult to do in a robust and portable way. To
  // work around the problem, we pick apart the format string, and print one
  // format placeholder at a time.

  // Allocate space for the format string. We take a copy, so we can modify it.
  // Leave enough space for one extra character per expected argument (plus the
  // '\0' termination).
  const char * format_base = reg<const char *>(0);
  VIXL_ASSERT(format_base != NULL);
  size_t length = strlen(format_base) + 1;
  char * const format = (char *)js_calloc(length + arg_count);

  // A list of chunks, each with exactly one format placeholder.
  const char * chunks[kPrintfMaxArgCount];

  // Copy the format string and search for format placeholders.
  uint32_t placeholder_count = 0;
  char * format_scratch = format;
  for (size_t i = 0; i < length; i++) {
    if (format_base[i] != '%') {
      *format_scratch++ = format_base[i];
    } else {
      if (format_base[i + 1] == '%') {
        // Ignore explicit "%%" sequences.
        *format_scratch++ = format_base[i];
        i++;
        // Chunks after the first are passed as format strings to printf, so we
        // need to escape '%' characters in those chunks.
        if (placeholder_count > 0) *format_scratch++ = format_base[i];
      } else {
        VIXL_CHECK(placeholder_count < arg_count);
        // Insert '\0' before placeholders, and store their locations.
        *format_scratch++ = '\0';
        chunks[placeholder_count++] = format_scratch;
        *format_scratch++ = format_base[i];
      }
    }
  }
  VIXL_CHECK(placeholder_count == arg_count);

  // Finally, call printf with each chunk, passing the appropriate register
  // argument. Normally, printf returns the number of bytes transmitted, so we
  // can emulate a single printf call by adding the result from each chunk. If
  // any call returns a negative (error) value, though, just return that value.

  printf("%s", clr_printf);

  // Because '\0' is inserted before each placeholder, the first string in
  // 'format' contains no format placeholders and should be printed literally.
  int result = printf("%s", format);
  int pcs_r = 1;      // Start at x1. x0 holds the format string.
  int pcs_f = 0;      // Start at d0.
  if (result >= 0) {
    for (uint32_t i = 0; i < placeholder_count; i++) {
      int part_result = -1;

      uint32_t arg_pattern = arg_pattern_list >> (i * kPrintfArgPatternBits);
      arg_pattern &= (1 << kPrintfArgPatternBits) - 1;
      switch (arg_pattern) {
        case kPrintfArgW: part_result = printf(chunks[i], wreg(pcs_r++)); break;
        case kPrintfArgX: part_result = printf(chunks[i], xreg(pcs_r++)); break;
        case kPrintfArgD: part_result = printf(chunks[i], dreg(pcs_f++)); break;
        default: VIXL_UNREACHABLE();
      }

      if (part_result < 0) {
        // Handle error values.
        result = part_result;
        break;
      }

      result += part_result;
    }
  }

  printf("%s", clr_normal);

  // Printf returns its result in x0 (just like the C library's printf).
  set_xreg(0, result);

  // The printf parameters are inlined in the code, so skip them.
  set_pc(instr->InstructionAtOffset(kPrintfLength));

  // Set LR as if we'd just called a native printf function.
  set_lr(pc());

  js_free(format);
}

}  // namespace vixl

#endif  // JS_SIMULATOR_ARM64