1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "DottedCornerFinder.h"
#include <utility>
#include "BorderCache.h"
#include "BorderConsts.h"
namespace mozilla {
using namespace gfx;
static inline Float Square(Float x) { return x * x; }
static Point PointRotateCCW90(const Point& aP) { return Point(aP.y, -aP.x); }
struct BestOverlap {
Float overlap;
size_t count;
BestOverlap() : overlap(0.0f), count(0) {}
BestOverlap(Float aOverlap, size_t aCount)
: overlap(aOverlap), count(aCount) {}
};
static const size_t DottedCornerCacheSize = 256;
nsDataHashtable<FourFloatsHashKey, BestOverlap> DottedCornerCache;
DottedCornerFinder::DottedCornerFinder(const Bezier& aOuterBezier,
const Bezier& aInnerBezier,
Corner aCorner, Float aBorderRadiusX,
Float aBorderRadiusY, const Point& aC0,
Float aR0, const Point& aCn, Float aRn,
const Size& aCornerDim)
: mOuterBezier(aOuterBezier),
mInnerBezier(aInnerBezier),
mCorner(aCorner),
mNormalSign((aCorner == C_TL || aCorner == C_BR) ? -1.0f : 1.0f),
mC0(aC0),
mCn(aCn),
mR0(aR0),
mRn(aRn),
mMaxR(std::max(aR0, aRn)),
mCenterCurveOrigin(mC0.x, mCn.y),
mCenterCurveR(0.0),
mInnerCurveOrigin(mInnerBezier.mPoints[0].x, mInnerBezier.mPoints[3].y),
mBestOverlap(0.0f),
mHasZeroBorderWidth(false),
mHasMore(true),
mMaxCount(aCornerDim.width + aCornerDim.height),
mType(OTHER),
mI(0),
mCount(0) {
NS_ASSERTION(mR0 > 0.0f || mRn > 0.0f,
"At least one side should have non-zero radius.");
mInnerWidth = fabs(mInnerBezier.mPoints[0].x - mInnerBezier.mPoints[3].x);
mInnerHeight = fabs(mInnerBezier.mPoints[0].y - mInnerBezier.mPoints[3].y);
DetermineType(aBorderRadiusX, aBorderRadiusY);
Reset();
}
static bool IsSingleCurve(Float aMinR, Float aMaxR, Float aMinBorderRadius,
Float aMaxBorderRadius) {
return aMinR > 0.0f && aMinBorderRadius > aMaxR * 4.0f &&
aMinBorderRadius / aMaxBorderRadius > 0.5f;
}
void DottedCornerFinder::DetermineType(Float aBorderRadiusX,
Float aBorderRadiusY) {
// Calculate parameters for the center curve before swap.
Float centerCurveWidth = fabs(mC0.x - mCn.x);
Float centerCurveHeight = fabs(mC0.y - mCn.y);
Point cornerPoint(mCn.x, mC0.y);
bool swapped = false;
if (mR0 < mRn) {
// Always draw from wider side to thinner side.
std::swap(mC0, mCn);
std::swap(mR0, mRn);
std::swap(mInnerBezier.mPoints[0], mInnerBezier.mPoints[3]);
std::swap(mInnerBezier.mPoints[1], mInnerBezier.mPoints[2]);
std::swap(mOuterBezier.mPoints[0], mOuterBezier.mPoints[3]);
std::swap(mOuterBezier.mPoints[1], mOuterBezier.mPoints[2]);
mNormalSign = -mNormalSign;
swapped = true;
}
// See the comment at mType declaration for each condition.
Float minR = std::min(mR0, mRn);
Float minBorderRadius = std::min(aBorderRadiusX, aBorderRadiusY);
Float maxBorderRadius = std::max(aBorderRadiusX, aBorderRadiusY);
if (IsSingleCurve(minR, mMaxR, minBorderRadius, maxBorderRadius)) {
if (mR0 == mRn) {
Float borderLength;
if (minBorderRadius == maxBorderRadius) {
mType = PERFECT;
borderLength = M_PI * centerCurveHeight / 2.0f;
mCenterCurveR = centerCurveWidth;
} else {
mType = SINGLE_CURVE_AND_RADIUS;
borderLength =
GetQuarterEllipticArcLength(centerCurveWidth, centerCurveHeight);
}
Float diameter = mR0 * 2.0f;
size_t count = round(borderLength / diameter);
if (count % 2) {
count++;
}
mCount = count / 2 - 1;
if (mCount > 0) {
mBestOverlap = 1.0f - borderLength / (diameter * count);
}
} else {
mType = SINGLE_CURVE;
}
}
if (mType == SINGLE_CURVE_AND_RADIUS || mType == SINGLE_CURVE) {
Size cornerSize(centerCurveWidth, centerCurveHeight);
GetBezierPointsForCorner(&mCenterBezier, mCorner, cornerPoint, cornerSize);
if (swapped) {
std::swap(mCenterBezier.mPoints[0], mCenterBezier.mPoints[3]);
std::swap(mCenterBezier.mPoints[1], mCenterBezier.mPoints[2]);
}
}
if (minR == 0.0f) {
mHasZeroBorderWidth = true;
}
if ((mType == SINGLE_CURVE || mType == OTHER) && !mHasZeroBorderWidth) {
FindBestOverlap(minR, minBorderRadius, maxBorderRadius);
}
}
bool DottedCornerFinder::HasMore(void) const {
if (mHasZeroBorderWidth) {
return mI < mMaxCount && mHasMore;
}
return mI < mCount;
}
DottedCornerFinder::Result DottedCornerFinder::Next(void) {
mI++;
if (mType == PERFECT) {
Float phi = mI * 4.0f * mR0 * (1 - mBestOverlap) / mCenterCurveR;
if (mCorner == C_TL) {
phi = -M_PI / 2.0f - phi;
} else if (mCorner == C_TR) {
phi = -M_PI / 2.0f + phi;
} else if (mCorner == C_BR) {
phi = M_PI / 2.0f - phi;
} else {
phi = M_PI / 2.0f + phi;
}
Point C(mCenterCurveOrigin.x + mCenterCurveR * cos(phi),
mCenterCurveOrigin.y + mCenterCurveR * sin(phi));
return DottedCornerFinder::Result(C, mR0);
}
// Find unfilled and filled circles.
(void)FindNext(mBestOverlap);
if (mHasMore) {
(void)FindNext(mBestOverlap);
}
return Result(mLastC, mLastR);
}
void DottedCornerFinder::Reset(void) {
mLastC = mC0;
mLastR = mR0;
mLastT = 0.0f;
mHasMore = true;
}
void DottedCornerFinder::FindPointAndRadius(Point& C, Float& r,
const Point& innerTangent,
const Point& normal, Float t) {
// Find radius for the given tangent point on the inner curve such that the
// circle is also tangent to the outer curve.
NS_ASSERTION(mType == OTHER, "Wrong mType");
Float lower = 0.0f;
Float upper = mMaxR;
const Float DIST_MARGIN = 0.1f;
for (size_t i = 0; i < MAX_LOOP; i++) {
r = (upper + lower) / 2.0f;
C = innerTangent + normal * r;
Point Near = FindBezierNearestPoint(mOuterBezier, C, t);
Float distSquare = (C - Near).LengthSquare();
if (distSquare > Square(r + DIST_MARGIN)) {
lower = r;
} else if (distSquare < Square(r - DIST_MARGIN)) {
upper = r;
} else {
break;
}
}
}
Float DottedCornerFinder::FindNext(Float overlap) {
Float lower = mLastT;
Float upper = 1.0f;
Float t;
Point C = mLastC;
Float r = 0.0f;
Float factor = (1.0f - overlap);
Float circlesDist = 0.0f;
Float expectedDist = 0.0f;
const Float DIST_MARGIN = 0.1f;
if (mType == SINGLE_CURVE_AND_RADIUS) {
r = mR0;
expectedDist = (r + mLastR) * factor;
// Find C_i on the center curve.
for (size_t i = 0; i < MAX_LOOP; i++) {
t = (upper + lower) / 2.0f;
C = GetBezierPoint(mCenterBezier, t);
// Check overlap along arc.
circlesDist = GetBezierLength(mCenterBezier, mLastT, t);
if (circlesDist < expectedDist - DIST_MARGIN) {
lower = t;
} else if (circlesDist > expectedDist + DIST_MARGIN) {
upper = t;
} else {
break;
}
}
} else if (mType == SINGLE_CURVE) {
// Find C_i on the center curve, and calculate r_i.
for (size_t i = 0; i < MAX_LOOP; i++) {
t = (upper + lower) / 2.0f;
C = GetBezierPoint(mCenterBezier, t);
Point Diff = GetBezierDifferential(mCenterBezier, t);
Float DiffLength = Diff.Length();
if (DiffLength == 0.0f) {
// Basically this shouldn't happen.
// If differential is 0, we cannot calculate tangent circle,
// skip this point.
t = (t + upper) / 2.0f;
continue;
}
Point normal = PointRotateCCW90(Diff / DiffLength) * (-mNormalSign);
r = CalculateDistanceToEllipticArc(C, normal, mInnerCurveOrigin,
mInnerWidth, mInnerHeight);
// Check overlap along arc.
circlesDist = GetBezierLength(mCenterBezier, mLastT, t);
expectedDist = (r + mLastR) * factor;
if (circlesDist < expectedDist - DIST_MARGIN) {
lower = t;
} else if (circlesDist > expectedDist + DIST_MARGIN) {
upper = t;
} else {
break;
}
}
} else {
Float distSquareMax = Square(mMaxR * 3.0f);
Float circlesDistSquare = 0.0f;
// Find C_i and r_i.
for (size_t i = 0; i < MAX_LOOP; i++) {
t = (upper + lower) / 2.0f;
Point innerTangent = GetBezierPoint(mInnerBezier, t);
if ((innerTangent - mLastC).LengthSquare() > distSquareMax) {
// It's clear that this tangent point is too far, skip it.
upper = t;
continue;
}
Point Diff = GetBezierDifferential(mInnerBezier, t);
Float DiffLength = Diff.Length();
if (DiffLength == 0.0f) {
// Basically this shouldn't happen.
// If differential is 0, we cannot calculate tangent circle,
// skip this point.
t = (t + upper) / 2.0f;
continue;
}
Point normal = PointRotateCCW90(Diff / DiffLength) * mNormalSign;
FindPointAndRadius(C, r, innerTangent, normal, t);
// Check overlap with direct distance.
circlesDistSquare = (C - mLastC).LengthSquare();
expectedDist = (r + mLastR) * factor;
if (circlesDistSquare < Square(expectedDist - DIST_MARGIN)) {
lower = t;
} else if (circlesDistSquare > Square(expectedDist + DIST_MARGIN)) {
upper = t;
} else {
break;
}
}
circlesDist = sqrt(circlesDistSquare);
}
if (mHasZeroBorderWidth) {
// When calculating circle around r=0, it may result in wrong radius that
// is bigger than previous circle. Detect it and stop calculating.
const Float R_MARGIN = 0.1f;
if (mLastR < R_MARGIN && r > mLastR) {
mHasMore = false;
mLastR = 0.0f;
return 0.0f;
}
}
mLastT = t;
mLastC = C;
mLastR = r;
if (mHasZeroBorderWidth) {
const Float T_MARGIN = 0.001f;
if (mLastT >= 1.0f - T_MARGIN ||
(mLastC - mCn).LengthSquare() < Square(mLastR)) {
mHasMore = false;
}
}
if (expectedDist == 0.0f) {
return 0.0f;
}
return 1.0f - circlesDist * factor / expectedDist;
}
void DottedCornerFinder::FindBestOverlap(Float aMinR, Float aMinBorderRadius,
Float aMaxBorderRadius) {
// If overlap is not calculateable, find it with binary search,
// such that there exists i that C_i == C_n with the given overlap.
FourFloats key(aMinR, mMaxR, aMinBorderRadius, aMaxBorderRadius);
BestOverlap best;
if (DottedCornerCache.Get(key, &best)) {
mCount = best.count;
mBestOverlap = best.overlap;
return;
}
Float lower = 0.0f;
Float upper = 0.5f;
// Start from lower bound to find the minimum number of circles.
Float overlap = 0.0f;
mBestOverlap = overlap;
size_t targetCount = 0;
const Float OVERLAP_MARGIN = 0.1f;
for (size_t j = 0; j < MAX_LOOP; j++) {
Reset();
size_t count;
Float actualOverlap;
if (!GetCountAndLastOverlap(overlap, &count, &actualOverlap)) {
if (j == 0) {
mCount = mMaxCount;
break;
}
}
if (j == 0) {
if (count < 3 || (count == 3 && actualOverlap > 0.5f)) {
// |count == 3 && actualOverlap > 0.5f| means there could be
// a circle but it is too near from both ends.
//
// if actualOverlap == 0.0
// 1 2 3
// +-------+-------+-------+-------+
// | ##### | ***** | ##### | ##### |
// |#######|*******|#######|#######|
// |###+###|***+***|###+###|###+###|
// |# C_0 #|* C_1 *|# C_2 #|# C_n #|
// | ##### | ***** | ##### | ##### |
// +-------+-------+-------+-------+
// |
// V
// +-------+---+-------+---+-------+
// | ##### | | ##### | | ##### |
// |#######| |#######| |#######|
// |###+###| |###+###| |###+###| Find the best overlap to place
// |# C_0 #| |# C_1 #| |# C_n #| C_1 at the middle of them
// | ##### | | ##### | | ##### |
// +-------+---+-------+---|-------+
//
// if actualOverlap == 0.5
// 1 2 3
// +-------+-------+-------+---+
// | ##### | ***** | ##### |## |
// |#######|*******|##### C_n #|
// |###+###|***+***|###+###+###|
// |# C_0 #|* C_1 *|# C_2 #|###|
// | ##### | ***** | ##### |## |
// +-------+-------+-------+---+
// |
// V
// +-------+-+-------+-+-------+
// | ##### | | ##### | | ##### |
// |#######| |#######| |#######|
// |###+###| |###+###| |###+###| Even if we place C_1 at the middle
// |# C_0 #| |# C_1 #| |# C_n #| of them, it's too near from them
// | ##### | | ##### | | ##### |
// +-------+-+-------+-|-------+
// |
// V
// +-------+-----------+-------+
// | ##### | | ##### |
// |#######| |#######|
// |###+###| |###+###| Do not draw any circle
// |# C_0 #| |# C_n #|
// | ##### | | ##### |
// +-------+-----------+-------+
mCount = 0;
break;
}
// targetCount should be 2n, as we're searching C_1 to C_n.
//
// targetCount = 4
// mCount = 1
// 1 2 3 4
// +-------+-------+-------+-------+-------+
// | ##### | ***** | ##### | ***** | ##### |
// |#######|*******|#######|*******|#######|
// |###+###|***+***|###+###|***+***|###+###|
// |# C_0 #|* C_1 *|# C_2 #|* C_3 *|# C_n #|
// | ##### | ***** | ##### | ***** | ##### |
// +-------+-------+-------+-------+-------+
// 1
//
// targetCount = 6
// mCount = 2
// 1 2 3 4 5 6
// +-------+-------+-------+-------+-------+-------+-------+
// | ##### | ***** | ##### | ***** | ##### | ***** | ##### |
// |#######|*******|#######|*******|#######|*******|#######|
// |###+###|***+***|###+###|***+***|###+###|***+***|###+###|
// |# C_0 #|* C_1 *|# C_2 #|* C_3 *|# C_4 #|* C_5 *|# C_n #|
// | ##### | ***** | ##### | ***** | ##### | ***** | ##### |
// +-------+-------+-------+-------+-------+-------+-------+
// 1 2
if (count % 2) {
targetCount = count + 1;
} else {
targetCount = count;
}
mCount = targetCount / 2 - 1;
}
if (count == targetCount) {
mBestOverlap = overlap;
if (fabs(actualOverlap - overlap) < OVERLAP_MARGIN) {
break;
}
// We started from upper bound, no need to update range when j == 0.
if (j > 0) {
if (actualOverlap > overlap) {
lower = overlap;
} else {
upper = overlap;
}
}
} else {
// |j == 0 && count != targetCount| means that |targetCount = count + 1|,
// and we started from upper bound, no need to update range when j == 0.
if (j > 0) {
if (count > targetCount) {
upper = overlap;
} else {
lower = overlap;
}
}
}
overlap = (upper + lower) / 2.0f;
}
if (DottedCornerCache.Count() > DottedCornerCacheSize) {
DottedCornerCache.Clear();
}
DottedCornerCache.Put(key, BestOverlap(mBestOverlap, mCount));
}
bool DottedCornerFinder::GetCountAndLastOverlap(Float aOverlap, size_t* aCount,
Float* aActualOverlap) {
// Return the number of circles and the last circles' overlap for the
// given overlap.
Reset();
const Float T_MARGIN = 0.001f;
const Float DIST_MARGIN = 0.1f;
const Float DIST_MARGIN_SQUARE = Square(DIST_MARGIN);
for (size_t i = 0; i < mMaxCount; i++) {
Float actualOverlap = FindNext(aOverlap);
if (mLastT >= 1.0f - T_MARGIN ||
(mLastC - mCn).LengthSquare() < DIST_MARGIN_SQUARE) {
*aCount = i + 1;
*aActualOverlap = actualOverlap;
return true;
}
}
return false;
}
} // namespace mozilla
|