1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_x86_LIR_x86_h
#define jit_x86_LIR_x86_h
namespace js {
namespace jit {
class LBoxFloatingPoint : public LInstructionHelper<2, 1, 1> {
MIRType type_;
public:
LIR_HEADER(BoxFloatingPoint);
LBoxFloatingPoint(const LAllocation& in, const LDefinition& temp,
MIRType type)
: LInstructionHelper(classOpcode), type_(type) {
MOZ_ASSERT(IsFloatingPointType(type));
setOperand(0, in);
setTemp(0, temp);
}
MIRType type() const { return type_; }
const char* extraName() const { return StringFromMIRType(type_); }
};
class LUnbox : public LInstructionHelper<1, 2, 0> {
public:
LIR_HEADER(Unbox);
LUnbox() : LInstructionHelper(classOpcode) {}
MUnbox* mir() const { return mir_->toUnbox(); }
const LAllocation* payload() { return getOperand(0); }
const LAllocation* type() { return getOperand(1); }
const char* extraName() const { return StringFromMIRType(mir()->type()); }
};
class LUnboxFloatingPoint : public LInstructionHelper<1, 2, 0> {
MIRType type_;
public:
LIR_HEADER(UnboxFloatingPoint);
static const size_t Input = 0;
LUnboxFloatingPoint(const LBoxAllocation& input, MIRType type)
: LInstructionHelper(classOpcode), type_(type) {
setBoxOperand(Input, input);
}
MUnbox* mir() const { return mir_->toUnbox(); }
MIRType type() const { return type_; }
const char* extraName() const { return StringFromMIRType(type_); }
};
// Convert a 32-bit unsigned integer to a double.
class LWasmUint32ToDouble : public LInstructionHelper<1, 1, 1> {
public:
LIR_HEADER(WasmUint32ToDouble)
LWasmUint32ToDouble(const LAllocation& input, const LDefinition& temp)
: LInstructionHelper(classOpcode) {
setOperand(0, input);
setTemp(0, temp);
}
const LDefinition* temp() { return getTemp(0); }
};
// Convert a 32-bit unsigned integer to a float32.
class LWasmUint32ToFloat32 : public LInstructionHelper<1, 1, 1> {
public:
LIR_HEADER(WasmUint32ToFloat32)
LWasmUint32ToFloat32(const LAllocation& input, const LDefinition& temp)
: LInstructionHelper(classOpcode) {
setOperand(0, input);
setTemp(0, temp);
}
const LDefinition* temp() { return getTemp(0); }
};
class LDivOrModI64
: public LCallInstructionHelper<INT64_PIECES, INT64_PIECES * 2 + 1, 0> {
public:
LIR_HEADER(DivOrModI64)
static const size_t Lhs = 0;
static const size_t Rhs = INT64_PIECES;
static const size_t Tls = 2 * INT64_PIECES;
LDivOrModI64(const LInt64Allocation& lhs, const LInt64Allocation& rhs,
const LAllocation& tls)
: LCallInstructionHelper(classOpcode) {
setInt64Operand(Lhs, lhs);
setInt64Operand(Rhs, rhs);
setOperand(Tls, tls);
}
MDefinition* mir() const {
MOZ_ASSERT(mir_->isWasmBuiltinDivI64() || mir_->isWasmBuiltinModI64());
return mir_;
}
bool canBeDivideByZero() const {
if (mir_->isWasmBuiltinModI64()) {
return mir_->toWasmBuiltinModI64()->canBeDivideByZero();
}
return mir_->toWasmBuiltinDivI64()->canBeDivideByZero();
}
bool canBeNegativeOverflow() const {
if (mir_->isWasmBuiltinModI64()) {
return mir_->toWasmBuiltinModI64()->canBeNegativeDividend();
}
return mir_->toWasmBuiltinDivI64()->canBeNegativeOverflow();
}
wasm::BytecodeOffset bytecodeOffset() const {
MOZ_ASSERT(mir_->isWasmBuiltinDivI64() || mir_->isWasmBuiltinModI64());
if (mir_->isWasmBuiltinModI64()) {
return mir_->toWasmBuiltinModI64()->bytecodeOffset();
}
return mir_->toWasmBuiltinDivI64()->bytecodeOffset();
}
};
class LUDivOrModI64
: public LCallInstructionHelper<INT64_PIECES, INT64_PIECES * 2 + 1, 0> {
public:
LIR_HEADER(UDivOrModI64)
static const size_t Lhs = 0;
static const size_t Rhs = INT64_PIECES;
static const size_t Tls = 2 * INT64_PIECES;
LUDivOrModI64(const LInt64Allocation& lhs, const LInt64Allocation& rhs,
const LAllocation& tls)
: LCallInstructionHelper(classOpcode) {
setInt64Operand(Lhs, lhs);
setInt64Operand(Rhs, rhs);
setOperand(Tls, tls);
}
MDefinition* mir() const {
MOZ_ASSERT(mir_->isWasmBuiltinDivI64() || mir_->isWasmBuiltinModI64());
return mir_;
}
bool canBeDivideByZero() const {
if (mir_->isWasmBuiltinModI64()) {
return mir_->toWasmBuiltinModI64()->canBeDivideByZero();
}
return mir_->toWasmBuiltinDivI64()->canBeDivideByZero();
}
bool canBeNegativeOverflow() const {
if (mir_->isWasmBuiltinModI64()) {
return mir_->toWasmBuiltinModI64()->canBeNegativeDividend();
}
return mir_->toWasmBuiltinDivI64()->canBeNegativeOverflow();
}
wasm::BytecodeOffset bytecodeOffset() const {
MOZ_ASSERT(mir_->isWasmBuiltinDivI64() || mir_->isWasmBuiltinModI64());
if (mir_->isWasmBuiltinModI64()) {
return mir_->toWasmBuiltinModI64()->bytecodeOffset();
}
return mir_->toWasmBuiltinDivI64()->bytecodeOffset();
}
};
class LWasmTruncateToInt64 : public LInstructionHelper<INT64_PIECES, 1, 1> {
public:
LIR_HEADER(WasmTruncateToInt64);
LWasmTruncateToInt64(const LAllocation& in, const LDefinition& temp)
: LInstructionHelper(classOpcode) {
setOperand(0, in);
setTemp(0, temp);
}
MWasmTruncateToInt64* mir() const { return mir_->toWasmTruncateToInt64(); }
const LDefinition* temp() { return getTemp(0); }
};
class LWasmAtomicLoadI64 : public LInstructionHelper<INT64_PIECES, 2, 2> {
public:
LIR_HEADER(WasmAtomicLoadI64);
LWasmAtomicLoadI64(const LAllocation& memoryBase, const LAllocation& ptr,
const LDefinition& t1, const LDefinition& t2)
: LInstructionHelper(classOpcode) {
setOperand(0, memoryBase);
setOperand(1, ptr);
setTemp(0, t1);
setTemp(1, t2);
}
MWasmLoad* mir() const { return mir_->toWasmLoad(); }
const LAllocation* memoryBase() { return getOperand(0); }
const LAllocation* ptr() { return getOperand(1); }
const LDefinition* t1() { return getTemp(0); }
const LDefinition* t2() { return getTemp(1); }
};
class LWasmAtomicStoreI64 : public LInstructionHelper<0, 2 + INT64_PIECES, 2> {
public:
LIR_HEADER(WasmAtomicStoreI64);
LWasmAtomicStoreI64(const LAllocation& memoryBase, const LAllocation& ptr,
const LInt64Allocation& value, const LDefinition& t1,
const LDefinition& t2)
: LInstructionHelper(classOpcode) {
setOperand(0, memoryBase);
setOperand(1, ptr);
setInt64Operand(2, value);
setTemp(0, t1);
setTemp(1, t2);
}
MWasmStore* mir() const { return mir_->toWasmStore(); }
const LAllocation* memoryBase() { return getOperand(0); }
const LAllocation* ptr() { return getOperand(1); }
const LInt64Allocation value() { return getInt64Operand(2); }
const LDefinition* t1() { return getTemp(0); }
const LDefinition* t2() { return getTemp(1); }
};
class LWasmCompareExchangeI64
: public LInstructionHelper<INT64_PIECES, 2 + 2 * INT64_PIECES, 0> {
public:
LIR_HEADER(WasmCompareExchangeI64);
LWasmCompareExchangeI64(const LAllocation& memoryBase, const LAllocation& ptr,
const LInt64Allocation& expected,
const LInt64Allocation& replacement)
: LInstructionHelper(classOpcode) {
setOperand(0, memoryBase);
setOperand(1, ptr);
setInt64Operand(2, expected);
setInt64Operand(2 + INT64_PIECES, replacement);
}
MWasmCompareExchangeHeap* mir() const {
return mir_->toWasmCompareExchangeHeap();
}
const LAllocation* memoryBase() { return getOperand(0); }
const LAllocation* ptr() { return getOperand(1); }
const LInt64Allocation expected() { return getInt64Operand(2); }
const LInt64Allocation replacement() {
return getInt64Operand(2 + INT64_PIECES);
}
};
class LWasmAtomicExchangeI64
: public LInstructionHelper<INT64_PIECES, 2 + INT64_PIECES, 0> {
const wasm::MemoryAccessDesc& access_;
public:
LIR_HEADER(WasmAtomicExchangeI64);
LWasmAtomicExchangeI64(const LAllocation& memoryBase, const LAllocation& ptr,
const LInt64Allocation& value,
const wasm::MemoryAccessDesc& access)
: LInstructionHelper(classOpcode), access_(access) {
setOperand(0, memoryBase);
setOperand(1, ptr);
setInt64Operand(2, value);
}
const LAllocation* memoryBase() { return getOperand(0); }
const LAllocation* ptr() { return getOperand(1); }
const LInt64Allocation value() { return getInt64Operand(2); }
const wasm::MemoryAccessDesc& access() { return access_; }
};
class LWasmAtomicBinopI64
: public LInstructionHelper<INT64_PIECES, 2 + INT64_PIECES, 0> {
const wasm::MemoryAccessDesc& access_;
AtomicOp op_;
public:
LIR_HEADER(WasmAtomicBinopI64);
LWasmAtomicBinopI64(const LAllocation& memoryBase, const LAllocation& ptr,
const LInt64Allocation& value,
const wasm::MemoryAccessDesc& access, AtomicOp op)
: LInstructionHelper(classOpcode), access_(access), op_(op) {
setOperand(0, memoryBase);
setOperand(1, ptr);
setInt64Operand(2, value);
}
const LAllocation* memoryBase() { return getOperand(0); }
const LAllocation* ptr() { return getOperand(1); }
const LInt64Allocation value() { return getInt64Operand(2); }
const wasm::MemoryAccessDesc& access() { return access_; }
AtomicOp operation() const { return op_; }
};
} // namespace jit
} // namespace js
#endif /* jit_x86_LIR_x86_h */
|