1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/x64/CodeGenerator-x64.h"
#include "mozilla/MathAlgorithms.h"
#include "jit/CodeGenerator.h"
#include "jit/MIR.h"
#include "js/ScalarType.h" // js::Scalar::Type
#include "jit/MacroAssembler-inl.h"
#include "jit/shared/CodeGenerator-shared-inl.h"
#include "vm/JSScript-inl.h"
using namespace js;
using namespace js::jit;
using mozilla::DebugOnly;
CodeGeneratorX64::CodeGeneratorX64(MIRGenerator* gen, LIRGraph* graph,
MacroAssembler* masm)
: CodeGeneratorX86Shared(gen, graph, masm) {}
ValueOperand CodeGeneratorX64::ToValue(LInstruction* ins, size_t pos) {
return ValueOperand(ToRegister(ins->getOperand(pos)));
}
ValueOperand CodeGeneratorX64::ToTempValue(LInstruction* ins, size_t pos) {
return ValueOperand(ToRegister(ins->getTemp(pos)));
}
Operand CodeGeneratorX64::ToOperand64(const LInt64Allocation& a64) {
const LAllocation& a = a64.value();
MOZ_ASSERT(!a.isFloatReg());
if (a.isGeneralReg()) {
return Operand(a.toGeneralReg()->reg());
}
return Operand(ToAddress(a));
}
FrameSizeClass FrameSizeClass::FromDepth(uint32_t frameDepth) {
return FrameSizeClass::None();
}
FrameSizeClass FrameSizeClass::ClassLimit() { return FrameSizeClass(0); }
uint32_t FrameSizeClass::frameSize() const {
MOZ_CRASH("x64 does not use frame size classes");
}
void CodeGenerator::visitValue(LValue* value) {
ValueOperand result = ToOutValue(value);
masm.moveValue(value->value(), result);
}
void CodeGenerator::visitBox(LBox* box) {
const LAllocation* in = box->getOperand(0);
ValueOperand result = ToOutValue(box);
masm.moveValue(TypedOrValueRegister(box->type(), ToAnyRegister(in)), result);
}
void CodeGenerator::visitUnbox(LUnbox* unbox) {
MUnbox* mir = unbox->mir();
Register result = ToRegister(unbox->output());
if (mir->fallible()) {
const ValueOperand value = ToValue(unbox, LUnbox::Input);
Label bail;
switch (mir->type()) {
case MIRType::Int32:
masm.fallibleUnboxInt32(value, result, &bail);
break;
case MIRType::Boolean:
masm.fallibleUnboxBoolean(value, result, &bail);
break;
case MIRType::Object:
masm.fallibleUnboxObject(value, result, &bail);
break;
case MIRType::String:
masm.fallibleUnboxString(value, result, &bail);
break;
case MIRType::Symbol:
masm.fallibleUnboxSymbol(value, result, &bail);
break;
case MIRType::BigInt:
masm.fallibleUnboxBigInt(value, result, &bail);
break;
default:
MOZ_CRASH("Given MIRType cannot be unboxed.");
}
bailoutFrom(&bail, unbox->snapshot());
return;
}
// Infallible unbox.
Operand input = ToOperand(unbox->getOperand(LUnbox::Input));
#ifdef DEBUG
// Assert the types match.
JSValueTag tag = MIRTypeToTag(mir->type());
Label ok;
masm.splitTag(input, ScratchReg);
masm.branch32(Assembler::Equal, ScratchReg, Imm32(tag), &ok);
masm.assumeUnreachable("Infallible unbox type mismatch");
masm.bind(&ok);
#endif
switch (mir->type()) {
case MIRType::Int32:
masm.unboxInt32(input, result);
break;
case MIRType::Boolean:
masm.unboxBoolean(input, result);
break;
case MIRType::Object:
masm.unboxObject(input, result);
break;
case MIRType::String:
masm.unboxString(input, result);
break;
case MIRType::Symbol:
masm.unboxSymbol(input, result);
break;
case MIRType::BigInt:
masm.unboxBigInt(input, result);
break;
default:
MOZ_CRASH("Given MIRType cannot be unboxed.");
}
}
void CodeGenerator::visitCompareI64(LCompareI64* lir) {
MCompare* mir = lir->mir();
MOZ_ASSERT(mir->compareType() == MCompare::Compare_Int64 ||
mir->compareType() == MCompare::Compare_UInt64);
const LInt64Allocation lhs = lir->getInt64Operand(LCompareI64::Lhs);
const LInt64Allocation rhs = lir->getInt64Operand(LCompareI64::Rhs);
Register lhsReg = ToRegister64(lhs).reg;
Register output = ToRegister(lir->output());
if (IsConstant(rhs)) {
masm.cmpPtr(lhsReg, ImmWord(ToInt64(rhs)));
} else {
masm.cmpPtr(lhsReg, ToOperand64(rhs));
}
bool isSigned = mir->compareType() == MCompare::Compare_Int64;
masm.emitSet(JSOpToCondition(lir->jsop(), isSigned), output);
}
void CodeGenerator::visitCompareI64AndBranch(LCompareI64AndBranch* lir) {
MCompare* mir = lir->cmpMir();
MOZ_ASSERT(mir->compareType() == MCompare::Compare_Int64 ||
mir->compareType() == MCompare::Compare_UInt64);
LInt64Allocation lhs = lir->getInt64Operand(LCompareI64::Lhs);
LInt64Allocation rhs = lir->getInt64Operand(LCompareI64::Rhs);
Register lhsReg = ToRegister64(lhs).reg;
if (IsConstant(rhs)) {
masm.cmpPtr(lhsReg, ImmWord(ToInt64(rhs)));
} else {
masm.cmpPtr(lhsReg, ToOperand64(rhs));
}
bool isSigned = mir->compareType() == MCompare::Compare_Int64;
emitBranch(JSOpToCondition(lir->jsop(), isSigned), lir->ifTrue(),
lir->ifFalse());
}
void CodeGenerator::visitDivOrModI64(LDivOrModI64* lir) {
Register lhs = ToRegister(lir->lhs());
Register rhs = ToRegister(lir->rhs());
Register output = ToRegister(lir->output());
MOZ_ASSERT_IF(lhs != rhs, rhs != rax);
MOZ_ASSERT(rhs != rdx);
MOZ_ASSERT_IF(output == rax, ToRegister(lir->remainder()) == rdx);
MOZ_ASSERT_IF(output == rdx, ToRegister(lir->remainder()) == rax);
Label done;
// Put the lhs in rax.
if (lhs != rax) {
masm.mov(lhs, rax);
}
// Handle divide by zero.
if (lir->canBeDivideByZero()) {
Label nonZero;
masm.branchTestPtr(Assembler::NonZero, rhs, rhs, &nonZero);
masm.wasmTrap(wasm::Trap::IntegerDivideByZero, lir->bytecodeOffset());
masm.bind(&nonZero);
}
// Handle an integer overflow exception from INT64_MIN / -1.
if (lir->canBeNegativeOverflow()) {
Label notOverflow;
masm.branchPtr(Assembler::NotEqual, lhs, ImmWord(INT64_MIN), ¬Overflow);
masm.branchPtr(Assembler::NotEqual, rhs, ImmWord(-1), ¬Overflow);
if (lir->mir()->isMod()) {
masm.xorl(output, output);
} else {
masm.wasmTrap(wasm::Trap::IntegerOverflow, lir->bytecodeOffset());
}
masm.jump(&done);
masm.bind(¬Overflow);
}
// Sign extend the lhs into rdx to make rdx:rax.
masm.cqo();
masm.idivq(rhs);
masm.bind(&done);
}
void CodeGenerator::visitUDivOrModI64(LUDivOrModI64* lir) {
Register lhs = ToRegister(lir->lhs());
Register rhs = ToRegister(lir->rhs());
DebugOnly<Register> output = ToRegister(lir->output());
MOZ_ASSERT_IF(lhs != rhs, rhs != rax);
MOZ_ASSERT(rhs != rdx);
MOZ_ASSERT_IF(output.value == rax, ToRegister(lir->remainder()) == rdx);
MOZ_ASSERT_IF(output.value == rdx, ToRegister(lir->remainder()) == rax);
// Put the lhs in rax.
if (lhs != rax) {
masm.mov(lhs, rax);
}
Label done;
// Prevent divide by zero.
if (lir->canBeDivideByZero()) {
Label nonZero;
masm.branchTestPtr(Assembler::NonZero, rhs, rhs, &nonZero);
masm.wasmTrap(wasm::Trap::IntegerDivideByZero, lir->bytecodeOffset());
masm.bind(&nonZero);
}
// Zero extend the lhs into rdx to make (rdx:rax).
masm.xorl(rdx, rdx);
masm.udivq(rhs);
masm.bind(&done);
}
void CodeGeneratorX64::emitBigIntDiv(LBigIntDiv* ins, Register dividend,
Register divisor, Register output,
Label* fail) {
// Callers handle division by zero and integer overflow.
MOZ_ASSERT(dividend == rax);
MOZ_ASSERT(output == rdx);
// Sign extend the lhs into rdx to make rdx:rax.
masm.cqo();
masm.idivq(divisor);
// Create and return the result.
masm.newGCBigInt(output, divisor, fail, bigIntsCanBeInNursery());
masm.initializeBigInt(output, dividend);
}
void CodeGeneratorX64::emitBigIntMod(LBigIntMod* ins, Register dividend,
Register divisor, Register output,
Label* fail) {
// Callers handle division by zero and integer overflow.
MOZ_ASSERT(dividend == rax);
MOZ_ASSERT(output == rdx);
// Sign extend the lhs into rdx to make rdx:rax.
masm.cqo();
masm.idivq(divisor);
// Move the remainder from rdx.
masm.movq(output, dividend);
// Create and return the result.
masm.newGCBigInt(output, divisor, fail, bigIntsCanBeInNursery());
masm.initializeBigInt(output, dividend);
}
void CodeGenerator::visitWasmRegisterResult(LWasmRegisterResult* lir) {
if (JitOptions.spectreIndexMasking) {
if (MWasmRegisterResult* mir = lir->mir()) {
if (mir->type() == MIRType::Int32) {
masm.movl(ToRegister(lir->output()), ToRegister(lir->output()));
}
}
}
}
void CodeGenerator::visitWasmSelectI64(LWasmSelectI64* lir) {
MOZ_ASSERT(lir->mir()->type() == MIRType::Int64);
Register cond = ToRegister(lir->condExpr());
Operand falseExpr = ToOperandOrRegister64(lir->falseExpr());
Register64 out = ToOutRegister64(lir);
MOZ_ASSERT(ToRegister64(lir->trueExpr()) == out,
"true expr is reused for input");
masm.test32(cond, cond);
masm.cmovzq(falseExpr, out.reg);
}
void CodeGenerator::visitWasmReinterpretFromI64(LWasmReinterpretFromI64* lir) {
MOZ_ASSERT(lir->mir()->type() == MIRType::Double);
MOZ_ASSERT(lir->mir()->input()->type() == MIRType::Int64);
masm.vmovq(ToRegister(lir->input()), ToFloatRegister(lir->output()));
}
void CodeGenerator::visitWasmReinterpretToI64(LWasmReinterpretToI64* lir) {
MOZ_ASSERT(lir->mir()->type() == MIRType::Int64);
MOZ_ASSERT(lir->mir()->input()->type() == MIRType::Double);
masm.vmovq(ToFloatRegister(lir->input()), ToRegister(lir->output()));
}
void CodeGenerator::visitWasmUint32ToDouble(LWasmUint32ToDouble* lir) {
masm.convertUInt32ToDouble(ToRegister(lir->input()),
ToFloatRegister(lir->output()));
}
void CodeGenerator::visitWasmUint32ToFloat32(LWasmUint32ToFloat32* lir) {
masm.convertUInt32ToFloat32(ToRegister(lir->input()),
ToFloatRegister(lir->output()));
}
void CodeGeneratorX64::wasmStore(const wasm::MemoryAccessDesc& access,
const LAllocation* value, Operand dstAddr) {
if (value->isConstant()) {
masm.memoryBarrierBefore(access.sync());
const MConstant* mir = value->toConstant();
Imm32 cst =
Imm32(mir->type() == MIRType::Int32 ? mir->toInt32() : mir->toInt64());
masm.append(access, masm.size());
switch (access.type()) {
case Scalar::Int8:
case Scalar::Uint8:
masm.movb(cst, dstAddr);
break;
case Scalar::Int16:
case Scalar::Uint16:
masm.movw(cst, dstAddr);
break;
case Scalar::Int32:
case Scalar::Uint32:
masm.movl(cst, dstAddr);
break;
case Scalar::Int64:
case Scalar::Simd128:
case Scalar::Float32:
case Scalar::Float64:
case Scalar::Uint8Clamped:
case Scalar::BigInt64:
case Scalar::BigUint64:
case Scalar::MaxTypedArrayViewType:
MOZ_CRASH("unexpected array type");
}
masm.memoryBarrierAfter(access.sync());
} else {
masm.wasmStore(access, ToAnyRegister(value), dstAddr);
}
}
void CodeGenerator::visitWasmHeapBase(LWasmHeapBase* ins) {
MOZ_ASSERT(ins->tlsPtr()->isBogus());
masm.movePtr(HeapReg, ToRegister(ins->output()));
}
template <typename T>
void CodeGeneratorX64::emitWasmLoad(T* ins) {
const MWasmLoad* mir = ins->mir();
uint32_t offset = mir->access().offset();
MOZ_ASSERT(offset < masm.wasmMaxOffsetGuardLimit());
const LAllocation* ptr = ins->ptr();
Operand srcAddr = ptr->isBogus()
? Operand(HeapReg, offset)
: Operand(HeapReg, ToRegister(ptr), TimesOne, offset);
if (mir->type() == MIRType::Int64) {
masm.wasmLoadI64(mir->access(), srcAddr, ToOutRegister64(ins));
} else {
masm.wasmLoad(mir->access(), srcAddr, ToAnyRegister(ins->output()));
}
}
void CodeGenerator::visitWasmLoad(LWasmLoad* ins) { emitWasmLoad(ins); }
void CodeGenerator::visitWasmLoadI64(LWasmLoadI64* ins) { emitWasmLoad(ins); }
template <typename T>
void CodeGeneratorX64::emitWasmStore(T* ins) {
const MWasmStore* mir = ins->mir();
const wasm::MemoryAccessDesc& access = mir->access();
uint32_t offset = access.offset();
MOZ_ASSERT(offset < masm.wasmMaxOffsetGuardLimit());
const LAllocation* value = ins->getOperand(ins->ValueIndex);
const LAllocation* ptr = ins->ptr();
Operand dstAddr = ptr->isBogus()
? Operand(HeapReg, offset)
: Operand(HeapReg, ToRegister(ptr), TimesOne, offset);
wasmStore(access, value, dstAddr);
}
void CodeGenerator::visitWasmStore(LWasmStore* ins) { emitWasmStore(ins); }
void CodeGenerator::visitWasmStoreI64(LWasmStoreI64* ins) {
MOZ_CRASH("Unused on this platform");
}
void CodeGenerator::visitWasmCompareExchangeHeap(
LWasmCompareExchangeHeap* ins) {
MWasmCompareExchangeHeap* mir = ins->mir();
Register ptr = ToRegister(ins->ptr());
Register oldval = ToRegister(ins->oldValue());
Register newval = ToRegister(ins->newValue());
MOZ_ASSERT(ins->addrTemp()->isBogusTemp());
Scalar::Type accessType = mir->access().type();
BaseIndex srcAddr(HeapReg, ptr, TimesOne, mir->access().offset());
if (accessType == Scalar::Int64) {
masm.wasmCompareExchange64(mir->access(), srcAddr, Register64(oldval),
Register64(newval), ToOutRegister64(ins));
} else {
masm.wasmCompareExchange(mir->access(), srcAddr, oldval, newval,
ToRegister(ins->output()));
}
}
void CodeGenerator::visitWasmAtomicExchangeHeap(LWasmAtomicExchangeHeap* ins) {
MWasmAtomicExchangeHeap* mir = ins->mir();
Register ptr = ToRegister(ins->ptr());
Register value = ToRegister(ins->value());
MOZ_ASSERT(ins->addrTemp()->isBogusTemp());
Scalar::Type accessType = mir->access().type();
BaseIndex srcAddr(HeapReg, ptr, TimesOne, mir->access().offset());
if (accessType == Scalar::Int64) {
masm.wasmAtomicExchange64(mir->access(), srcAddr, Register64(value),
ToOutRegister64(ins));
} else {
masm.wasmAtomicExchange(mir->access(), srcAddr, value,
ToRegister(ins->output()));
}
}
void CodeGenerator::visitWasmAtomicBinopHeap(LWasmAtomicBinopHeap* ins) {
MWasmAtomicBinopHeap* mir = ins->mir();
MOZ_ASSERT(mir->hasUses());
Register ptr = ToRegister(ins->ptr());
const LAllocation* value = ins->value();
Register temp =
ins->temp()->isBogusTemp() ? InvalidReg : ToRegister(ins->temp());
Register output = ToRegister(ins->output());
MOZ_ASSERT(ins->addrTemp()->isBogusTemp());
Scalar::Type accessType = mir->access().type();
if (accessType == Scalar::Uint32) {
accessType = Scalar::Int32;
}
AtomicOp op = mir->operation();
BaseIndex srcAddr(HeapReg, ptr, TimesOne, mir->access().offset());
if (accessType == Scalar::Int64) {
Register64 val = Register64(ToRegister(value));
Register64 out = Register64(output);
Register64 tmp = Register64(temp);
masm.wasmAtomicFetchOp64(mir->access(), op, val, srcAddr, tmp, out);
} else if (value->isConstant()) {
masm.wasmAtomicFetchOp(mir->access(), op, Imm32(ToInt32(value)), srcAddr,
temp, output);
} else {
masm.wasmAtomicFetchOp(mir->access(), op, ToRegister(value), srcAddr, temp,
output);
}
}
void CodeGenerator::visitWasmAtomicBinopHeapForEffect(
LWasmAtomicBinopHeapForEffect* ins) {
MWasmAtomicBinopHeap* mir = ins->mir();
MOZ_ASSERT(!mir->hasUses());
Register ptr = ToRegister(ins->ptr());
const LAllocation* value = ins->value();
MOZ_ASSERT(ins->addrTemp()->isBogusTemp());
Scalar::Type accessType = mir->access().type();
AtomicOp op = mir->operation();
BaseIndex srcAddr(HeapReg, ptr, TimesOne, mir->access().offset());
if (accessType == Scalar::Int64) {
Register64 val = Register64(ToRegister(value));
masm.wasmAtomicEffectOp64(mir->access(), op, val, srcAddr);
} else if (value->isConstant()) {
Imm32 c(0);
if (value->toConstant()->type() == MIRType::Int64) {
c = Imm32(ToInt64(value));
} else {
c = Imm32(ToInt32(value));
}
masm.wasmAtomicEffectOp(mir->access(), op, c, srcAddr, InvalidReg);
} else {
masm.wasmAtomicEffectOp(mir->access(), op, ToRegister(value), srcAddr,
InvalidReg);
}
}
void CodeGenerator::visitTruncateDToInt32(LTruncateDToInt32* ins) {
FloatRegister input = ToFloatRegister(ins->input());
Register output = ToRegister(ins->output());
// On x64, branchTruncateDouble uses vcvttsd2sq. Unlike the x86
// implementation, this should handle most doubles and we can just
// call a stub if it fails.
emitTruncateDouble(input, output, ins->mir());
}
void CodeGenerator::visitWasmBuiltinTruncateDToInt32(
LWasmBuiltinTruncateDToInt32* lir) {
FloatRegister input = ToFloatRegister(lir->getOperand(0));
Register output = ToRegister(lir->getDef(0));
emitTruncateDouble(input, output, lir->mir());
}
void CodeGenerator::visitWasmBuiltinTruncateFToInt32(
LWasmBuiltinTruncateFToInt32* lir) {
FloatRegister input = ToFloatRegister(lir->getOperand(0));
Register output = ToRegister(lir->getDef(0));
emitTruncateFloat32(input, output, lir->mir());
}
void CodeGenerator::visitTruncateFToInt32(LTruncateFToInt32* ins) {
FloatRegister input = ToFloatRegister(ins->input());
Register output = ToRegister(ins->output());
// On x64, branchTruncateFloat32 uses vcvttss2sq. Unlike the x86
// implementation, this should handle most floats and we can just
// call a stub if it fails.
emitTruncateFloat32(input, output, ins->mir());
}
void CodeGenerator::visitWrapInt64ToInt32(LWrapInt64ToInt32* lir) {
const LAllocation* input = lir->getOperand(0);
Register output = ToRegister(lir->output());
if (lir->mir()->bottomHalf()) {
masm.movl(ToOperand(input), output);
} else {
MOZ_CRASH("Not implemented.");
}
}
void CodeGenerator::visitExtendInt32ToInt64(LExtendInt32ToInt64* lir) {
const LAllocation* input = lir->getOperand(0);
Register output = ToRegister(lir->output());
if (lir->mir()->isUnsigned()) {
masm.movl(ToOperand(input), output);
} else {
masm.movslq(ToOperand(input), output);
}
}
void CodeGenerator::visitSignExtendInt64(LSignExtendInt64* ins) {
Register64 input = ToRegister64(ins->getInt64Operand(0));
Register64 output = ToOutRegister64(ins);
switch (ins->mode()) {
case MSignExtendInt64::Byte:
masm.movsbq(Operand(input.reg), output.reg);
break;
case MSignExtendInt64::Half:
masm.movswq(Operand(input.reg), output.reg);
break;
case MSignExtendInt64::Word:
masm.movslq(Operand(input.reg), output.reg);
break;
}
}
void CodeGenerator::visitWasmTruncateToInt64(LWasmTruncateToInt64* lir) {
FloatRegister input = ToFloatRegister(lir->input());
Register64 output = ToOutRegister64(lir);
MWasmTruncateToInt64* mir = lir->mir();
MIRType inputType = mir->input()->type();
MOZ_ASSERT(inputType == MIRType::Double || inputType == MIRType::Float32);
auto* ool = new (alloc()) OutOfLineWasmTruncateCheck(mir, input, output);
addOutOfLineCode(ool, mir);
FloatRegister temp =
mir->isUnsigned() ? ToFloatRegister(lir->temp()) : InvalidFloatReg;
Label* oolEntry = ool->entry();
Label* oolRejoin = ool->rejoin();
bool isSaturating = mir->isSaturating();
if (inputType == MIRType::Double) {
if (mir->isUnsigned()) {
masm.wasmTruncateDoubleToUInt64(input, output, isSaturating, oolEntry,
oolRejoin, temp);
} else {
masm.wasmTruncateDoubleToInt64(input, output, isSaturating, oolEntry,
oolRejoin, temp);
}
} else {
if (mir->isUnsigned()) {
masm.wasmTruncateFloat32ToUInt64(input, output, isSaturating, oolEntry,
oolRejoin, temp);
} else {
masm.wasmTruncateFloat32ToInt64(input, output, isSaturating, oolEntry,
oolRejoin, temp);
}
}
}
void CodeGenerator::visitInt64ToFloatingPoint(LInt64ToFloatingPoint* lir) {
Register64 input = ToRegister64(lir->getInt64Operand(0));
FloatRegister output = ToFloatRegister(lir->output());
MInt64ToFloatingPoint* mir = lir->mir();
bool isUnsigned = mir->isUnsigned();
MIRType outputType = mir->type();
MOZ_ASSERT(outputType == MIRType::Double || outputType == MIRType::Float32);
MOZ_ASSERT(isUnsigned == !lir->getTemp(0)->isBogusTemp());
if (outputType == MIRType::Double) {
if (isUnsigned) {
masm.convertUInt64ToDouble(input, output, ToRegister(lir->getTemp(0)));
} else {
masm.convertInt64ToDouble(input, output);
}
} else {
if (isUnsigned) {
masm.convertUInt64ToFloat32(input, output, ToRegister(lir->getTemp(0)));
} else {
masm.convertInt64ToFloat32(input, output);
}
}
}
void CodeGenerator::visitNotI64(LNotI64* lir) {
masm.cmpq(Imm32(0), ToRegister(lir->input()));
masm.emitSet(Assembler::Equal, ToRegister(lir->output()));
}
void CodeGenerator::visitClzI64(LClzI64* lir) {
Register64 input = ToRegister64(lir->getInt64Operand(0));
Register64 output = ToOutRegister64(lir);
masm.clz64(input, output.reg);
}
void CodeGenerator::visitCtzI64(LCtzI64* lir) {
Register64 input = ToRegister64(lir->getInt64Operand(0));
Register64 output = ToOutRegister64(lir);
masm.ctz64(input, output.reg);
}
void CodeGenerator::visitTestI64AndBranch(LTestI64AndBranch* lir) {
Register input = ToRegister(lir->input());
masm.testq(input, input);
emitBranch(Assembler::NonZero, lir->ifTrue(), lir->ifFalse());
}
|