summaryrefslogtreecommitdiffstats
path: root/js/src/jit/x86-shared/MacroAssembler-x86-shared-SIMD.cpp
blob: 71e538004fc1c8c1b1d2b99f2f4b0af5d0a71079 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jit/MacroAssembler.h"
#include "jit/x86-shared/MacroAssembler-x86-shared.h"

#include "jit/MacroAssembler-inl.h"

using namespace js;
using namespace js::jit;

using mozilla::DebugOnly;
using mozilla::FloatingPoint;
using mozilla::Maybe;
using mozilla::SpecificNaN;

void MacroAssemblerX86Shared::splatX16(Register input, FloatRegister output) {
  ScratchSimd128Scope scratch(asMasm());

  vmovd(input, output);
  zeroSimd128Int(scratch);
  vpshufb(scratch, output, output);
}

void MacroAssemblerX86Shared::splatX8(Register input, FloatRegister output) {
  vmovd(input, output);
  vpshuflw(0, output, output);
  vpshufd(0, output, output);
}

void MacroAssemblerX86Shared::splatX4(Register input, FloatRegister output) {
  vmovd(input, output);
  vpshufd(0, output, output);
}

void MacroAssemblerX86Shared::splatX4(FloatRegister input,
                                      FloatRegister output) {
  MOZ_ASSERT(input.isSingle() && output.isSimd128());
  asMasm().moveSimd128Float(input.asSimd128(), output);
  vshufps(0, output, output, output);
}

void MacroAssemblerX86Shared::splatX2(FloatRegister input,
                                      FloatRegister output) {
  MOZ_ASSERT(input.isDouble() && output.isSimd128());
  asMasm().moveSimd128Float(input.asSimd128(), output);
  vshufpd(0, output, output, output);
}

void MacroAssemblerX86Shared::extractLaneInt32x4(FloatRegister input,
                                                 Register output,
                                                 unsigned lane) {
  if (lane == 0) {
    // The value we want to extract is in the low double-word
    moveLowInt32(input, output);
  } else {
    vpextrd(lane, input, output);
  }
}

void MacroAssemblerX86Shared::extractLaneFloat32x4(FloatRegister input,
                                                   FloatRegister output,
                                                   unsigned lane) {
  MOZ_ASSERT(input.isSimd128() && output.isSingle());
  if (lane == 0) {
    // The value we want to extract is in the low double-word
    if (input.asSingle() != output) {
      moveFloat32(input, output);
    }
  } else if (lane == 2) {
    moveHighPairToLowPairFloat32(input, output);
  } else {
    uint32_t mask = MacroAssembler::ComputeShuffleMask(lane);
    shuffleFloat32(mask, input, output.asSimd128());
  }
}

void MacroAssemblerX86Shared::extractLaneFloat64x2(FloatRegister input,
                                                   FloatRegister output,
                                                   unsigned lane) {
  MOZ_ASSERT(input.isSimd128() && output.isDouble());
  if (lane == 0) {
    // The value we want to extract is in the low quadword
    if (input.asDouble() != output) {
      moveDouble(input, output);
    }
  } else {
    vpalignr(Operand(input), output, 8);
  }
}

void MacroAssemblerX86Shared::extractLaneInt16x8(FloatRegister input,
                                                 Register output, unsigned lane,
                                                 SimdSign sign) {
  vpextrw(lane, input, output);
  if (sign == SimdSign::Signed) {
    movswl(output, output);
  }
}

void MacroAssemblerX86Shared::extractLaneInt8x16(FloatRegister input,
                                                 Register output, unsigned lane,
                                                 SimdSign sign) {
  vpextrb(lane, input, output);
  if (sign == SimdSign::Signed) {
    movsbl(output, output);
  }
}

void MacroAssemblerX86Shared::replaceLaneFloat32x4(FloatRegister rhs,
                                                   FloatRegister lhsDest,
                                                   unsigned lane) {
  MOZ_ASSERT(lhsDest.isSimd128() && rhs.isSingle());

  if (lane == 0) {
    if (rhs.asSimd128() == lhsDest) {
      // no-op, although this should not normally happen for type checking
      // reasons higher up in the stack.
    } else {
      // move low dword of value into low dword of output
      vmovss(rhs, lhsDest, lhsDest);
    }
  } else {
    vinsertps(vinsertpsMask(0, lane), rhs, lhsDest, lhsDest);
  }
}

void MacroAssemblerX86Shared::replaceLaneFloat64x2(FloatRegister rhs,
                                                   FloatRegister lhsDest,
                                                   unsigned lane) {
  MOZ_ASSERT(lhsDest.isSimd128() && rhs.isDouble());

  if (lane == 0) {
    if (rhs.asSimd128() == lhsDest) {
      // no-op, although this should not normally happen for type checking
      // reasons higher up in the stack.
    } else {
      // move low qword of value into low qword of output
      vmovsd(rhs, lhsDest, lhsDest);
    }
  } else {
    // move low qword of value into high qword of output
    vshufpd(0, rhs, lhsDest, lhsDest);
  }
}

void MacroAssemblerX86Shared::blendInt8x16(FloatRegister lhs, FloatRegister rhs,
                                           FloatRegister output,
                                           FloatRegister temp,
                                           const uint8_t lanes[16]) {
  MOZ_ASSERT(lhs == output);
  MOZ_ASSERT(lhs == rhs || !temp.isInvalid());

  // TODO: Consider whether PBLENDVB would not be better, even if it is variable
  // and requires xmm0 to be free and the loading of a mask.

  // Set scratch = lanes to select from lhs.
  int8_t mask[16];
  for (unsigned i = 0; i < 16; i++) {
    mask[i] = ~lanes[i];
  }
  ScratchSimd128Scope scratch(asMasm());
  asMasm().loadConstantSimd128Int(SimdConstant::CreateX16(mask), scratch);
  if (lhs == rhs) {
    asMasm().moveSimd128Int(rhs, temp);
    rhs = temp;
  }
  vpand(Operand(scratch), lhs, lhs);
  vpandn(Operand(rhs), scratch, scratch);
  vpor(scratch, lhs, lhs);
}

void MacroAssemblerX86Shared::blendInt16x8(FloatRegister lhs, FloatRegister rhs,
                                           FloatRegister output,
                                           const uint16_t lanes[8]) {
  MOZ_ASSERT(lhs == output);

  uint32_t mask = 0;
  for (unsigned i = 0; i < 8; i++) {
    if (lanes[i]) {
      mask |= (1 << i);
    }
  }
  vpblendw(mask, rhs, lhs, lhs);
}

void MacroAssemblerX86Shared::shuffleInt8x16(FloatRegister lhs,
                                             FloatRegister rhs,
                                             FloatRegister output,
                                             const uint8_t lanes[16]) {
  ScratchSimd128Scope scratch(asMasm());

  // Use pshufb instructions to gather the lanes from each source vector.
  // A negative index creates a zero lane, so the two vectors can be combined.

  // Register preference: lhs == output.

  // Set scratch = lanes from rhs.
  int8_t idx[16];
  for (unsigned i = 0; i < 16; i++) {
    idx[i] = lanes[i] >= 16 ? lanes[i] - 16 : -1;
  }
  moveSimd128Int(rhs, scratch);
  asMasm().vpshufbSimd128(SimdConstant::CreateX16(idx), scratch);

  // Set output = lanes from lhs.
  for (unsigned i = 0; i < 16; i++) {
    idx[i] = lanes[i] < 16 ? lanes[i] : -1;
  }
  moveSimd128Int(lhs, output);
  asMasm().vpshufbSimd128(SimdConstant::CreateX16(idx), output);

  // Combine.
  vpor(scratch, output, output);
}

static inline FloatRegister ToSimdFloatRegister(const Operand& op) {
  return FloatRegister(op.fpu(), FloatRegister::Codes::ContentType::Simd128);
}

void MacroAssemblerX86Shared::compareInt8x16(FloatRegister lhs, Operand rhs,
                                             Assembler::Condition cond,
                                             FloatRegister output) {
  static const SimdConstant allOnes = SimdConstant::SplatX16(-1);
  switch (cond) {
    case Assembler::Condition::GreaterThan:
      vpcmpgtb(rhs, lhs, output);
      break;
    case Assembler::Condition::Equal:
      vpcmpeqb(rhs, lhs, output);
      break;
    case Assembler::Condition::LessThan: {
      ScratchSimd128Scope scratch(asMasm());
      // This is bad, but Ion does not use it.
      // src := rhs
      if (rhs.kind() == Operand::FPREG) {
        moveSimd128Int(ToSimdFloatRegister(rhs), scratch);
      } else {
        loadAlignedSimd128Int(rhs, scratch);
      }
      // src := src > lhs (i.e. lhs < rhs)
      vpcmpgtb(Operand(lhs), scratch, scratch);
      moveSimd128Int(scratch, output);
      break;
    }
    case Assembler::Condition::NotEqual:
      vpcmpeqb(rhs, lhs, output);
      asMasm().bitwiseXorSimd128(allOnes, output);
      break;
    case Assembler::Condition::GreaterThanOrEqual: {
      ScratchSimd128Scope scratch(asMasm());
      // This is bad, but Ion does not use it.
      // src := rhs
      if (rhs.kind() == Operand::FPREG) {
        moveSimd128Int(ToSimdFloatRegister(rhs), scratch);
      } else {
        loadAlignedSimd128Int(rhs, scratch);
      }
      vpcmpgtb(Operand(lhs), scratch, scratch);
      asMasm().loadConstantSimd128Int(allOnes, output);
      vpxor(Operand(scratch), output, output);
      break;
    }
    case Assembler::Condition::LessThanOrEqual:
      // lhs <= rhs is equivalent to !(rhs < lhs), which we compute here.
      vpcmpgtb(rhs, lhs, output);
      asMasm().bitwiseXorSimd128(allOnes, output);
      break;
    default:
      MOZ_CRASH("unexpected condition op");
  }
}

void MacroAssemblerX86Shared::compareInt8x16(Assembler::Condition cond,
                                             const SimdConstant& rhs,
                                             FloatRegister lhsDest) {
  bool complement = false;
  switch (cond) {
    case Assembler::Condition::NotEqual:
      complement = true;
      [[fallthrough]];
    case Assembler::Condition::Equal:
      binarySimd128(rhs, lhsDest, &MacroAssembler::vpcmpeqb,
                    &MacroAssembler::vpcmpeqbSimd128);
      break;
    case Assembler::Condition::LessThanOrEqual:
      complement = true;
      [[fallthrough]];
    case Assembler::Condition::GreaterThan:
      binarySimd128(rhs, lhsDest, &MacroAssembler::vpcmpgtb,
                    &MacroAssembler::vpcmpgtbSimd128);
      break;
    default:
      MOZ_CRASH("unexpected condition op");
  }
  if (complement) {
    asMasm().bitwiseXorSimd128(SimdConstant::SplatX16(-1), lhsDest);
  }
}

void MacroAssemblerX86Shared::unsignedCompareInt8x16(
    FloatRegister lhs, Operand rhs, Assembler::Condition cond,
    FloatRegister output, FloatRegister tmp1, FloatRegister tmp2) {
  // We widen the inputs to 16 bits, transforming them to nonnegative values;
  // then compare them as signed using the logic from compareInt8x16(); then
  // merge the results (which is surprisingly complicated).  rhs is left
  // untouched.  The logic is open-coded to streamline it.
  //
  // TODO?  Rhs could be in memory (for Ion, anyway), in which case loading it
  // into scratch first would be better than loading it twice from memory.

  MOZ_ASSERT(lhs == output);
  MOZ_ASSERT(lhs != tmp1 && lhs != tmp2);
  MOZ_ASSERT_IF(
      rhs.kind() == Operand::FPREG,
      ToSimdFloatRegister(rhs) != tmp1 && ToSimdFloatRegister(rhs) != tmp2);

  bool complement = false;
  switch (cond) {
    case Assembler::Above:
    case Assembler::BelowOrEqual:
      complement = cond == Assembler::BelowOrEqual;

      // Low eight bytes of inputs widened to words
      vpmovzxbw(Operand(lhs), tmp1);
      vpmovzxbw(rhs, tmp2);
      // Compare leaving 16-bit results
      vpcmpgtw(Operand(tmp2), tmp1, tmp1);  // lhs < rhs in tmp1

      // High eight bytes of inputs widened to words
      vpalignr(rhs, tmp2, 8);
      vpmovzxbw(Operand(tmp2), tmp2);
      vpalignr(Operand(lhs), output, 8);
      vpmovzxbw(Operand(output), output);
      // Compare leaving 16-bit results
      vpcmpgtw(Operand(tmp2), output, output);  // lhs < rhs in output

      break;
    case Assembler::Below:
    case Assembler::AboveOrEqual:
      complement = cond == Assembler::AboveOrEqual;

      // Same as above but with operands reversed

      // Low eight bytes of inputs widened to words
      vpmovzxbw(Operand(lhs), tmp2);
      vpmovzxbw(rhs, tmp1);
      // Compare leaving 16-bit results
      vpcmpgtw(Operand(tmp2), tmp1, tmp1);  // rhs < lhs in tmp1

      // High eight bytes of inputs widened to words
      vpalignr(Operand(lhs), tmp2, 8);
      vpmovzxbw(Operand(tmp2), tmp2);
      vpalignr(rhs, output, 8);
      vpmovzxbw(Operand(output), output);
      // Compare leaving 16-bit results
      vpcmpgtw(Operand(tmp2), output, output);  // rhs < lhs in output

      break;
    default:
      MOZ_CRASH("Unsupported condition code");
  }

  // Merge output (results of high byte compares) and tmp1 (results of low byte
  // compares) by truncating word results to bytes (to avoid signed saturation),
  // packing, and then concatenating and shifting.
  vpsrlw(Imm32(8), tmp1, tmp1);
  vpackuswb(Operand(tmp1), tmp1, tmp1);
  vpsrlw(Imm32(8), output, output);
  vpackuswb(Operand(output), output, output);
  vpalignr(Operand(tmp1), output, 8);

  // Complement when needed for opposite sense of the operator.
  if (complement) {
    vpcmpeqd(Operand(tmp1), tmp1, tmp1);
    vpxor(Operand(tmp1), output, output);
  }
}

void MacroAssemblerX86Shared::compareInt16x8(FloatRegister lhs, Operand rhs,
                                             Assembler::Condition cond,
                                             FloatRegister output) {
  static const SimdConstant allOnes = SimdConstant::SplatX8(-1);

  switch (cond) {
    case Assembler::Condition::GreaterThan:
      vpcmpgtw(rhs, lhs, output);
      break;
    case Assembler::Condition::Equal:
      vpcmpeqw(rhs, lhs, output);
      break;
    case Assembler::Condition::LessThan: {
      ScratchSimd128Scope scratch(asMasm());
      // This is bad, but Ion does not use it.
      // src := rhs
      if (rhs.kind() == Operand::FPREG) {
        moveSimd128Int(ToSimdFloatRegister(rhs), scratch);
      } else {
        loadAlignedSimd128Int(rhs, scratch);
      }
      // src := src > lhs (i.e. lhs < rhs)
      vpcmpgtw(Operand(lhs), scratch, scratch);
      moveSimd128Int(scratch, output);
      break;
    }
    case Assembler::Condition::NotEqual:
      vpcmpeqw(rhs, lhs, output);
      asMasm().bitwiseXorSimd128(allOnes, output);
      break;
    case Assembler::Condition::GreaterThanOrEqual: {
      ScratchSimd128Scope scratch(asMasm());
      // This is bad, but Ion does not use it.
      // src := rhs
      if (rhs.kind() == Operand::FPREG) {
        moveSimd128Int(ToSimdFloatRegister(rhs), scratch);
      } else {
        loadAlignedSimd128Int(rhs, scratch);
      }
      vpcmpgtw(Operand(lhs), scratch, scratch);
      asMasm().loadConstantSimd128Int(allOnes, output);
      vpxor(Operand(scratch), output, output);
      break;
    }
    case Assembler::Condition::LessThanOrEqual:
      // lhs <= rhs is equivalent to !(rhs < lhs), which we compute here.
      vpcmpgtw(rhs, lhs, output);
      asMasm().bitwiseXorSimd128(allOnes, output);
      break;
    default:
      MOZ_CRASH("unexpected condition op");
  }
}

void MacroAssemblerX86Shared::compareInt16x8(Assembler::Condition cond,
                                             const SimdConstant& rhs,
                                             FloatRegister lhsDest) {
  bool complement = false;
  switch (cond) {
    case Assembler::Condition::NotEqual:
      complement = true;
      [[fallthrough]];
    case Assembler::Condition::Equal:
      binarySimd128(rhs, lhsDest, &MacroAssembler::vpcmpeqw,
                    &MacroAssembler::vpcmpeqwSimd128);
      break;
    case Assembler::Condition::LessThanOrEqual:
      complement = true;
      [[fallthrough]];
    case Assembler::Condition::GreaterThan:
      binarySimd128(rhs, lhsDest, &MacroAssembler::vpcmpgtw,
                    &MacroAssembler::vpcmpgtwSimd128);
      break;
    default:
      MOZ_CRASH("unexpected condition op");
  }
  if (complement) {
    asMasm().bitwiseXorSimd128(SimdConstant::SplatX16(-1), lhsDest);
  }
}

void MacroAssemblerX86Shared::unsignedCompareInt16x8(
    FloatRegister lhs, Operand rhs, Assembler::Condition cond,
    FloatRegister output, FloatRegister tmp1, FloatRegister tmp2) {
  // See comments at unsignedCompareInt8x16.

  MOZ_ASSERT(lhs == output);
  MOZ_ASSERT(lhs != tmp1 && lhs != tmp2);
  MOZ_ASSERT_IF(
      rhs.kind() == Operand::FPREG,
      ToSimdFloatRegister(rhs) != tmp1 && ToSimdFloatRegister(rhs) != tmp2);

  bool complement = false;
  switch (cond) {
    case Assembler::Above:
    case Assembler::BelowOrEqual:
      complement = cond == Assembler::BelowOrEqual;

      vpmovzxwd(Operand(lhs), tmp1);
      vpmovzxwd(rhs, tmp2);
      vpcmpgtd(Operand(tmp2), tmp1, tmp1);

      vpalignr(rhs, tmp2, 8);
      vpmovzxwd(Operand(tmp2), tmp2);
      vpalignr(Operand(lhs), output, 8);
      vpmovzxwd(Operand(output), output);
      vpcmpgtd(Operand(tmp2), output, output);

      break;
    case Assembler::Below:
    case Assembler::AboveOrEqual:
      complement = cond == Assembler::AboveOrEqual;

      vpmovzxwd(Operand(lhs), tmp2);
      vpmovzxwd(rhs, tmp1);
      vpcmpgtd(Operand(tmp2), tmp1, tmp1);

      vpalignr(Operand(lhs), tmp2, 8);
      vpmovzxwd(Operand(tmp2), tmp2);
      vpalignr(rhs, output, 8);
      vpmovzxwd(Operand(output), output);
      vpcmpgtd(Operand(tmp2), output, output);

      break;
    default:
      MOZ_CRASH();
  }

  vpsrld(Imm32(16), tmp1, tmp1);
  vpackusdw(Operand(tmp1), tmp1, tmp1);
  vpsrld(Imm32(16), output, output);
  vpackusdw(Operand(output), output, output);
  vpalignr(Operand(tmp1), output, 8);

  if (complement) {
    vpcmpeqd(Operand(tmp1), tmp1, tmp1);
    vpxor(Operand(tmp1), output, output);
  }
}

void MacroAssemblerX86Shared::compareInt32x4(FloatRegister lhs, Operand rhs,
                                             Assembler::Condition cond,
                                             FloatRegister output) {
  static const SimdConstant allOnes = SimdConstant::SplatX4(-1);
  switch (cond) {
    case Assembler::Condition::GreaterThan:
      vpcmpgtd(rhs, lhs, lhs);
      break;
    case Assembler::Condition::Equal:
      vpcmpeqd(rhs, lhs, lhs);
      break;
    case Assembler::Condition::LessThan: {
      ScratchSimd128Scope scratch(asMasm());
      // This is bad, but Ion does not use it.
      // src := rhs
      if (rhs.kind() == Operand::FPREG) {
        moveSimd128Int(ToSimdFloatRegister(rhs), scratch);
      } else {
        loadAlignedSimd128Int(rhs, scratch);
      }
      // src := src > lhs (i.e. lhs < rhs)
      vpcmpgtd(Operand(lhs), scratch, scratch);
      moveSimd128Int(scratch, lhs);
      break;
    }
    case Assembler::Condition::NotEqual:
      vpcmpeqd(rhs, lhs, lhs);
      asMasm().bitwiseXorSimd128(allOnes, lhs);
      break;
    case Assembler::Condition::GreaterThanOrEqual: {
      ScratchSimd128Scope scratch(asMasm());
      // This is bad, but Ion does not use it.
      // src := rhs
      if (rhs.kind() == Operand::FPREG) {
        moveSimd128Int(ToSimdFloatRegister(rhs), scratch);
      } else {
        loadAlignedSimd128Int(rhs, scratch);
      }
      vpcmpgtd(Operand(lhs), scratch, scratch);
      asMasm().loadConstantSimd128Int(allOnes, lhs);
      vpxor(Operand(scratch), lhs, lhs);
      break;
    }
    case Assembler::Condition::LessThanOrEqual:
      // lhs <= rhs is equivalent to !(rhs < lhs), which we compute here.
      vpcmpgtd(rhs, lhs, lhs);
      asMasm().bitwiseXorSimd128(allOnes, lhs);
      break;
    default:
      MOZ_CRASH("unexpected condition op");
  }
}

void MacroAssemblerX86Shared::compareInt32x4(Assembler::Condition cond,
                                             const SimdConstant& rhs,
                                             FloatRegister lhsDest) {
  bool complement = false;
  switch (cond) {
    case Assembler::Condition::NotEqual:
      complement = true;
      [[fallthrough]];
    case Assembler::Condition::Equal:
      binarySimd128(rhs, lhsDest, &MacroAssembler::vpcmpeqd,
                    &MacroAssembler::vpcmpeqdSimd128);
      break;
    case Assembler::Condition::LessThanOrEqual:
      complement = true;
      [[fallthrough]];
    case Assembler::Condition::GreaterThan:
      binarySimd128(rhs, lhsDest, &MacroAssembler::vpcmpgtd,
                    &MacroAssembler::vpcmpgtdSimd128);
      break;
    default:
      MOZ_CRASH("unexpected condition op");
  }
  if (complement) {
    asMasm().bitwiseXorSimd128(SimdConstant::SplatX16(-1), lhsDest);
  }
}

void MacroAssemblerX86Shared::unsignedCompareInt32x4(
    FloatRegister lhs, Operand rhs, Assembler::Condition cond,
    FloatRegister output, FloatRegister tmp1, FloatRegister tmp2) {
  // See comments at unsignedCompareInt8x16, the logic is similar.  However we
  // only have PCMPGTQ on SSE4.2 or later, so for SSE4.1 we need to use subtract
  // to compute the flags.

  MOZ_ASSERT(lhs == output);
  MOZ_ASSERT(lhs != tmp1 && lhs != tmp2);
  MOZ_ASSERT_IF(
      rhs.kind() == Operand::FPREG,
      ToSimdFloatRegister(rhs) != tmp1 && ToSimdFloatRegister(rhs) != tmp2);

  bool complement = false;
  switch (cond) {
    case Assembler::Below:
    case Assembler::AboveOrEqual:
      complement = cond == Assembler::AboveOrEqual;

      // The effect of the subtract is that the high doubleword of each quadword
      // becomes either 0 (ge) or -1 (lt).

      vpmovzxdq(Operand(lhs), tmp1);
      vpmovzxdq(rhs, tmp2);
      vpsubq(Operand(tmp2), tmp1, tmp1);  // flag1 junk flag0 junk
      vpsrlq(Imm32(32), tmp1, tmp1);      // zero flag1 zero flag0
      vpshufd(MacroAssembler::ComputeShuffleMask(0, 2, 3, 3), tmp1,
              tmp1);  // zero zero flag1 flag0

      vpalignr(rhs, tmp2, 8);
      vpmovzxdq(Operand(tmp2), tmp2);
      vpalignr(Operand(lhs), output, 8);
      vpmovzxdq(Operand(output), output);
      vpsubq(Operand(tmp2), output, output);  // flag3 junk flag2 junk
      vpsrlq(Imm32(32), output, output);      // zero flag3 zero flag2
      vpshufd(MacroAssembler::ComputeShuffleMask(3, 3, 0, 2), output,
              output);  // flag3 flag2 zero zero

      vpor(Operand(tmp1), output, output);
      break;

    case Assembler::Above:
    case Assembler::BelowOrEqual:
      complement = cond == Assembler::BelowOrEqual;

      // The effect of the subtract is that the high doubleword of each quadword
      // becomes either 0 (le) or -1 (gt).

      vpmovzxdq(Operand(lhs), tmp2);
      vpmovzxdq(rhs, tmp1);
      vpsubq(Operand(tmp2), tmp1, tmp1);  // flag1 junk flag0 junk
      vpsrlq(Imm32(32), tmp1, tmp1);      // zero flag1 zero flag0
      vpshufd(MacroAssembler::ComputeShuffleMask(0, 2, 3, 3), tmp1,
              tmp1);  // zero zero flag1 flag0

      vpalignr(Operand(lhs), tmp2, 8);
      vpmovzxdq(Operand(tmp2), tmp2);
      vpalignr(rhs, output, 8);
      vpmovzxdq(Operand(output), output);
      vpsubq(Operand(tmp2), output, output);  // flag3 junk flag2 junk
      vpsrlq(Imm32(32), output, output);      // zero flag3 zero flag2
      vpshufd(MacroAssembler::ComputeShuffleMask(3, 3, 0, 2), output,
              output);  // flag3 flag2 zero zero

      vpor(Operand(tmp1), output, output);
      break;

    default:
      MOZ_CRASH();
  }

  if (complement) {
    vpcmpeqd(Operand(tmp1), tmp1, tmp1);
    vpxor(Operand(tmp1), output, output);
  }
}

void MacroAssemblerX86Shared::compareFloat32x4(FloatRegister lhs, Operand rhs,
                                               Assembler::Condition cond,
                                               FloatRegister output) {
  if (HasAVX()) {
    MOZ_CRASH("Can do better here with three-address compares");
  }

  // Move lhs to output if lhs!=output; move rhs out of the way if rhs==output.
  // This is bad, but Ion does not need this fixup.
  ScratchSimd128Scope scratch(asMasm());
  if (!lhs.aliases(output)) {
    if (rhs.kind() == Operand::FPREG &&
        output.aliases(FloatRegister::FromCode(rhs.fpu()))) {
      vmovaps(rhs, scratch);
      rhs = Operand(scratch);
    }
    vmovaps(lhs, output);
  }

  switch (cond) {
    case Assembler::Condition::Equal:
      vcmpeqps(rhs, output);
      break;
    case Assembler::Condition::LessThan:
      vcmpltps(rhs, output);
      break;
    case Assembler::Condition::LessThanOrEqual:
      vcmpleps(rhs, output);
      break;
    case Assembler::Condition::NotEqual:
      vcmpneqps(rhs, output);
      break;
    case Assembler::Condition::GreaterThanOrEqual:
    case Assembler::Condition::GreaterThan:
      // We reverse these operations in the -inl.h file so that we don't have to
      // copy into and out of temporaries after codegen.
      MOZ_CRASH("should have reversed this");
    default:
      MOZ_CRASH("unexpected condition op");
  }
}

void MacroAssemblerX86Shared::compareFloat32x4(Assembler::Condition cond,
                                               const SimdConstant& rhs,
                                               FloatRegister lhsDest) {
  switch (cond) {
    case Assembler::Condition::Equal:
      binarySimd128(rhs, lhsDest, &MacroAssembler::vcmpeqps,
                    &MacroAssembler::vcmpeqpsSimd128);
      break;
    case Assembler::Condition::LessThan:
      binarySimd128(rhs, lhsDest, &MacroAssembler::vcmpltps,
                    &MacroAssembler::vcmpltpsSimd128);
      break;
    case Assembler::Condition::LessThanOrEqual:
      binarySimd128(rhs, lhsDest, &MacroAssembler::vcmpleps,
                    &MacroAssembler::vcmplepsSimd128);
      break;
    case Assembler::Condition::NotEqual:
      binarySimd128(rhs, lhsDest, &MacroAssembler::vcmpneqps,
                    &MacroAssembler::vcmpneqpsSimd128);
      break;
    default:
      MOZ_CRASH("unexpected condition op");
  }
}

void MacroAssemblerX86Shared::compareFloat64x2(FloatRegister lhs, Operand rhs,
                                               Assembler::Condition cond,
                                               FloatRegister output) {
  if (HasAVX()) {
    MOZ_CRASH("Can do better here with three-address compares");
  }

  // Move lhs to output if lhs!=output; move rhs out of the way if rhs==output.
  // This is bad, but Ion does not need this fixup.
  ScratchSimd128Scope scratch(asMasm());
  if (!lhs.aliases(output)) {
    if (rhs.kind() == Operand::FPREG &&
        output.aliases(FloatRegister::FromCode(rhs.fpu()))) {
      vmovapd(rhs, scratch);
      rhs = Operand(scratch);
    }
    vmovapd(lhs, output);
  }

  switch (cond) {
    case Assembler::Condition::Equal:
      vcmpeqpd(rhs, output);
      break;
    case Assembler::Condition::LessThan:
      vcmpltpd(rhs, output);
      break;
    case Assembler::Condition::LessThanOrEqual:
      vcmplepd(rhs, output);
      break;
    case Assembler::Condition::NotEqual:
      vcmpneqpd(rhs, output);
      break;
    case Assembler::Condition::GreaterThanOrEqual:
    case Assembler::Condition::GreaterThan:
      // We reverse these operations in the -inl.h file so that we don't have to
      // copy into and out of temporaries after codegen.
      MOZ_CRASH("should have reversed this");
    default:
      MOZ_CRASH("unexpected condition op");
  }
}

void MacroAssemblerX86Shared::compareFloat64x2(Assembler::Condition cond,
                                               const SimdConstant& rhs,
                                               FloatRegister lhsDest) {
  switch (cond) {
    case Assembler::Condition::Equal:
      binarySimd128(rhs, lhsDest, &MacroAssembler::vcmpeqpd,
                    &MacroAssembler::vcmpeqpdSimd128);
      break;
    case Assembler::Condition::LessThan:
      binarySimd128(rhs, lhsDest, &MacroAssembler::vcmpltpd,
                    &MacroAssembler::vcmpltpdSimd128);
      break;
    case Assembler::Condition::LessThanOrEqual:
      binarySimd128(rhs, lhsDest, &MacroAssembler::vcmplepd,
                    &MacroAssembler::vcmplepdSimd128);
      break;
    case Assembler::Condition::NotEqual:
      binarySimd128(rhs, lhsDest, &MacroAssembler::vcmpneqpd,
                    &MacroAssembler::vcmpneqpdSimd128);
      break;
    default:
      MOZ_CRASH("unexpected condition op");
  }
}

// Semantics of wasm max and min.
//
//  * -0 < 0
//  * If one input is NaN then that NaN is the output
//  * If both inputs are NaN then the output is selected nondeterministically
//  * Any returned NaN is always made quiet
//  * The MVP spec 2.2.3 says "No distinction is made between signalling and
//    quiet NaNs", suggesting SNaN inputs are allowed and should not fault
//
// Semantics of maxps/minps/maxpd/minpd:
//
//  * If the values are both +/-0 the rhs is returned
//  * If the rhs is SNaN then the rhs is returned
//  * If either value is NaN then the rhs is returned
//  * An SNaN operand does not appear to give rise to an exception, at least
//    not in the JS shell on Linux, though the Intel spec lists Invalid
//    as one of the possible exceptions

// Various unaddressed considerations:
//
// It's pretty insane for this to take an Operand rhs - it really needs to be
// a register, given the number of times we access it.
//
// Constant load can be folded into the ANDPS.  Do we care?  It won't save us
// any registers, since output/temp1/temp2/scratch are all live at the same time
// after the first instruction of the slow path.
//
// Can we use blend for the NaN extraction/insertion?  We'd need xmm0 for the
// mask, which is no fun.  But it would be lhs UNORD lhs -> mask, blend;
// rhs UNORD rhs -> mask; blend.  Better than the mess we have below.  But
// we'd still need to setup the QNaN bits, unless we can blend those too
// with the lhs UNORD rhs mask?
//
// If we could determine that both input lanes are NaN then the result of the
// fast path should be fine modulo the QNaN bits, but it's not obvious this is
// much of an advantage.

void MacroAssemblerX86Shared::minMaxFloat32x4(bool isMin, FloatRegister lhs_,
                                              Operand rhs, FloatRegister temp1,
                                              FloatRegister temp2,
                                              FloatRegister output) {
  ScratchSimd128Scope scratch(asMasm());
  Label l;
  SimdConstant quietBits(SimdConstant::SplatX4(int32_t(0x00400000)));

  /* clang-format off */ /* leave my comments alone */
  FloatRegister lhs = reusedInputSimd128Float(lhs_, scratch);
  if (isMin) {
    vmovaps(lhs, output);                    // compute
    vminps(rhs, output, output);             //   min lhs, rhs
    vmovaps(rhs, temp1);                     // compute
    vminps(Operand(lhs), temp1, temp1);      //   min rhs, lhs
    vorps(temp1, output, output);            // fix min(-0, 0) with OR
  } else {
    vmovaps(lhs, output);                    // compute
    vmaxps(rhs, output, output);             //   max lhs, rhs
    vmovaps(rhs, temp1);                     // compute
    vmaxps(Operand(lhs), temp1, temp1);      //   max rhs, lhs
    vandps(temp1, output, output);           // fix max(-0, 0) with AND
  }
  vmovaps(lhs, temp1);                       // compute
  vcmpunordps(rhs, temp1);                   //   lhs UNORD rhs
  vptest(temp1, temp1);                      // check if any unordered
  j(Assembler::Equal, &l);                   //   and exit if not

  // Slow path.
  // output has result for non-NaN lanes, garbage in NaN lanes.
  // temp1 has lhs UNORD rhs.
  // temp2 is dead.

  vmovaps(temp1, temp2);                     // clear NaN lanes of result
  vpandn(output, temp2, temp2);              //   result now in temp2
  asMasm().vpandSimd128(quietBits, temp1);            // setup QNaN bits in NaN lanes
  vorps(temp1, temp2, temp2);                //   and OR into result
  vmovaps(lhs, temp1);                       // find NaN lanes
  vcmpunordps(Operand(temp1), temp1);        //   in lhs
  vmovaps(temp1, output);                    //     (and save them for later)
  vandps(lhs, temp1, temp1);                 //       and extract the NaNs
  vorps(temp1, temp2, temp2);                //         and add to the result
  vmovaps(rhs, temp1);                       // find NaN lanes
  vcmpunordps(Operand(temp1), temp1);        //   in rhs
  vpandn(temp1, output, output);             //     except if they were in lhs
  vandps(rhs, output, output);               //       and extract the NaNs
  vorps(temp2, output, output);              //         and add to the result

  bind(&l);
  /* clang-format on */
}

// Exactly as above.
void MacroAssemblerX86Shared::minMaxFloat64x2(bool isMin, FloatRegister lhs_,
                                              Operand rhs, FloatRegister temp1,
                                              FloatRegister temp2,
                                              FloatRegister output) {
  ScratchSimd128Scope scratch(asMasm());
  Label l;
  SimdConstant quietBits(SimdConstant::SplatX2(int64_t(0x0008000000000000ull)));

  /* clang-format off */ /* leave my comments alone */
  FloatRegister lhs = reusedInputSimd128Float(lhs_, scratch);
  if (isMin) {
    vmovapd(lhs, output);                    // compute
    vminpd(rhs, output, output);             //   min lhs, rhs
    vmovapd(rhs, temp1);                     // compute
    vminpd(Operand(lhs), temp1, temp1);      //   min rhs, lhs
    vorpd(temp1, output, output);            // fix min(-0, 0) with OR
  } else {
    vmovapd(lhs, output);                    // compute
    vmaxpd(rhs, output, output);             //   max lhs, rhs
    vmovapd(rhs, temp1);                     // compute
    vmaxpd(Operand(lhs), temp1, temp1);      //   max rhs, lhs
    vandpd(temp1, output, output);           // fix max(-0, 0) with AND
  }
  vmovapd(lhs, temp1);                       // compute
  vcmpunordpd(rhs, temp1);                   //   lhs UNORD rhs
  vptest(temp1, temp1);                      // check if any unordered
  j(Assembler::Equal, &l);                   //   and exit if not

  // Slow path.
  // output has result for non-NaN lanes, garbage in NaN lanes.
  // temp1 has lhs UNORD rhs.
  // temp2 is dead.

  vmovapd(temp1, temp2);                     // clear NaN lanes of result
  vpandn(output, temp2, temp2);              //   result now in temp2
  asMasm().vpandSimd128(quietBits, temp1);   // setup QNaN bits in NaN lanes
  vorpd(temp1, temp2, temp2);                //   and OR into result
  vmovapd(lhs, temp1);                       // find NaN lanes
  vcmpunordpd(Operand(temp1), temp1);        //   in lhs
  vmovapd(temp1, output);                    //     (and save them for later)
  vandpd(lhs, temp1, temp1);                 //       and extract the NaNs
  vorpd(temp1, temp2, temp2);                //         and add to the result
  vmovapd(rhs, temp1);                       // find NaN lanes
  vcmpunordpd(Operand(temp1), temp1);        //   in rhs
  vpandn(temp1, output, output);             //     except if they were in lhs
  vandpd(rhs, output, output);               //       and extract the NaNs
  vorpd(temp2, output, output);              //         and add to the result

  bind(&l);
  /* clang-format on */
}

void MacroAssemblerX86Shared::minFloat32x4(FloatRegister lhs, Operand rhs,
                                           FloatRegister temp1,
                                           FloatRegister temp2,
                                           FloatRegister output) {
  minMaxFloat32x4(/*isMin=*/true, lhs, rhs, temp1, temp2, output);
}

void MacroAssemblerX86Shared::maxFloat32x4(FloatRegister lhs, Operand rhs,
                                           FloatRegister temp1,
                                           FloatRegister temp2,
                                           FloatRegister output) {
  minMaxFloat32x4(/*isMin=*/false, lhs, rhs, temp1, temp2, output);
}

void MacroAssemblerX86Shared::minFloat64x2(FloatRegister lhs, Operand rhs,
                                           FloatRegister temp1,
                                           FloatRegister temp2,
                                           FloatRegister output) {
  minMaxFloat64x2(/*isMin=*/true, lhs, rhs, temp1, temp2, output);
}

void MacroAssemblerX86Shared::maxFloat64x2(FloatRegister lhs, Operand rhs,
                                           FloatRegister temp1,
                                           FloatRegister temp2,
                                           FloatRegister output) {
  minMaxFloat64x2(/*isMin=*/false, lhs, rhs, temp1, temp2, output);
}

static inline void MaskSimdShiftCount(MacroAssembler& masm, unsigned shiftmask,
                                      Register count, Register temp,
                                      FloatRegister dest) {
  masm.mov(count, temp);
  masm.andl(Imm32(shiftmask), temp);
  masm.vmovd(temp, dest);
}

void MacroAssemblerX86Shared::packedShiftByScalarInt8x16(
    FloatRegister in, Register count, Register temp, FloatRegister xtmp,
    FloatRegister dest,
    void (MacroAssemblerX86Shared::*shift)(FloatRegister, FloatRegister,
                                           FloatRegister),
    void (MacroAssemblerX86Shared::*extend)(const Operand&, FloatRegister)) {
  ScratchSimd128Scope scratch(asMasm());
  MaskSimdShiftCount(asMasm(), 7, count, temp, scratch);

  // High bytes
  vpalignr(Operand(in), xtmp, 8);
  (this->*extend)(Operand(xtmp), xtmp);
  (this->*shift)(scratch, xtmp, xtmp);

  // Low bytes
  (this->*extend)(Operand(dest), dest);
  (this->*shift)(scratch, dest, dest);

  // Mask off garbage to avoid saturation during packing
  asMasm().loadConstantSimd128Int(SimdConstant::SplatX4(int32_t(0x00FF00FF)),
                                  scratch);
  vpand(Operand(scratch), xtmp, xtmp);
  vpand(Operand(scratch), dest, dest);

  vpackuswb(Operand(xtmp), dest, dest);
}

void MacroAssemblerX86Shared::packedLeftShiftByScalarInt8x16(
    FloatRegister in, Register count, Register temp, FloatRegister xtmp,
    FloatRegister dest) {
  packedShiftByScalarInt8x16(in, count, temp, xtmp, dest,
                             &MacroAssemblerX86Shared::vpsllw,
                             &MacroAssemblerX86Shared::vpmovzxbw);
}

void MacroAssemblerX86Shared::packedLeftShiftByScalarInt8x16(
    Imm32 count, FloatRegister src, FloatRegister dest) {
  MOZ_ASSERT(count.value <= 7);
  asMasm().moveSimd128(src, dest);
  // Use the doubling trick for low shift counts, otherwise mask off the bits
  // that are shifted out of the low byte of each word and use word shifts.  The
  // optimal cutoff remains to be explored.
  if (count.value <= 3) {
    for (int32_t shift = count.value; shift > 0; --shift) {
      asMasm().addInt8x16(dest, dest);
    }
  } else {
    asMasm().bitwiseAndSimd128(SimdConstant::SplatX16(0xFF >> count.value),
                               dest);
    vpsllw(count, dest, dest);
  }
}

void MacroAssemblerX86Shared::packedRightShiftByScalarInt8x16(
    FloatRegister in, Register count, Register temp, FloatRegister xtmp,
    FloatRegister dest) {
  packedShiftByScalarInt8x16(in, count, temp, xtmp, dest,
                             &MacroAssemblerX86Shared::vpsraw,
                             &MacroAssemblerX86Shared::vpmovsxbw);
}

void MacroAssemblerX86Shared::packedRightShiftByScalarInt8x16(
    Imm32 count, FloatRegister src, FloatRegister temp, FloatRegister dest) {
  MOZ_ASSERT(count.value <= 7);
  ScratchSimd128Scope scratch(asMasm());

  asMasm().moveSimd128(src, scratch);
  vpslldq(Imm32(1), scratch, scratch);               // Low bytes -> high bytes
  vpsraw(Imm32(count.value + 8), scratch, scratch);  // Shift low bytes
  asMasm().moveSimd128(src, dest);
  vpsraw(count, dest, dest);  // Shift high bytes
  asMasm().loadConstantSimd128Int(SimdConstant::SplatX8(0xFF00), temp);
  vpand(Operand(temp), dest, dest);      // Keep high bytes
  vpandn(Operand(scratch), temp, temp);  // Keep low bytes
  vpor(Operand(temp), dest, dest);       // Combine
}

void MacroAssemblerX86Shared::packedUnsignedRightShiftByScalarInt8x16(
    FloatRegister in, Register count, Register temp, FloatRegister xtmp,
    FloatRegister dest) {
  packedShiftByScalarInt8x16(in, count, temp, xtmp, dest,
                             &MacroAssemblerX86Shared::vpsrlw,
                             &MacroAssemblerX86Shared::vpmovzxbw);
}

void MacroAssemblerX86Shared::packedUnsignedRightShiftByScalarInt8x16(
    Imm32 count, FloatRegister src, FloatRegister dest) {
  MOZ_ASSERT(count.value <= 7);
  asMasm().moveSimd128(src, dest);
  asMasm().bitwiseAndSimd128(
      SimdConstant::SplatX16((0xFF << count.value) & 0xFF), dest);
  vpsrlw(count, dest, dest);
}

void MacroAssemblerX86Shared::packedLeftShiftByScalarInt16x8(
    FloatRegister in, Register count, Register temp, FloatRegister dest) {
  ScratchSimd128Scope scratch(asMasm());
  MaskSimdShiftCount(asMasm(), 15, count, temp, scratch);
  vpsllw(scratch, in, dest);
}

void MacroAssemblerX86Shared::packedRightShiftByScalarInt16x8(
    FloatRegister in, Register count, Register temp, FloatRegister dest) {
  ScratchSimd128Scope scratch(asMasm());
  MaskSimdShiftCount(asMasm(), 15, count, temp, scratch);
  vpsraw(scratch, in, dest);
}

void MacroAssemblerX86Shared::packedUnsignedRightShiftByScalarInt16x8(
    FloatRegister in, Register count, Register temp, FloatRegister dest) {
  ScratchSimd128Scope scratch(asMasm());
  MaskSimdShiftCount(asMasm(), 15, count, temp, scratch);
  vpsrlw(scratch, in, dest);
}

void MacroAssemblerX86Shared::packedLeftShiftByScalarInt32x4(
    FloatRegister in, Register count, Register temp, FloatRegister dest) {
  ScratchSimd128Scope scratch(asMasm());
  MaskSimdShiftCount(asMasm(), 31, count, temp, scratch);
  vpslld(scratch, in, dest);
}

void MacroAssemblerX86Shared::packedRightShiftByScalarInt32x4(
    FloatRegister in, Register count, Register temp, FloatRegister dest) {
  ScratchSimd128Scope scratch(asMasm());
  MaskSimdShiftCount(asMasm(), 31, count, temp, scratch);
  vpsrad(scratch, in, dest);
}

void MacroAssemblerX86Shared::packedUnsignedRightShiftByScalarInt32x4(
    FloatRegister in, Register count, Register temp, FloatRegister dest) {
  ScratchSimd128Scope scratch(asMasm());
  MaskSimdShiftCount(asMasm(), 31, count, temp, scratch);
  vpsrld(scratch, in, dest);
}

void MacroAssemblerX86Shared::packedLeftShiftByScalarInt64x2(
    FloatRegister in, Register count, Register temp, FloatRegister dest) {
  ScratchSimd128Scope scratch(asMasm());
  MaskSimdShiftCount(asMasm(), 63, count, temp, scratch);
  vpsllq(scratch, in, dest);
}

void MacroAssemblerX86Shared::packedRightShiftByScalarInt64x2(
    FloatRegister in, Register count, Register temp1, FloatRegister temp2,
    FloatRegister dest) {
  ScratchSimd128Scope scratch(asMasm());
  movl(count, temp1);                   // temp1 is zero-extended shift count
  andl(Imm32(63), temp1);               // temp1 is masked shift count
  vmovd(temp1, scratch);                //   and scratch 64-bit ditto
  vpxor(Operand(temp2), temp2, temp2);  // temp2=0
  vpcmpgtq(Operand(in), temp2, temp2);  // temp2=~0 where `in` negative
  vpsrlq(scratch, in, dest);            // dest shifted, maybe wrong sign
  negl(temp1);                          // temp1 is - masked count
  addl(Imm32(63), temp1);               // temp1 is 63 - masked count
  vmovd(temp1, scratch);                //   and scratch ditto
  vpsllq(scratch, temp2, temp2);        // temp2 has the sign bits
  vpor(Operand(temp2), dest, dest);     // dest has right sign
}

void MacroAssemblerX86Shared::packedUnsignedRightShiftByScalarInt64x2(
    FloatRegister in, Register count, Register temp, FloatRegister dest) {
  ScratchSimd128Scope scratch(asMasm());
  MaskSimdShiftCount(asMasm(), 63, count, temp, scratch);
  vpsrlq(scratch, in, dest);
}

void MacroAssemblerX86Shared::packedRightShiftByScalarInt64x2(
    Imm32 count, FloatRegister src, FloatRegister dest) {
  MOZ_ASSERT(count.value < 32);
#ifdef ENABLE_WASM_SIMD
  MOZ_ASSERT(!MacroAssembler::MustScalarizeShiftSimd128(wasm::SimdOp::I64x2ShrS,
                                                        count));
#endif

  ScratchSimd128Scope scratch(asMasm());
  // Compute high dwords and mask low dwords
  asMasm().moveSimd128(src, scratch);
  vpsrad(count, scratch, scratch);
  asMasm().vpandSimd128(SimdConstant::SplatX2(int64_t(0xFFFFFFFF00000000LL)),
                        scratch);
  // Compute low dwords (high dwords at most have clear high bits where the
  // result will have set low high bits)
  asMasm().moveSimd128(src, dest);
  vpsrlq(count, dest, dest);
  // Merge the parts
  vpor(scratch, dest, dest);
}

void MacroAssemblerX86Shared::selectSimd128(FloatRegister mask,
                                            FloatRegister onTrue,
                                            FloatRegister onFalse,
                                            FloatRegister temp,
                                            FloatRegister output) {
  // Normally the codegen will attempt to enforce these register assignments so
  // that the moves are avoided.

  asMasm().moveSimd128Int(onTrue, output);
  asMasm().moveSimd128Int(mask, temp);

  // SSE4.1 has plain blendvps which can do this, but it is awkward
  // to use because it requires the mask to be in xmm0.

  vpand(Operand(temp), output, output);
  vpandn(Operand(onFalse), temp, temp);
  vpor(Operand(temp), output, output);
}

// Code sequences for int32x4<->float32x4 culled from v8; commentary added.

void MacroAssemblerX86Shared::unsignedConvertInt32x4ToFloat32x4(
    FloatRegister src, FloatRegister dest) {
  ScratchSimd128Scope scratch(asMasm());
  asMasm().moveSimd128Int(src, dest);
  vpxor(Operand(scratch), scratch, scratch);  // extract low bits
  vpblendw(0x55, dest, scratch, scratch);     //   into scratch
  vpsubd(Operand(scratch), dest, dest);       //     and high bits into dest
  vcvtdq2ps(scratch, scratch);                // convert low bits
  vpsrld(Imm32(1), dest, dest);               // get high into unsigned range
  vcvtdq2ps(dest, dest);                      //   convert
  vaddps(Operand(dest), dest, dest);          //     and back into signed
  vaddps(Operand(scratch), dest, dest);       // combine high+low: may round
}

void MacroAssemblerX86Shared::truncSatFloat32x4ToInt32x4(FloatRegister src,
                                                         FloatRegister dest) {
  ScratchSimd128Scope scratch(asMasm());
  asMasm().moveSimd128Float(src, dest);

  // The cvttps2dq instruction is the workhorse but does not handle NaN or out
  // of range values as we need it to.  We want to saturate too-large positive
  // values to 7FFFFFFFh and too-large negative values to 80000000h.  NaN and -0
  // become 0.

  // Convert NaN to 0 by masking away values that compare unordered to itself.
  vmovaps(dest, scratch);
  vcmpeqps(Operand(scratch), scratch);
  vpand(Operand(scratch), dest, dest);

  // Compute the complement of each non-NaN lane's sign bit, we'll need this to
  // correct the result of cvttps2dq.  All other output bits are garbage.
  vpxor(Operand(dest), scratch, scratch);

  // Convert.  This will make the output 80000000h if the input is out of range.
  vcvttps2dq(dest, dest);

  // Preserve the computed complemented sign bit if the output was 80000000h.
  // The sign bit will be 1 precisely for nonnegative values that overflowed.
  vpand(Operand(dest), scratch, scratch);

  // Create a mask with that sign bit.  Now a lane is either FFFFFFFFh if there
  // was a positive overflow, otherwise zero.
  vpsrad(Imm32(31), scratch, scratch);

  // Convert overflow lanes to 0x7FFFFFFF.
  vpxor(Operand(scratch), dest, dest);
}

void MacroAssemblerX86Shared::unsignedTruncSatFloat32x4ToInt32x4(
    FloatRegister src, FloatRegister temp, FloatRegister dest) {
  ScratchSimd128Scope scratch(asMasm());
  asMasm().moveSimd128Float(src, dest);

  // The cvttps2dq instruction is the workhorse but does not handle NaN or out
  // of range values as we need it to.  We want to saturate too-large positive
  // values to FFFFFFFFh and negative values to zero.  NaN and -0 become 0.

  // Convert NaN and negative values to zeroes in dest.
  vpxor(Operand(scratch), scratch, scratch);
  vmaxps(Operand(scratch), dest, dest);

  // Place the largest positive signed integer in all lanes in scratch.
  // We use it to bias the conversion to handle edge cases.
  asMasm().loadConstantSimd128Float(SimdConstant::SplatX4(2147483647.f),
                                    scratch);

  // temp = dest - 7FFFFFFFh (as floating), this brings integers in the unsigned
  // range but above the signed range into the signed range; 0 => -7FFFFFFFh.
  vmovaps(dest, temp);
  vsubps(Operand(scratch), temp, temp);

  // scratch = mask of biased values that are greater than 7FFFFFFFh.
  vcmpleps(Operand(temp), scratch);

  // Convert the biased values to integer.  Positive values above 7FFFFFFFh will
  // have been converted to 80000000h, all others become the expected integer.
  vcvttps2dq(temp, temp);

  // As lanes of scratch are ~0 where the result overflows, this computes
  // 7FFFFFFF in lanes of temp that are 80000000h, and leaves other lanes
  // untouched as the biased integer.
  vpxor(Operand(scratch), temp, temp);

  // Convert negative biased lanes in temp to zero.  After this, temp will be
  // zero where the result should be zero or is less than 80000000h, 7FFFFFFF
  // where the result overflows, and will have the converted biased result in
  // other lanes (for input values >= 80000000h).
  vpxor(Operand(scratch), scratch, scratch);
  vpmaxsd(Operand(scratch), temp, temp);

  // Convert. Overflow lanes above 7FFFFFFFh will be 80000000h, other lanes will
  // be what they should be.
  vcvttps2dq(dest, dest);

  // Add temp to the result.  Overflow lanes with 80000000h becomes FFFFFFFFh,
  // biased high-value unsigned lanes become unbiased, everything else is left
  // unchanged.
  vpaddd(Operand(temp), dest, dest);
}