summaryrefslogtreecommitdiffstats
path: root/js/src/jit/shared/Lowering-shared.cpp
blob: 9d6faf4a8ae7fa0c60191466fd43b055cc28586c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jit/shared/Lowering-shared-inl.h"

#include "jit/LIR.h"
#include "jit/Lowering.h"
#include "jit/MIR.h"

#include "vm/SymbolType.h"

using namespace js;
using namespace jit;

using mozilla::Maybe;
using mozilla::Nothing;
using mozilla::Some;

bool LIRGeneratorShared::ShouldReorderCommutative(MDefinition* lhs,
                                                  MDefinition* rhs,
                                                  MInstruction* ins) {
  // lhs and rhs are used by the commutative operator.
  MOZ_ASSERT(lhs->hasDefUses());
  MOZ_ASSERT(rhs->hasDefUses());

  // Ensure that if there is a constant, then it is in rhs.
  if (rhs->isConstant()) {
    return false;
  }
  if (lhs->isConstant()) {
    return true;
  }

  // Since clobbering binary operations clobber the left operand, prefer a
  // non-constant lhs operand with no further uses. To be fully precise, we
  // should check whether this is the *last* use, but checking hasOneDefUse()
  // is a decent approximation which doesn't require any extra analysis.
  bool rhsSingleUse = rhs->hasOneDefUse();
  bool lhsSingleUse = lhs->hasOneDefUse();
  if (rhsSingleUse) {
    if (!lhsSingleUse) {
      return true;
    }
  } else {
    if (lhsSingleUse) {
      return false;
    }
  }

  // If this is a reduction-style computation, such as
  //
  //   sum = 0;
  //   for (...)
  //      sum += ...;
  //
  // put the phi on the left to promote coalescing. This is fairly specific.
  if (rhsSingleUse && rhs->isPhi() && rhs->block()->isLoopHeader() &&
      ins == rhs->toPhi()->getLoopBackedgeOperand()) {
    return true;
  }

  return false;
}

void LIRGeneratorShared::ReorderCommutative(MDefinition** lhsp,
                                            MDefinition** rhsp,
                                            MInstruction* ins) {
  MDefinition* lhs = *lhsp;
  MDefinition* rhs = *rhsp;

  if (ShouldReorderCommutative(lhs, rhs, ins)) {
    *rhsp = lhs;
    *lhsp = rhs;
  }
}

void LIRGeneratorShared::definePhiOneRegister(MPhi* phi, size_t lirIndex) {
  LPhi* lir = current->getPhi(lirIndex);

  uint32_t vreg = getVirtualRegister();

  phi->setVirtualRegister(vreg);
  lir->setDef(0, LDefinition(vreg, LDefinition::TypeFrom(phi->type())));
  annotate(lir);
}

#ifdef JS_NUNBOX32
void LIRGeneratorShared::definePhiTwoRegisters(MPhi* phi, size_t lirIndex) {
  LPhi* type = current->getPhi(lirIndex + VREG_TYPE_OFFSET);
  LPhi* payload = current->getPhi(lirIndex + VREG_DATA_OFFSET);

  uint32_t typeVreg = getVirtualRegister();
  phi->setVirtualRegister(typeVreg);

  uint32_t payloadVreg = getVirtualRegister();
  MOZ_ASSERT(typeVreg + 1 == payloadVreg);

  type->setDef(0, LDefinition(typeVreg, LDefinition::TYPE));
  payload->setDef(0, LDefinition(payloadVreg, LDefinition::PAYLOAD));
  annotate(type);
  annotate(payload);
}
#endif

void LIRGeneratorShared::lowerTypedPhiInput(MPhi* phi, uint32_t inputPosition,
                                            LBlock* block, size_t lirIndex) {
  MDefinition* operand = phi->getOperand(inputPosition);
  LPhi* lir = block->getPhi(lirIndex);
  lir->setOperand(inputPosition, LUse(operand->virtualRegister(), LUse::ANY));
}

LRecoverInfo* LIRGeneratorShared::getRecoverInfo(MResumePoint* rp) {
  if (cachedRecoverInfo_ && cachedRecoverInfo_->mir() == rp) {
    return cachedRecoverInfo_;
  }

  LRecoverInfo* recoverInfo = LRecoverInfo::New(gen, rp);
  if (!recoverInfo) {
    return nullptr;
  }

  cachedRecoverInfo_ = recoverInfo;
  return recoverInfo;
}

#ifdef DEBUG
bool LRecoverInfo::OperandIter::canOptimizeOutIfUnused() {
  MDefinition* ins = **this;

  // We check ins->type() in addition to ins->isUnused() because
  // EliminateDeadResumePointOperands may replace nodes with the constant
  // MagicValue(JS_OPTIMIZED_OUT).
  if ((ins->isUnused() || ins->type() == MIRType::MagicOptimizedOut) &&
      (*it_)->isResumePoint()) {
    return !(*it_)->toResumePoint()->isObservableOperand(op_);
  }

  return true;
}
#endif

#ifdef JS_NUNBOX32
LSnapshot* LIRGeneratorShared::buildSnapshot(MResumePoint* rp,
                                             BailoutKind kind) {
  LRecoverInfo* recoverInfo = getRecoverInfo(rp);
  if (!recoverInfo) {
    return nullptr;
  }

  LSnapshot* snapshot = LSnapshot::New(gen, recoverInfo, kind);
  if (!snapshot) {
    return nullptr;
  }

  size_t index = 0;
  for (LRecoverInfo::OperandIter it(recoverInfo); !it; ++it) {
    // Check that optimized out operands are in eliminable slots.
    MOZ_ASSERT(it.canOptimizeOutIfUnused());

    MDefinition* ins = *it;

    if (ins->isRecoveredOnBailout()) {
      continue;
    }

    LAllocation* type = snapshot->typeOfSlot(index);
    LAllocation* payload = snapshot->payloadOfSlot(index);
    ++index;

    if (ins->isBox()) {
      ins = ins->toBox()->getOperand(0);
    }

    // Guards should never be eliminated.
    MOZ_ASSERT_IF(ins->isUnused(), !ins->isGuard());

    // Snapshot operands other than constants should never be
    // emitted-at-uses. Try-catch support depends on there being no
    // code between an instruction and the LOsiPoint that follows it.
    MOZ_ASSERT_IF(!ins->isConstant(), !ins->isEmittedAtUses());

    // The register allocation will fill these fields in with actual
    // register/stack assignments. During code generation, we can restore
    // interpreter state with the given information. Note that for
    // constants, including known types, we record a dummy placeholder,
    // since we can recover the same information, much cleaner, from MIR.
    if (ins->isConstant() || ins->isUnused()) {
      *type = LAllocation();
      *payload = LAllocation();
    } else if (ins->type() != MIRType::Value) {
      *type = LAllocation();
      *payload = use(ins, LUse(LUse::KEEPALIVE));
    } else {
      *type = useType(ins, LUse::KEEPALIVE);
      *payload = usePayload(ins, LUse::KEEPALIVE);
    }
  }

  return snapshot;
}

#elif JS_PUNBOX64

LSnapshot* LIRGeneratorShared::buildSnapshot(MResumePoint* rp,
                                             BailoutKind kind) {
  LRecoverInfo* recoverInfo = getRecoverInfo(rp);
  if (!recoverInfo) {
    return nullptr;
  }

  LSnapshot* snapshot = LSnapshot::New(gen, recoverInfo, kind);
  if (!snapshot) {
    return nullptr;
  }

  size_t index = 0;
  for (LRecoverInfo::OperandIter it(recoverInfo); !it; ++it) {
    // Check that optimized out operands are in eliminable slots.
    MOZ_ASSERT(it.canOptimizeOutIfUnused());

    MDefinition* def = *it;

    if (def->isRecoveredOnBailout()) {
      continue;
    }

    if (def->isBox()) {
      def = def->toBox()->getOperand(0);
    }

    // Guards should never be eliminated.
    MOZ_ASSERT_IF(def->isUnused(), !def->isGuard());

    // Snapshot operands other than constants should never be
    // emitted-at-uses. Try-catch support depends on there being no
    // code between an instruction and the LOsiPoint that follows it.
    MOZ_ASSERT_IF(!def->isConstant(), !def->isEmittedAtUses());

    LAllocation* a = snapshot->getEntry(index++);

    if (def->isUnused()) {
      *a = LAllocation();
      continue;
    }

    *a = useKeepaliveOrConstant(def);
  }

  return snapshot;
}
#endif

void LIRGeneratorShared::assignSnapshot(LInstruction* ins, BailoutKind kind) {
  // assignSnapshot must be called before define/add, since
  // it may add new instructions for emitted-at-use operands.
  MOZ_ASSERT(ins->id() == 0);
  MOZ_ASSERT(kind != BailoutKind::Unknown);

  LSnapshot* snapshot = buildSnapshot(lastResumePoint_, kind);
  if (!snapshot) {
    abort(AbortReason::Alloc, "buildSnapshot failed");
    return;
  }

  ins->assignSnapshot(snapshot);
}

void LIRGeneratorShared::assignSafepoint(LInstruction* ins, MInstruction* mir,
                                         BailoutKind kind) {
  MOZ_ASSERT(!osiPoint_);
  MOZ_ASSERT(!ins->safepoint());

  ins->initSafepoint(alloc());

  MResumePoint* mrp =
      mir->resumePoint() ? mir->resumePoint() : lastResumePoint_;
  LSnapshot* postSnapshot = buildSnapshot(mrp, kind);
  if (!postSnapshot) {
    abort(AbortReason::Alloc, "buildSnapshot failed");
    return;
  }

  osiPoint_ = new (alloc()) LOsiPoint(ins->safepoint(), postSnapshot);

  if (!lirGraph_.noteNeedsSafepoint(ins)) {
    abort(AbortReason::Alloc, "noteNeedsSafepoint failed");
    return;
  }
}

void LIRGeneratorShared::assignWasmSafepoint(LInstruction* ins,
                                             MInstruction* mir) {
  MOZ_ASSERT(!osiPoint_);
  MOZ_ASSERT(!ins->safepoint());

  ins->initSafepoint(alloc());

  if (!lirGraph_.noteNeedsSafepoint(ins)) {
    abort(AbortReason::Alloc, "noteNeedsSafepoint failed");
    return;
  }
}

#ifdef ENABLE_WASM_SIMD

// Specialization analysis for SIMD operations.  This is still x86-centric but
// generalizes fairly easily to other architectures.

// Optimization of v8x16.shuffle.  The general byte shuffle+blend is very
// expensive (equivalent to at least a dozen instructions), and we want to avoid
// that if we can.  So look for special cases - there are many.
//
// The strategy is to sort the operation into one of three buckets depending
// on the shuffle pattern and inputs:
//
//  - single operand; shuffles on these values are rotations, reversals,
//    transpositions, and general permutations
//  - single-operand-with-interesting-constant (especially zero); shuffles on
//    these values are often byte shift or scatter operations
//  - dual operand; shuffles on these operations are blends, catenated
//    shifts, and (in the worst case) general shuffle+blends
//
// We're not trying to solve the general problem, only to lower reasonably
// expressed patterns that express common operations.  Producers that produce
// dense and convoluted patterns will end up with the general byte shuffle.
// Producers that produce simpler patterns that easily map to hardware will
// get faster code.
//
// In particular, these matchers do not try to combine transformations, so a
// shuffle that optimally is lowered to rotate + permute32x4 + rotate, say, is
// usually going to end up as a general byte shuffle.

// Reduce a 0..31 byte mask to a 0..15 word mask if possible and if so return
// true, updating *control.
static bool ByteMaskToWordMask(SimdConstant* control) {
  const SimdConstant::I8x16& lanes = control->asInt8x16();
  int16_t controlWords[8];
  for (int i = 0; i < 16; i += 2) {
    if (!((lanes[i] & 1) == 0 && lanes[i + 1] == lanes[i] + 1)) {
      return false;
    }
    controlWords[i / 2] = lanes[i] / 2;
  }
  *control = SimdConstant::CreateX8(controlWords);
  return true;
}

// Reduce a 0..31 byte mask to a 0..7 dword mask if possible and if so return
// true, updating *control.
static bool ByteMaskToDWordMask(SimdConstant* control) {
  const SimdConstant::I8x16& lanes = control->asInt8x16();
  int32_t controlDWords[4];
  for (int i = 0; i < 16; i += 4) {
    if (!((lanes[i] & 3) == 0 && lanes[i + 1] == lanes[i] + 1 &&
          lanes[i + 2] == lanes[i] + 2 && lanes[i + 3] == lanes[i] + 3)) {
      return false;
    }
    controlDWords[i / 4] = lanes[i] / 4;
  }
  *control = SimdConstant::CreateX4(controlDWords);
  return true;
}

// Reduce a 0..31 byte mask to a 0..3 qword mask if possible and if so return
// true, updating *control.
static bool ByteMaskToQWordMask(SimdConstant* control) {
  const SimdConstant::I8x16& lanes = control->asInt8x16();
  int64_t controlQWords[2];
  for (int i = 0; i < 16; i += 8) {
    if (!((lanes[i] & 7) == 0 && lanes[i + 1] == lanes[i] + 1 &&
          lanes[i + 2] == lanes[i] + 2 && lanes[i + 3] == lanes[i] + 3 &&
          lanes[i + 4] == lanes[i] + 4 && lanes[i + 5] == lanes[i] + 5 &&
          lanes[i + 6] == lanes[i] + 6 && lanes[i + 7] == lanes[i] + 7)) {
      return false;
    }
    controlQWords[i / 8] = lanes[i] / 8;
  }
  *control = SimdConstant::CreateX2(controlQWords);
  return true;
}

// Skip across consecutive values in lanes starting at i, returning the index
// after the last element.  Lane values must be <= len-1 ("masked").
//
// Since every element is a 1-element run, the return value is never the same as
// the starting i.
template <typename T>
static int ScanIncreasingMasked(const T* lanes, int i) {
  int len = int(16 / sizeof(T));
  MOZ_ASSERT(i < len);
  MOZ_ASSERT(lanes[i] <= len - 1);
  i++;
  while (i < len && lanes[i] == lanes[i - 1] + 1) {
    MOZ_ASSERT(lanes[i] <= len - 1);
    i++;
  }
  return i;
}

// Skip across consecutive values in lanes starting at i, returning the index
// after the last element.  Lane values must be <= len*2-1 ("unmasked"); the
// values len-1 and len are not considered consecutive.
//
// Since every element is a 1-element run, the return value is never the same as
// the starting i.
template <typename T>
static int ScanIncreasingUnmasked(const T* lanes, int i) {
  int len = int(16 / sizeof(T));
  MOZ_ASSERT(i < len);
  if (lanes[i] < len) {
    i++;
    while (i < len && lanes[i] < len && lanes[i - 1] == lanes[i] - 1) {
      i++;
    }
  } else {
    i++;
    while (i < len && lanes[i] >= len && lanes[i - 1] == lanes[i] - 1) {
      i++;
    }
  }
  return i;
}

// Skip lanes that equal v starting at i, returning the index just beyond the
// last of those.  There is no requirement that the initial lanes[i] == v.
template <typename T>
static int ScanConstant(const T* lanes, int v, int i) {
  int len = int(16 / sizeof(T));
  MOZ_ASSERT(i <= len);
  while (i < len && lanes[i] == v) {
    i++;
  }
  return i;
}

// Mask lane values denoting rhs elements into lhs elements.
template <typename T>
static void MaskLanes(T* result, const T* input) {
  int len = int(16 / sizeof(T));
  for (int i = 0; i < len; i++) {
    result[i] = input[i] & (len - 1);
  }
}

// Apply a transformation to each lane value.
template <typename T>
static void MapLanes(T* result, const T* input, int (*f)(int)) {
  int len = int(16 / sizeof(T));
  for (int i = 0; i < len; i++) {
    result[i] = f(input[i]);
  }
}

// Recognize an identity permutation, assuming lanes is masked.
template <typename T>
static bool IsIdentity(const T* lanes) {
  return ScanIncreasingMasked(lanes, 0) == int(16 / sizeof(T));
}

// Recognize part of an identity permutation starting at start, with
// the first value of the permutation expected to be bias.
template <typename T>
static bool IsIdentity(const T* lanes, int start, int len, int bias) {
  if (lanes[start] != bias) {
    return false;
  }
  for (int i = start + 1; i < start + len; i++) {
    if (lanes[i] != lanes[i - 1] + 1) {
      return false;
    }
  }
  return true;
}

// We can permute by dwords if the mask is reducible to a dword mask, and in
// this case a single PSHUFD is enough.
static bool TryPermute32x4(SimdConstant* control) {
  SimdConstant tmp = *control;
  if (!ByteMaskToDWordMask(&tmp)) {
    return false;
  }
  *control = tmp;
  return true;
}

// Can we perform a byte rotate right?  We can use PALIGNR.  The shift count is
// just lanes[0], and *control is unchanged.
static bool TryRotateRight8x16(SimdConstant* control) {
  const SimdConstant::I8x16& lanes = control->asInt8x16();
  // Look for the first run of consecutive bytes.
  int i = ScanIncreasingMasked(lanes, 0);

  // If we reach the end of the vector, the vector must start at 0.
  if (i == 16) {
    return lanes[0] == 0;
  }

  // Second run must start at source lane zero
  if (lanes[i] != 0) {
    return false;
  }

  // Second run must end at the end of the lane vector.
  return ScanIncreasingMasked(lanes, i) == 16;
}

// We can permute by words if the mask is reducible to a word mask, but the x64
// lowering is only efficient if we can permute the high and low quadwords
// separately, possibly after swapping quadwords.
static bool TryPermute16x8(SimdConstant* control) {
  SimdConstant tmp = *control;
  if (!ByteMaskToWordMask(&tmp)) {
    return false;
  }
  const SimdConstant::I16x8& lanes = tmp.asInt16x8();
  SimdConstant::I16x8 mapped;
  MapLanes(mapped, lanes, [](int x) -> int { return x < 4 ? 0 : 1; });
  int i = ScanConstant(mapped, mapped[0], 0);
  if (i != 4) {
    return false;
  }
  i = ScanConstant(mapped, mapped[4], 4);
  if (i != 8) {
    return false;
  }
  // Now compute the operation bits.  `mapped` holds the adjusted lane mask.
  memcpy(mapped, lanes, sizeof(mapped));
  int16_t op = 0;
  if (mapped[0] > mapped[4]) {
    op |= LWasmPermuteSimd128::SWAP_QWORDS;
  }
  for (int i = 0; i < 8; i++) {
    mapped[i] &= 3;
  }
  if (!IsIdentity(mapped, 0, 4, 0)) {
    op |= LWasmPermuteSimd128::PERM_LOW;
  }
  if (!IsIdentity(mapped, 4, 4, 0)) {
    op |= LWasmPermuteSimd128::PERM_HIGH;
  }
  MOZ_ASSERT(op != 0);
  mapped[0] |= op << 8;
  *control = SimdConstant::CreateX8(mapped);
  return true;
}

// A single word lane is copied into all the other lanes: PSHUF*W + PSHUFD.
static bool TryBroadcast16x8(SimdConstant* control) {
  SimdConstant tmp = *control;
  if (!ByteMaskToWordMask(&tmp)) {
    return false;
  }
  const SimdConstant::I16x8& lanes = tmp.asInt16x8();
  if (ScanConstant(lanes, lanes[0], 0) < 8) {
    return false;
  }
  *control = tmp;
  return true;
}

// A single byte lane is copied int all the other lanes: PUNPCK*BW + PSHUF*W +
// PSHUFD.
static bool TryBroadcast8x16(SimdConstant* control) {
  const SimdConstant::I8x16& lanes = control->asInt8x16();
  if (ScanConstant(lanes, lanes[0], 0) < 16) {
    return false;
  }
  return true;
}

// Look for permutations of a single operand.
static LWasmPermuteSimd128::Op AnalyzePermute(SimdConstant* control) {
  // Lane indices are input-agnostic for single-operand permutations.
  SimdConstant::I8x16 controlBytes;
  MaskLanes(controlBytes, control->asInt8x16());

  // Get rid of no-ops immediately, so nobody else needs to check.
  if (IsIdentity(controlBytes)) {
    return LWasmPermuteSimd128::MOVE;
  }

  // Default control is the masked bytes.
  *control = SimdConstant::CreateX16(controlBytes);

  // Analysis order matters here and is architecture-dependent or even
  // microarchitecture-dependent: ideally the cheapest implementation first.
  // The Intel manual says that the cost of a PSHUFB is about five other
  // operations, so make that our cutoff.
  //
  // Word, dword, and qword reversals are handled optimally by general permutes.
  //
  // Byte reversals are probably best left to PSHUFB, no alternative rendition
  // seems to reliably go below five instructions.  (Discuss.)
  //
  // Word swaps within doublewords and dword swaps within quadwords are handled
  // optimally by general permutes.
  //
  // Dword and qword broadcasts are handled by dword permute.

  if (TryPermute32x4(control)) {
    return LWasmPermuteSimd128::PERMUTE_32x4;
  }
  if (TryRotateRight8x16(control)) {
    return LWasmPermuteSimd128::ROTATE_RIGHT_8x16;
  }
  if (TryPermute16x8(control)) {
    return LWasmPermuteSimd128::PERMUTE_16x8;
  }
  if (TryBroadcast16x8(control)) {
    return LWasmPermuteSimd128::BROADCAST_16x8;
  }
  if (TryBroadcast8x16(control)) {
    return LWasmPermuteSimd128::BROADCAST_8x16;
  }

  // TODO: (From v8) Unzip and transpose generally have renditions that slightly
  // beat a general permute (three or four instructions)
  //
  // TODO: (From MacroAssemblerX86Shared::ShuffleX4): MOVLHPS and MOVHLPS can be
  // used when merging two values.
  //
  // TODO: Byteswap is MOV + PSLLW + PSRLW + POR, a small win over PSHUFB.

  // The default operation is to permute bytes with the default control.
  return LWasmPermuteSimd128::PERMUTE_8x16;
}

// Can we shift the bytes left or right by a constant?  A shift is a run of
// lanes from the rhs (which is zero) on one end and a run of values from the
// lhs on the other end.
static Maybe<LWasmPermuteSimd128::Op> TryShift8x16(SimdConstant* control) {
  const SimdConstant::I8x16& lanes = control->asInt8x16();

  // Represent all zero lanes by 16
  SimdConstant::I8x16 zeroesMasked;
  MapLanes(zeroesMasked, lanes, [](int x) -> int { return x >= 16 ? 16 : x; });

  int i = ScanConstant(zeroesMasked, 16, 0);
  int shiftLeft = i;
  if (shiftLeft > 0 && lanes[shiftLeft] != 0) {
    return Nothing();
  }

  i = ScanIncreasingUnmasked(zeroesMasked, i);
  int shiftRight = 16 - i;
  if (shiftRight > 0 && lanes[i - 1] != 15) {
    return Nothing();
  }

  i = ScanConstant(zeroesMasked, 16, i);
  if (i < 16 || (shiftRight > 0 && shiftLeft > 0) ||
      (shiftRight == 0 && shiftLeft == 0)) {
    return Nothing();
  }

  if (shiftRight) {
    *control = SimdConstant::SplatX16(shiftRight);
    return Some(LWasmPermuteSimd128::SHIFT_RIGHT_8x16);
  }
  *control = SimdConstant::SplatX16(shiftLeft);
  return Some(LWasmPermuteSimd128::SHIFT_LEFT_8x16);
}

static Maybe<LWasmPermuteSimd128::Op> AnalyzeShuffleWithZero(
    SimdConstant* control) {
  Maybe<LWasmPermuteSimd128::Op> op;
  op = TryShift8x16(control);
  if (op) {
    return op;
  }

  // TODO: Optimization opportunity? A byte-blend-with-zero is just a CONST;
  // PAND.  This may beat the general byte blend code below.
  return Nothing();
}

// Concat: if the result is the suffix (high bytes) of the rhs in front of a
// prefix (low bytes) of the lhs then this is PALIGNR; ditto if the operands are
// swapped.
static Maybe<LWasmShuffleSimd128::Op> TryConcatRightShift8x16(
    SimdConstant* control, bool* swapOperands) {
  const SimdConstant::I8x16& lanes = control->asInt8x16();
  int i = ScanIncreasingUnmasked(lanes, 0);
  MOZ_ASSERT(i < 16, "Single-operand run should have been handled elswhere");
  // First run must end with 15 % 16
  if ((lanes[i - 1] & 15) != 15) {
    return Nothing();
  }
  // Second run must start with 0 % 16
  if ((lanes[i] & 15) != 0) {
    return Nothing();
  }
  // The two runs must come from different inputs
  if ((lanes[i] & 16) == (lanes[i - 1] & 16)) {
    return Nothing();
  }
  int suffixLength = i;

  i = ScanIncreasingUnmasked(lanes, i);
  // Must end at the left end
  if (i != 16) {
    return Nothing();
  }

  // If the suffix is from the lhs then swap the operands
  if (lanes[0] < 16) {
    *swapOperands = !*swapOperands;
  }
  *control = SimdConstant::SplatX16(suffixLength);
  return Some(LWasmShuffleSimd128::CONCAT_RIGHT_SHIFT_8x16);
}

// Blend words: if we pick words from both operands without a pattern but all
// the input words stay in their position then this is PBLENDW (immediate mask);
// this also handles all larger sizes on x64.
static Maybe<LWasmShuffleSimd128::Op> TryBlendInt16x8(SimdConstant* control) {
  SimdConstant tmp(*control);
  if (!ByteMaskToWordMask(&tmp)) {
    return Nothing();
  }
  SimdConstant::I16x8 masked;
  MaskLanes(masked, tmp.asInt16x8());
  if (!IsIdentity(masked)) {
    return Nothing();
  }
  SimdConstant::I16x8 mapped;
  MapLanes(mapped, tmp.asInt16x8(),
           [](int x) -> int { return x < 8 ? 0 : -1; });
  *control = SimdConstant::CreateX8(mapped);
  return Some(LWasmShuffleSimd128::BLEND_16x8);
}

// Blend bytes: if we pick bytes ditto then this is a byte blend, which can be
// handled with a CONST, PAND, PANDNOT, and POR.
//
// TODO: Optimization opportunity? If we pick all but one lanes from one with at
// most one from the other then it could be a MOV + PEXRB + PINSRB (also if this
// element is not in its source location).
static Maybe<LWasmShuffleSimd128::Op> TryBlendInt8x16(SimdConstant* control) {
  SimdConstant::I8x16 masked;
  MaskLanes(masked, control->asInt8x16());
  if (!IsIdentity(masked)) {
    return Nothing();
  }
  SimdConstant::I8x16 mapped;
  MapLanes(mapped, control->asInt8x16(),
           [](int x) -> int { return x < 16 ? 0 : -1; });
  *control = SimdConstant::CreateX16(mapped);
  return Some(LWasmShuffleSimd128::BLEND_8x16);
}

template <typename T>
static bool MatchInterleave(const T* lanes, int lhs, int rhs, int len) {
  for (int i = 0; i < len; i++) {
    if (lanes[i * 2] != lhs + i || lanes[i * 2 + 1] != rhs + i) {
      return false;
    }
  }
  return true;
}

// Unpack/interleave:
//  - if we interleave the low (bytes/words/doublewords) of the inputs into
//    the output then this is UNPCKL*W (possibly with a swap of operands).
//  - if we interleave the high ditto then it is UNPCKH*W (ditto)
template <typename T>
static Maybe<LWasmShuffleSimd128::Op> TryInterleave(
    const T* lanes, int lhs, int rhs, bool* swapOperands,
    LWasmShuffleSimd128::Op lowOp, LWasmShuffleSimd128::Op highOp) {
  int len = int(32 / (sizeof(T) * 4));
  if (MatchInterleave(lanes, lhs, rhs, len)) {
    return Some(lowOp);
  }
  if (MatchInterleave(lanes, rhs, lhs, len)) {
    *swapOperands = !*swapOperands;
    return Some(lowOp);
  }
  if (MatchInterleave(lanes, lhs + len, rhs + len, len)) {
    return Some(highOp);
  }
  if (MatchInterleave(lanes, rhs + len, lhs + len, len)) {
    *swapOperands = !*swapOperands;
    return Some(highOp);
  }
  return Nothing();
}

static Maybe<LWasmShuffleSimd128::Op> TryInterleave64x2(SimdConstant* control,
                                                        bool* swapOperands) {
  SimdConstant tmp = *control;
  if (!ByteMaskToQWordMask(&tmp)) {
    return Nothing();
  }
  const SimdConstant::I64x2& lanes = tmp.asInt64x2();
  return TryInterleave(lanes, 0, 2, swapOperands,
                       LWasmShuffleSimd128::INTERLEAVE_LOW_64x2,
                       LWasmShuffleSimd128::INTERLEAVE_HIGH_64x2);
}

static Maybe<LWasmShuffleSimd128::Op> TryInterleave32x4(SimdConstant* control,
                                                        bool* swapOperands) {
  SimdConstant tmp = *control;
  if (!ByteMaskToDWordMask(&tmp)) {
    return Nothing();
  }
  const SimdConstant::I32x4& lanes = tmp.asInt32x4();
  return TryInterleave(lanes, 0, 4, swapOperands,
                       LWasmShuffleSimd128::INTERLEAVE_LOW_32x4,
                       LWasmShuffleSimd128::INTERLEAVE_HIGH_32x4);
}

static Maybe<LWasmShuffleSimd128::Op> TryInterleave16x8(SimdConstant* control,
                                                        bool* swapOperands) {
  SimdConstant tmp = *control;
  if (!ByteMaskToWordMask(&tmp)) {
    return Nothing();
  }
  const SimdConstant::I16x8& lanes = tmp.asInt16x8();
  return TryInterleave(lanes, 0, 8, swapOperands,
                       LWasmShuffleSimd128::INTERLEAVE_LOW_16x8,
                       LWasmShuffleSimd128::INTERLEAVE_HIGH_16x8);
}

static Maybe<LWasmShuffleSimd128::Op> TryInterleave8x16(SimdConstant* control,
                                                        bool* swapOperands) {
  const SimdConstant::I8x16& lanes = control->asInt8x16();
  return TryInterleave(lanes, 0, 16, swapOperands,
                       LWasmShuffleSimd128::INTERLEAVE_LOW_8x16,
                       LWasmShuffleSimd128::INTERLEAVE_HIGH_8x16);
}

static LWasmShuffleSimd128::Op AnalyzeTwoArgShuffle(SimdConstant* control,
                                                    bool* swapOperands) {
  Maybe<LWasmShuffleSimd128::Op> op;
  op = TryConcatRightShift8x16(control, swapOperands);
  if (!op) {
    op = TryBlendInt16x8(control);
  }
  if (!op) {
    op = TryBlendInt8x16(control);
  }
  if (!op) {
    op = TryInterleave64x2(control, swapOperands);
  }
  if (!op) {
    op = TryInterleave32x4(control, swapOperands);
  }
  if (!op) {
    op = TryInterleave16x8(control, swapOperands);
  }
  if (!op) {
    op = TryInterleave8x16(control, swapOperands);
  }
  if (!op) {
    op = Some(LWasmShuffleSimd128::SHUFFLE_BLEND_8x16);
  }
  return *op;
}

// Reorder the operands if that seems useful, notably, move a constant to the
// right hand side.  Rewrites the control to account for any move.
static bool MaybeReorderShuffleOperands(MDefinition** lhs, MDefinition** rhs,
                                        SimdConstant* control) {
  if ((*lhs)->isWasmFloatConstant()) {
    MDefinition* tmp = *lhs;
    *lhs = *rhs;
    *rhs = tmp;

    int8_t controlBytes[16];
    const SimdConstant::I8x16& lanes = control->asInt8x16();
    for (unsigned i = 0; i < 16; i++) {
      controlBytes[i] = lanes[i] ^ 16;
    }
    *control = SimdConstant::CreateX16(controlBytes);

    return true;
  }
  return false;
}

Shuffle LIRGeneratorShared::AnalyzeShuffle(MWasmShuffleSimd128* ins) {
  // Control may be updated, but only once we commit to an operation or when we
  // swap operands.
  SimdConstant control = ins->control();
  MDefinition* lhs = ins->lhs();
  MDefinition* rhs = ins->rhs();

  // If only one of the inputs is used, determine which.
  bool useLeft = true;
  bool useRight = true;
  if (lhs == rhs) {
    useRight = false;
  } else {
    bool allAbove = true;
    bool allBelow = true;
    const SimdConstant::I8x16& lanes = control.asInt8x16();
    for (unsigned i = 0; i < 16; i++) {
      allAbove = allAbove && lanes[i] >= 16;
      allBelow = allBelow && lanes[i] < 16;
    }
    if (allAbove) {
      useLeft = false;
    } else if (allBelow) {
      useRight = false;
    }
  }

  // Deal with one-ignored-input.
  if (!(useLeft && useRight)) {
    LWasmPermuteSimd128::Op op = AnalyzePermute(&control);
    return Shuffle::permute(
        useLeft ? Shuffle::Operand::LEFT : Shuffle::Operand::RIGHT, control,
        op);
  }

  // Move constants to rhs.
  bool swapOperands = MaybeReorderShuffleOperands(&lhs, &rhs, &control);

  // Deal with constant rhs.
  if (rhs->isWasmFloatConstant()) {
    SimdConstant rhsConstant = rhs->toWasmFloatConstant()->toSimd128();
    if (rhsConstant.isZeroBits()) {
      Maybe<LWasmPermuteSimd128::Op> op = AnalyzeShuffleWithZero(&control);
      if (op) {
        return Shuffle::permute(
            swapOperands ? Shuffle::Operand::RIGHT : Shuffle::Operand::LEFT,
            control, *op);
      }
    }
  }

  // Two operands both of which are used.  If there's one constant operand it is
  // now on the rhs.
  LWasmShuffleSimd128::Op op = AnalyzeTwoArgShuffle(&control, &swapOperands);
  return Shuffle::shuffle(
      swapOperands ? Shuffle::Operand::BOTH_SWAPPED : Shuffle::Operand::BOTH,
      control, op);
}

#  ifdef DEBUG
void LIRGeneratorShared::ReportShuffleSpecialization(const Shuffle& s) {
  switch (s.opd) {
    case Shuffle::Operand::BOTH:
    case Shuffle::Operand::BOTH_SWAPPED:
      switch (*s.shuffleOp) {
        case LWasmShuffleSimd128::SHUFFLE_BLEND_8x16:
          js::wasm::ReportSimdAnalysis("shuffle -> shuffle+blend 8x16");
          break;
        case LWasmShuffleSimd128::BLEND_8x16:
          js::wasm::ReportSimdAnalysis("shuffle -> blend 8x16");
          break;
        case LWasmShuffleSimd128::BLEND_16x8:
          js::wasm::ReportSimdAnalysis("shuffle -> blend 16x8");
          break;
        case LWasmShuffleSimd128::CONCAT_RIGHT_SHIFT_8x16:
          js::wasm::ReportSimdAnalysis("shuffle -> concat+shift-right 8x16");
          break;
        case LWasmShuffleSimd128::INTERLEAVE_HIGH_8x16:
          js::wasm::ReportSimdAnalysis("shuffle -> interleave-high 8x16");
          break;
        case LWasmShuffleSimd128::INTERLEAVE_HIGH_16x8:
          js::wasm::ReportSimdAnalysis("shuffle -> interleave-high 16x8");
          break;
        case LWasmShuffleSimd128::INTERLEAVE_HIGH_32x4:
          js::wasm::ReportSimdAnalysis("shuffle -> interleave-high 32x4");
          break;
        case LWasmShuffleSimd128::INTERLEAVE_HIGH_64x2:
          js::wasm::ReportSimdAnalysis("shuffle -> interleave-high 64x2");
          break;
        case LWasmShuffleSimd128::INTERLEAVE_LOW_8x16:
          js::wasm::ReportSimdAnalysis("shuffle -> interleave-low 8x16");
          break;
        case LWasmShuffleSimd128::INTERLEAVE_LOW_16x8:
          js::wasm::ReportSimdAnalysis("shuffle -> interleave-low 16x8");
          break;
        case LWasmShuffleSimd128::INTERLEAVE_LOW_32x4:
          js::wasm::ReportSimdAnalysis("shuffle -> interleave-low 32x4");
          break;
        case LWasmShuffleSimd128::INTERLEAVE_LOW_64x2:
          js::wasm::ReportSimdAnalysis("shuffle -> interleave-low 64x2");
          break;
        default:
          MOZ_CRASH("Unexpected shuffle op");
      }
      break;
    case Shuffle::Operand::LEFT:
    case Shuffle::Operand::RIGHT:
      switch (*s.permuteOp) {
        case LWasmPermuteSimd128::BROADCAST_8x16:
          js::wasm::ReportSimdAnalysis("shuffle -> broadcast 8x16");
          break;
        case LWasmPermuteSimd128::BROADCAST_16x8:
          js::wasm::ReportSimdAnalysis("shuffle -> broadcast 16x8");
          break;
        case LWasmPermuteSimd128::MOVE:
          js::wasm::ReportSimdAnalysis("shuffle -> move");
          break;
        case LWasmPermuteSimd128::PERMUTE_8x16:
          js::wasm::ReportSimdAnalysis("shuffle -> permute 8x16");
          break;
        case LWasmPermuteSimd128::PERMUTE_16x8: {
          int op = s.control.asInt16x8()[0] >> 8;
          char buf[256];
          sprintf(buf, "shuffle -> permute 16x8%s%s%s",
                  op & LWasmPermuteSimd128::SWAP_QWORDS ? " swap" : "",
                  op & LWasmPermuteSimd128::PERM_HIGH ? " high" : "",
                  op & LWasmPermuteSimd128::PERM_LOW ? " low" : "");
          js::wasm::ReportSimdAnalysis(buf);
          break;
        }
        case LWasmPermuteSimd128::PERMUTE_32x4:
          js::wasm::ReportSimdAnalysis("shuffle -> permute 32x4");
          break;
        case LWasmPermuteSimd128::ROTATE_RIGHT_8x16:
          js::wasm::ReportSimdAnalysis("shuffle -> rotate-right 8x16");
          break;
        case LWasmPermuteSimd128::SHIFT_LEFT_8x16:
          js::wasm::ReportSimdAnalysis("shuffle -> shift-left 8x16");
          break;
        case LWasmPermuteSimd128::SHIFT_RIGHT_8x16:
          js::wasm::ReportSimdAnalysis("shuffle -> shift-right 8x16");
          break;
        default:
          MOZ_CRASH("Unexpected permute op");
      }
      break;
  }
}
#  endif  // DEBUG

#endif  // ENABLE_WASM_SIMD