1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/MacroAssembler.h"
#include "jit/x86-shared/MacroAssembler-x86-shared.h"
#include "jit/MacroAssembler-inl.h"
using namespace js;
using namespace js::jit;
using mozilla::DebugOnly;
using mozilla::FloatingPoint;
using mozilla::Maybe;
using mozilla::SpecificNaN;
// The following routines are from the old asm.js implementation but are UNUSED
// in the wasm implementation currently. They are preserved here because it's
// sad to throw out working code. They are defined in the header file.
//
// Before using these, they should minimally be moved to
// MacroAssembler-x86-shared-SIMD.cpp, and it would be a wrong move to assume
// that they are correct according to the wasm spec.
void MacroAssemblerX86Shared::checkedConvertFloat32x4ToInt32x4(
FloatRegister src, FloatRegister dest, Register temp, Label* oolEntry,
Label* rejoin) {
// Does the conversion and jumps to the OOL entry if the result value
// is the undefined integer pattern.
static const SimdConstant InvalidResult =
SimdConstant::SplatX4(int32_t(-2147483648));
convertFloat32x4ToInt32x4(src, dest);
ScratchSimd128Scope scratch(asMasm());
asMasm().loadConstantSimd128Int(InvalidResult, scratch);
vpcmpeqd(Operand(dest), scratch, scratch);
// TODO (bug 1156228): If we have SSE4.1, we can use PTEST here instead of
// the two following instructions.
vmovmskps(scratch, temp);
cmp32(temp, Imm32(0));
j(Assembler::NotEqual, oolEntry);
bind(rejoin);
}
void MacroAssemblerX86Shared::oolConvertFloat32x4ToInt32x4(
FloatRegister src, Register temp, Label* rejoin, Label* onConversionError) {
static const SimdConstant Int32MaxX4 = SimdConstant::SplatX4(2147483647.f);
static const SimdConstant Int32MinX4 = SimdConstant::SplatX4(-2147483648.f);
ScratchSimd128Scope scratch(asMasm());
asMasm().loadConstantSimd128Float(Int32MinX4, scratch);
vcmpleps(Operand(src), scratch);
vmovmskps(scratch, temp);
cmp32(temp, Imm32(15));
j(Assembler::NotEqual, onConversionError);
asMasm().loadConstantSimd128Float(Int32MaxX4, scratch);
vcmpleps(Operand(src), scratch);
vmovmskps(scratch, temp);
cmp32(temp, Imm32(0));
j(Assembler::NotEqual, onConversionError);
jump(rejoin);
}
void MacroAssemblerX86Shared::checkedConvertFloat32x4ToUint32x4(
FloatRegister in, FloatRegister out, Register temp, FloatRegister tempF,
Label* failed) {
// Classify lane values into 4 disjoint classes:
//
// N-lanes: in <= -1.0
// A-lanes: -1.0 < in <= 0x0.ffffffp31
// B-lanes: 0x1.0p31 <= in <= 0x0.ffffffp32
// V-lanes: 0x1.0p32 <= in, or isnan(in)
//
// We need to bail out to throw a RangeError if we see any N-lanes or
// V-lanes.
//
// For A-lanes and B-lanes, we make two float -> int32 conversions:
//
// A = cvttps2dq(in)
// B = cvttps2dq(in - 0x1.0p31f)
//
// Note that the subtraction for the B computation is exact for B-lanes.
// There is no rounding, so B is the low 31 bits of the correctly converted
// result.
//
// The cvttps2dq instruction produces 0x80000000 when the input is NaN or
// out of range for a signed int32_t. This conveniently provides the missing
// high bit for B, so the desired result is A for A-lanes and A|B for
// B-lanes.
ScratchSimd128Scope scratch(asMasm());
// TODO: If the majority of lanes are A-lanes, it could be faster to compute
// A first, use vmovmskps to check for any non-A-lanes and handle them in
// ool code. OTOH, we we're wrong about the lane distribution, that would be
// slower.
// Compute B in |scratch|.
static const float Adjust = 0x80000000; // 0x1.0p31f for the benefit of MSVC.
static const SimdConstant Bias = SimdConstant::SplatX4(-Adjust);
asMasm().loadConstantSimd128Float(Bias, scratch);
packedAddFloat32(Operand(in), scratch);
convertFloat32x4ToInt32x4(scratch, scratch);
// Compute A in |out|. This is the last time we use |in| and the first time
// we use |out|, so we can tolerate if they are the same register.
convertFloat32x4ToInt32x4(in, out);
// We can identify A-lanes by the sign bits in A: Any A-lanes will be
// positive in A, and N, B, and V-lanes will be 0x80000000 in A. Compute a
// mask of non-A-lanes into |tempF|.
zeroSimd128Float(tempF);
vpcmpgtd(Operand(out), tempF, tempF);
// Clear the A-lanes in B.
bitwiseAndSimdInt(scratch, Operand(tempF), scratch);
// Compute the final result: A for A-lanes, A|B for B-lanes.
bitwiseOrSimdInt(out, Operand(scratch), out);
// We still need to filter out the V-lanes. They would show up as 0x80000000
// in both A and B. Since we cleared the valid A-lanes in B, the V-lanes are
// the remaining negative lanes in B.
vmovmskps(scratch, temp);
cmp32(temp, Imm32(0));
j(Assembler::NotEqual, failed);
}
void MacroAssemblerX86Shared::createInt32x4(Register lane0, Register lane1,
Register lane2, Register lane3,
FloatRegister dest) {
if (AssemblerX86Shared::HasSSE41()) {
vmovd(lane0, dest);
vpinsrd(1, lane1, dest, dest);
vpinsrd(2, lane2, dest, dest);
vpinsrd(3, lane3, dest, dest);
return;
}
asMasm().reserveStack(Simd128DataSize);
store32(lane0, Address(StackPointer, 0 * sizeof(int32_t)));
store32(lane1, Address(StackPointer, 1 * sizeof(int32_t)));
store32(lane2, Address(StackPointer, 2 * sizeof(int32_t)));
store32(lane3, Address(StackPointer, 3 * sizeof(int32_t)));
loadAlignedSimd128Int(Address(StackPointer, 0), dest);
asMasm().freeStack(Simd128DataSize);
}
void MacroAssemblerX86Shared::createFloat32x4(
FloatRegister lane0, FloatRegister lane1, FloatRegister lane2,
FloatRegister lane3, FloatRegister temp, FloatRegister output) {
FloatRegister lane0Copy = reusedInputSimd128Float(lane0, output);
FloatRegister lane1Copy = reusedInputSimd128Float(lane1, temp);
vunpcklps(lane3, lane1Copy, temp);
vunpcklps(lane2, lane0Copy, output);
vunpcklps(temp, output, output);
}
void MacroAssemblerX86Shared::reinterpretSimd(bool isIntegerLaneType,
FloatRegister input,
FloatRegister output) {
if (input.aliases(output)) {
return;
}
if (isIntegerLaneType) {
vmovdqa(input, output);
} else {
vmovaps(input, output);
}
}
void MacroAssemblerX86Shared::extractLaneSimdBool(FloatRegister input,
Register output,
unsigned numLanes,
unsigned lane) {
switch (numLanes) {
case 4:
extractLaneInt32x4(input, output, lane);
break;
case 8:
// Get a lane, don't bother fixing the high bits since we'll mask below.
extractLaneInt16x8(input, output, lane, SimdSign::NotApplicable);
break;
case 16:
extractLaneInt8x16(input, output, lane, SimdSign::NotApplicable);
break;
default:
MOZ_CRASH("Unhandled SIMD number of lanes");
}
// We need to generate a 0/1 value. We have 0/-1 and possibly dirty high bits.
asMasm().and32(Imm32(1), output);
}
void MacroAssemblerX86Shared::allTrueSimdBool(FloatRegister input,
Register output) {
// We know that the input lanes are boolean, so they are either 0 or -1.
// The all-true vector has all 128 bits set, no matter the lane geometry.
vpmovmskb(input, output);
cmp32(output, Imm32(0xffff));
emitSet(Assembler::Zero, output);
}
void MacroAssemblerX86Shared::anyTrueSimdBool(FloatRegister input,
Register output) {
vpmovmskb(input, output);
cmp32(output, Imm32(0x0));
emitSet(Assembler::NonZero, output);
}
void MacroAssemblerX86Shared::swizzleInt32x4(FloatRegister input,
FloatRegister output,
unsigned lanes[4]) {
uint32_t mask = MacroAssembler::ComputeShuffleMask(lanes[0], lanes[1],
lanes[2], lanes[3]);
shuffleInt32(mask, input, output);
}
// For SIMD.js
void MacroAssemblerX86Shared::oldSwizzleInt8x16(FloatRegister input,
FloatRegister output,
const Maybe<Register>& temp,
int8_t lanes[16]) {
if (AssemblerX86Shared::HasSSSE3()) {
ScratchSimd128Scope scratch(asMasm());
asMasm().loadConstantSimd128Int(SimdConstant::CreateX16(lanes), scratch);
FloatRegister inputCopy = reusedInputInt32x4(input, output);
vpshufb(scratch, inputCopy, output);
return;
}
// Worst-case fallback for pre-SSSE3 machines. Bounce through memory.
MOZ_ASSERT(!!temp, "needs a temp for the memory fallback");
asMasm().reserveStack(2 * Simd128DataSize);
storeAlignedSimd128Int(input, Address(StackPointer, Simd128DataSize));
for (unsigned i = 0; i < 16; i++) {
load8ZeroExtend(Address(StackPointer, Simd128DataSize + lanes[i]), *temp);
store8(*temp, Address(StackPointer, i));
}
loadAlignedSimd128Int(Address(StackPointer, 0), output);
asMasm().freeStack(2 * Simd128DataSize);
}
static inline bool LanesMatch(unsigned lanes[4], unsigned x, unsigned y,
unsigned z, unsigned w) {
return lanes[0] == x && lanes[1] == y && lanes[2] == z && lanes[3] == w;
}
void MacroAssemblerX86Shared::swizzleFloat32x4(FloatRegister input,
FloatRegister output,
unsigned lanes[4]) {
if (AssemblerX86Shared::HasSSE3()) {
if (LanesMatch(lanes, 0, 0, 2, 2)) {
vmovsldup(input, output);
return;
}
if (LanesMatch(lanes, 1, 1, 3, 3)) {
vmovshdup(input, output);
return;
}
}
// TODO Here and below, arch specific lowering could identify this pattern
// and use defineReuseInput to avoid this move (bug 1084404)
if (LanesMatch(lanes, 2, 3, 2, 3)) {
FloatRegister inputCopy = reusedInputSimd128Float(input, output);
vmovhlps(input, inputCopy, output);
return;
}
if (LanesMatch(lanes, 0, 1, 0, 1)) {
if (AssemblerX86Shared::HasSSE3() && !AssemblerX86Shared::HasAVX()) {
vmovddup(Operand(input), output);
return;
}
FloatRegister inputCopy = reusedInputSimd128Float(input, output);
vmovlhps(input, inputCopy, output);
return;
}
if (LanesMatch(lanes, 0, 0, 1, 1)) {
FloatRegister inputCopy = reusedInputSimd128Float(input, output);
vunpcklps(input, inputCopy, output);
return;
}
if (LanesMatch(lanes, 2, 2, 3, 3)) {
FloatRegister inputCopy = reusedInputSimd128Float(input, output);
vunpckhps(input, inputCopy, output);
return;
}
uint32_t x = lanes[0];
uint32_t y = lanes[1];
uint32_t z = lanes[2];
uint32_t w = lanes[3];
uint32_t mask = MacroAssembler::ComputeShuffleMask(x, y, z, w);
shuffleFloat32(mask, input, output);
}
void MacroAssemblerX86Shared::shuffleX4(FloatRegister lhs, Operand rhs,
FloatRegister out,
const Maybe<FloatRegister>& maybeTemp,
unsigned lanes[4]) {
uint32_t x = lanes[0];
uint32_t y = lanes[1];
uint32_t z = lanes[2];
uint32_t w = lanes[3];
// Check that lanes come from LHS in majority:
unsigned numLanesFromLHS = (x < 4) + (y < 4) + (z < 4) + (w < 4);
MOZ_ASSERT(numLanesFromLHS >= 2);
// When reading this method, remember that vshufps takes the two first
// inputs of the destination operand (right operand) and the two last
// inputs of the source operand (left operand).
//
// Legend for explanations:
// - L: LHS
// - R: RHS
// - T: temporary
uint32_t mask;
// If all lanes came from a single vector, we should use swizzle instead.
MOZ_ASSERT(numLanesFromLHS < 4);
// If all values stay in their lane, this is a blend.
if (AssemblerX86Shared::HasSSE41()) {
if (x % 4 == 0 && y % 4 == 1 && z % 4 == 2 && w % 4 == 3) {
vblendps(blendpsMask(x >= 4, y >= 4, z >= 4, w >= 4), rhs, lhs, out);
return;
}
}
// One element of the second, all other elements of the first
if (numLanesFromLHS == 3) {
unsigned firstMask = -1, secondMask = -1;
// register-register vmovss preserves the high lanes.
if (LanesMatch(lanes, 4, 1, 2, 3) && rhs.kind() == Operand::FPREG) {
vmovss(FloatRegister::FromCode(rhs.fpu()), lhs, out);
return;
}
// SSE4.1 vinsertps can handle any single element.
unsigned numLanesUnchanged = (x == 0) + (y == 1) + (z == 2) + (w == 3);
if (AssemblerX86Shared::HasSSE41() && numLanesUnchanged == 3) {
unsigned srcLane;
unsigned dstLane;
if (x >= 4) {
srcLane = x - 4;
dstLane = 0;
} else if (y >= 4) {
srcLane = y - 4;
dstLane = 1;
} else if (z >= 4) {
srcLane = z - 4;
dstLane = 2;
} else {
MOZ_ASSERT(w >= 4);
srcLane = w - 4;
dstLane = 3;
}
vinsertps(vinsertpsMask(srcLane, dstLane), rhs, lhs, out);
return;
}
MOZ_ASSERT(!!maybeTemp);
FloatRegister rhsCopy = *maybeTemp;
loadAlignedSimd128Float(rhs, rhsCopy);
if (x < 4 && y < 4) {
if (w >= 4) {
w %= 4;
// T = (Rw Rw Lz Lz) = vshufps(firstMask, lhs, rhs, rhsCopy)
firstMask = MacroAssembler::ComputeShuffleMask(w, w, z, z);
// (Lx Ly Lz Rw) = (Lx Ly Tz Tx) = vshufps(secondMask, T, lhs, out)
secondMask = MacroAssembler::ComputeShuffleMask(x, y, 2, 0);
} else {
MOZ_ASSERT(z >= 4);
z %= 4;
// T = (Rz Rz Lw Lw) = vshufps(firstMask, lhs, rhs, rhsCopy)
firstMask = MacroAssembler::ComputeShuffleMask(z, z, w, w);
// (Lx Ly Rz Lw) = (Lx Ly Tx Tz) = vshufps(secondMask, T, lhs, out)
secondMask = MacroAssembler::ComputeShuffleMask(x, y, 0, 2);
}
vshufps(firstMask, lhs, rhsCopy, rhsCopy);
vshufps(secondMask, rhsCopy, lhs, out);
return;
}
MOZ_ASSERT(z < 4 && w < 4);
if (y >= 4) {
y %= 4;
// T = (Ry Ry Lx Lx) = vshufps(firstMask, lhs, rhs, rhsCopy)
firstMask = MacroAssembler::ComputeShuffleMask(y, y, x, x);
// (Lx Ry Lz Lw) = (Tz Tx Lz Lw) = vshufps(secondMask, lhs, T, out)
secondMask = MacroAssembler::ComputeShuffleMask(2, 0, z, w);
} else {
MOZ_ASSERT(x >= 4);
x %= 4;
// T = (Rx Rx Ly Ly) = vshufps(firstMask, lhs, rhs, rhsCopy)
firstMask = MacroAssembler::ComputeShuffleMask(x, x, y, y);
// (Rx Ly Lz Lw) = (Tx Tz Lz Lw) = vshufps(secondMask, lhs, T, out)
secondMask = MacroAssembler::ComputeShuffleMask(0, 2, z, w);
}
vshufps(firstMask, lhs, rhsCopy, rhsCopy);
if (AssemblerX86Shared::HasAVX()) {
vshufps(secondMask, lhs, rhsCopy, out);
} else {
vshufps(secondMask, lhs, rhsCopy, rhsCopy);
moveSimd128Float(rhsCopy, out);
}
return;
}
// Two elements from one vector, two other elements from the other
MOZ_ASSERT(numLanesFromLHS == 2);
// TODO Here and below, symmetric case would be more handy to avoid a move,
// but can't be reached because operands would get swapped (bug 1084404).
if (LanesMatch(lanes, 2, 3, 6, 7)) {
ScratchSimd128Scope scratch(asMasm());
if (AssemblerX86Shared::HasAVX()) {
FloatRegister rhsCopy = reusedInputAlignedSimd128Float(rhs, scratch);
vmovhlps(lhs, rhsCopy, out);
} else {
loadAlignedSimd128Float(rhs, scratch);
vmovhlps(lhs, scratch, scratch);
moveSimd128Float(scratch, out);
}
return;
}
if (LanesMatch(lanes, 0, 1, 4, 5)) {
FloatRegister rhsCopy;
ScratchSimd128Scope scratch(asMasm());
if (rhs.kind() == Operand::FPREG) {
// No need to make an actual copy, since the operand is already
// in a register, and it won't be clobbered by the vmovlhps.
rhsCopy = FloatRegister::FromCode(rhs.fpu());
} else {
loadAlignedSimd128Float(rhs, scratch);
rhsCopy = scratch;
}
vmovlhps(rhsCopy, lhs, out);
return;
}
if (LanesMatch(lanes, 0, 4, 1, 5)) {
vunpcklps(rhs, lhs, out);
return;
}
// TODO swapped case would be better (bug 1084404)
if (LanesMatch(lanes, 4, 0, 5, 1)) {
ScratchSimd128Scope scratch(asMasm());
if (AssemblerX86Shared::HasAVX()) {
FloatRegister rhsCopy = reusedInputAlignedSimd128Float(rhs, scratch);
vunpcklps(lhs, rhsCopy, out);
} else {
loadAlignedSimd128Float(rhs, scratch);
vunpcklps(lhs, scratch, scratch);
moveSimd128Float(scratch, out);
}
return;
}
if (LanesMatch(lanes, 2, 6, 3, 7)) {
vunpckhps(rhs, lhs, out);
return;
}
// TODO swapped case would be better (bug 1084404)
if (LanesMatch(lanes, 6, 2, 7, 3)) {
ScratchSimd128Scope scratch(asMasm());
if (AssemblerX86Shared::HasAVX()) {
FloatRegister rhsCopy = reusedInputAlignedSimd128Float(rhs, scratch);
vunpckhps(lhs, rhsCopy, out);
} else {
loadAlignedSimd128Float(rhs, scratch);
vunpckhps(lhs, scratch, scratch);
moveSimd128Float(scratch, out);
}
return;
}
// In one vshufps
if (x < 4 && y < 4) {
mask = MacroAssembler::ComputeShuffleMask(x, y, z % 4, w % 4);
vshufps(mask, rhs, lhs, out);
return;
}
// At creation, we should have explicitly swapped in this case.
MOZ_ASSERT(!(z >= 4 && w >= 4));
// In two vshufps, for the most generic case:
uint32_t firstMask[4], secondMask[4];
unsigned i = 0, j = 2, k = 0;
#define COMPUTE_MASK(lane) \
if (lane >= 4) { \
firstMask[j] = lane % 4; \
secondMask[k++] = j++; \
} else { \
firstMask[i] = lane; \
secondMask[k++] = i++; \
}
COMPUTE_MASK(x)
COMPUTE_MASK(y)
COMPUTE_MASK(z)
COMPUTE_MASK(w)
#undef COMPUTE_MASK
MOZ_ASSERT(i == 2 && j == 4 && k == 4);
mask = MacroAssembler::ComputeShuffleMask(firstMask[0], firstMask[1],
firstMask[2], firstMask[3]);
vshufps(mask, rhs, lhs, lhs);
mask = MacroAssembler::ComputeShuffleMask(secondMask[0], secondMask[1],
secondMask[2], secondMask[3]);
vshufps(mask, lhs, lhs, lhs);
}
void MacroAssemblerX86Shared::minNumFloat32x4(FloatRegister lhs, Operand rhs,
FloatRegister temp,
FloatRegister output) {
ScratchSimd128Scope scratch(asMasm());
asMasm().loadConstantSimd128Int(SimdConstant::SplatX4(int32_t(0x80000000)),
temp);
FloatRegister mask = scratch;
FloatRegister tmpCopy = reusedInputSimd128Float(temp, scratch);
vpcmpeqd(Operand(lhs), tmpCopy, mask);
vandps(temp, mask, mask);
FloatRegister lhsCopy = reusedInputSimd128Float(lhs, temp);
vminps(rhs, lhsCopy, temp);
vorps(mask, temp, temp);
if (AssemblerX86Shared::HasAVX()) {
MOZ_CRASH("Can do better by avoiding the movaps");
} else {
vmovaps(rhs, mask);
vcmpneqps(rhs, mask);
}
if (AssemblerX86Shared::HasAVX()) {
vblendvps(mask, lhs, temp, output);
} else {
// Emulate vblendvps.
// With SSE.4.1 we could use blendvps, however it's awkward since
// it requires the mask to be in xmm0.
if (lhs != output) {
moveSimd128Float(lhs, output);
}
vandps(Operand(mask), output, output);
vandnps(Operand(temp), mask, mask);
vorps(Operand(mask), output, output);
}
}
void MacroAssemblerX86Shared::maxNumFloat32x4(FloatRegister lhs, Operand rhs,
FloatRegister temp,
FloatRegister output) {
ScratchSimd128Scope scratch(asMasm());
FloatRegister mask = scratch;
asMasm().loadConstantSimd128Int(SimdConstant::SplatX4(0), mask);
vpcmpeqd(Operand(lhs), mask, mask);
asMasm().loadConstantSimd128Int(SimdConstant::SplatX4(int32_t(0x80000000)),
temp);
vandps(temp, mask, mask);
FloatRegister lhsCopy = reusedInputSimd128Float(lhs, temp);
vmaxps(rhs, lhsCopy, temp);
vandnps(Operand(temp), mask, mask);
// Ensure temp always contains the temporary result
mask = temp;
temp = scratch;
if (AssemblerX86Shared::HasAVX()) {
MOZ_CRASH("Can do better by avoiding the movaps");
} else {
vmovaps(rhs, mask);
vcmpneqps(rhs, mask);
}
if (AssemblerX86Shared::HasAVX()) {
vblendvps(mask, lhs, temp, output);
} else {
// Emulate vblendvps.
// With SSE.4.1 we could use blendvps, however it's awkward since
// it requires the mask to be in xmm0.
if (lhs != output) {
moveSimd128Float(lhs, output);
}
vandps(Operand(mask), output, output);
vandnps(Operand(temp), mask, mask);
vorps(Operand(mask), output, output);
}
}
|