1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/Range.h" // mozilla::Range
#include "mozilla/Utf8.h" // mozilla::Utf8Unit
#include <string> // std::char_traits
#include <utility> // std::initializer_list
#include <vector> // std::vector
#include "frontend/ParserAtom.h" // js::frontend::ParserAtomsTable
#include "js/TypeDecls.h" // JS::Latin1Char
#include "jsapi-tests/tests.h"
// Test empty strings behave consistently.
BEGIN_TEST(testParserAtom_empty) {
using js::frontend::ParserAtom;
using js::frontend::ParserAtomsTable;
using js::frontend::ParserAtomVector;
js::LifoAlloc alloc(512);
ParserAtomsTable atomTable(cx->runtime(), alloc);
const char ascii[] = {};
const JS::Latin1Char latin1[] = {};
const mozilla::Utf8Unit utf8[] = {};
const char16_t char16[] = {};
const uint8_t bytes[] = {};
const js::LittleEndianChars leTwoByte(bytes);
// Check that the well-known empty atom matches for different entry points.
const ParserAtom* ref = cx->parserNames().empty;
CHECK(ref);
CHECK(atomTable.internAscii(cx, ascii, 0) == ref);
CHECK(atomTable.internLatin1(cx, latin1, 0) == ref);
CHECK(atomTable.internUtf8(cx, utf8, 0) == ref);
CHECK(atomTable.internChar16(cx, char16, 0) == ref);
// Check concatenation works on empty atoms.
const ParserAtom* concat[] = {
cx->parserNames().empty,
cx->parserNames().empty,
};
mozilla::Range<const ParserAtom*> concatRange(concat, 2);
CHECK(atomTable.concatAtoms(cx, concatRange) == ref);
return true;
}
END_TEST(testParserAtom_empty)
// Test length-1 fast-path is consistent across entry points.
BEGIN_TEST(testParserAtom_tiny1) {
using js::frontend::ParserAtom;
using js::frontend::ParserAtomsTable;
using js::frontend::ParserAtomVector;
js::LifoAlloc alloc(512);
ParserAtomsTable atomTable(cx->runtime(), alloc);
char16_t a = 'a';
const char ascii[] = {'a'};
JS::Latin1Char latin1[] = {'a'};
const mozilla::Utf8Unit utf8[] = {mozilla::Utf8Unit('a')};
char16_t char16[] = {'a'};
const uint8_t bytes[] = {'a', 0};
const js::LittleEndianChars leTwoByte(bytes);
const ParserAtom* ref = cx->parserNames().lookupTiny(&a, 1);
CHECK(ref);
CHECK(atomTable.internAscii(cx, ascii, 1) == ref);
CHECK(atomTable.internLatin1(cx, latin1, 1) == ref);
CHECK(atomTable.internUtf8(cx, utf8, 1) == ref);
CHECK(atomTable.internChar16(cx, char16, 1) == ref);
const ParserAtom* concat[] = {
ref,
cx->parserNames().empty,
};
mozilla::Range<const ParserAtom*> concatRange(concat, 2);
CHECK(atomTable.concatAtoms(cx, concatRange) == ref);
// Note: If Latin1-Extended characters become supported, then UTF-8 behaviour
// should be tested.
char16_t ae = 0x00E6;
CHECK(cx->parserNames().lookupTiny(&ae, 1) == nullptr);
return true;
}
END_TEST(testParserAtom_tiny1)
// Test length-2 fast-path is consistent across entry points.
BEGIN_TEST(testParserAtom_tiny2) {
using js::frontend::ParserAtom;
using js::frontend::ParserAtomsTable;
using js::frontend::ParserAtomVector;
js::LifoAlloc alloc(512);
ParserAtomsTable atomTable(cx->runtime(), alloc);
const char ascii[] = {'a', '0'};
JS::Latin1Char latin1[] = {'a', '0'};
const mozilla::Utf8Unit utf8[] = {mozilla::Utf8Unit('a'),
mozilla::Utf8Unit('0')};
char16_t char16[] = {'a', '0'};
const uint8_t bytes[] = {'a', 0, '0', 0};
const js::LittleEndianChars leTwoByte(bytes);
const ParserAtom* ref = cx->parserNames().lookupTiny(ascii, 2);
CHECK(ref);
CHECK(atomTable.internAscii(cx, ascii, 2) == ref);
CHECK(atomTable.internLatin1(cx, latin1, 2) == ref);
CHECK(atomTable.internUtf8(cx, utf8, 2) == ref);
CHECK(atomTable.internChar16(cx, char16, 2) == ref);
const ParserAtom* concat[] = {
cx->parserNames().lookupTiny(ascii + 0, 1),
cx->parserNames().lookupTiny(ascii + 1, 1),
};
mozilla::Range<const ParserAtom*> concatRange(concat, 2);
CHECK(atomTable.concatAtoms(cx, concatRange) == ref);
// Note: If Latin1-Extended characters become supported, then UTF-8 behaviour
// should be tested.
char16_t ae0[] = {0x00E6, '0'};
CHECK(cx->parserNames().lookupTiny(ae0, 2) == nullptr);
return true;
}
END_TEST(testParserAtom_tiny2)
BEGIN_TEST(testParserAtom_concat) {
using js::frontend::ParserAtom;
using js::frontend::ParserAtomsTable;
using js::frontend::ParserAtomVector;
js::LifoAlloc alloc(512);
ParserAtomsTable atomTable(cx->runtime(), alloc);
auto CheckConcat = [&](const char16_t* exp,
std::initializer_list<const char16_t*> args) -> bool {
// Intern each argument literal
std::vector<const ParserAtom*> inputs;
for (const char16_t* arg : args) {
size_t len = std::char_traits<char16_t>::length(arg);
const ParserAtom* atom = atomTable.internChar16(cx, arg, len);
inputs.push_back(atom);
}
// Concatenate twice to test new vs existing pathways.
mozilla::Range<const ParserAtom*> range(inputs.data(), inputs.size());
const ParserAtom* once = atomTable.concatAtoms(cx, range);
const ParserAtom* twice = atomTable.concatAtoms(cx, range);
// Intern expected value literal _after_ the concat code to allow
// allocation pathways a chance to be tested.
size_t exp_len = std::char_traits<char16_t>::length(exp);
const ParserAtom* ref = atomTable.internChar16(cx, exp, exp_len);
return (once == ref) && (twice == ref);
};
// Checks empty strings
CHECK(CheckConcat(u"", {u"", u""}));
CHECK(CheckConcat(u"", {u"", u"", u"", u""}));
CHECK(CheckConcat(u"A", {u"", u"", u"A", u""}));
CHECK(CheckConcat(u"AAAA", {u"", u"", u"AAAA", u""}));
// Check WellKnown strings
CHECK(CheckConcat(u"function", {u"fun", u"ction"}));
CHECK(CheckConcat(u"object", {u"", u"object"}));
CHECK(CheckConcat(u"objectNOTAWELLKNOWN", {u"object", u"NOTAWELLKNOWN"}));
// Concat ASCII strings
CHECK(CheckConcat(u"AAAA", {u"AAAA", u""}));
CHECK(CheckConcat(u"AAAABBBB", {u"AAAA", u"BBBB"}));
CHECK(CheckConcat(
u"000000000011111111112222222222333333333344444444445555555555",
{u"0000000000", u"1111111111", u"2222222222", u"3333333333",
u"4444444444", u"5555555555"}));
// Concat Latin1 strings
CHECK(CheckConcat(u"\xE6_\xE6", {u"\xE6", u"_\xE6"}));
CHECK(CheckConcat(u"\xE6_ae", {u"\xE6", u"_ae"}));
// Concat char16 strings
CHECK(CheckConcat(u"\u03C0_\xE6_A", {u"\u03C0", u"_\xE6", u"_A"}));
CHECK(CheckConcat(u"\u03C0_\u03C0", {u"\u03C0", u"_\u03C0"}));
CHECK(CheckConcat(u"\u03C0_\xE6", {u"\u03C0", u"_\xE6"}));
CHECK(CheckConcat(u"\u03C0_A", {u"\u03C0", u"_A"}));
return true;
}
END_TEST(testParserAtom_concat)
// "æ" U+00E6
// "π" U+03C0
// "🍕" U+1F355
|