summaryrefslogtreecommitdiffstats
path: root/media/libcubeb/gtest/test_loopback.cpp
blob: 9977f6f93486c567d335ab629b2fe0efc77b2e20 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
/*
 * Copyright © 2017 Mozilla Foundation
 *
 * This program is made available under an ISC-style license.  See the
 * accompanying file LICENSE for details.
 */

 /* libcubeb api/function test. Requests a loopback device and checks that
    output is being looped back to input. NOTE: Usage of output devices while
    performing this test will cause flakey results! */
#include "gtest/gtest.h"
#if !defined(_XOPEN_SOURCE)
#define _XOPEN_SOURCE 600
#endif
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
#include <memory>
#include <mutex>
#include <string>
#include "cubeb/cubeb.h"
//#define ENABLE_NORMAL_LOG
//#define ENABLE_VERBOSE_LOG
#include "common.h"
const uint32_t SAMPLE_FREQUENCY = 48000;
const uint32_t TONE_FREQUENCY = 440;
const double OUTPUT_AMPLITUDE = 0.25;
const int32_t NUM_FRAMES_TO_OUTPUT = SAMPLE_FREQUENCY / 20; /* play ~50ms of samples */

template<typename T> T ConvertSampleToOutput(double input);
template<> float ConvertSampleToOutput(double input) { return float(input); }
template<> short ConvertSampleToOutput(double input) { return short(input * 32767.0f); }

template<typename T> double ConvertSampleFromOutput(T sample);
template<> double ConvertSampleFromOutput(float sample) { return double(sample); }
template<> double ConvertSampleFromOutput(short sample) { return double(sample / 32767.0); }

/* Simple cross correlation to help find phase shift. Not a performant impl */
std::vector<double> cross_correlate(std::vector<double> & f,
                                    std::vector<double> & g,
                                    size_t signal_length)
{
  /* the length we sweep our window through to find the cross correlation */
  size_t sweep_length = f.size() - signal_length + 1;
  std::vector<double> correlation;
  correlation.reserve(sweep_length);
  for (size_t i = 0; i < sweep_length; i++) {
    double accumulator = 0.0;
    for (size_t j = 0; j < signal_length; j++) {
      accumulator += f.at(j) * g.at(i + j);
    }
    correlation.push_back(accumulator);
  }
  return correlation;
}

/* best effort discovery of phase shift between output and (looped) input*/
size_t find_phase(std::vector<double> & output_frames,
                  std::vector<double> & input_frames,
                  size_t signal_length)
{
  std::vector<double> correlation = cross_correlate(output_frames, input_frames, signal_length);
  size_t phase = 0;
  double max_correlation = correlation.at(0);
  for (size_t i = 1; i < correlation.size(); i++) {
    if (correlation.at(i) > max_correlation) {
      max_correlation = correlation.at(i);
      phase = i;
    }
  }
  return phase;
}

std::vector<double> normalize_frames(std::vector<double> & frames) {
  double max = abs(*std::max_element(frames.begin(), frames.end(),
                                     [](double a, double b) { return abs(a) < abs(b); }));
  std::vector<double> normalized_frames;
  normalized_frames.reserve(frames.size());
  for (const double frame : frames) {
    normalized_frames.push_back(frame / max);
  }
  return normalized_frames;
}

/* heuristic comparison of aligned output and input signals, gets flaky if TONE_FREQUENCY is too high */
void compare_signals(std::vector<double> & output_frames,
                     std::vector<double> & input_frames)
{
  ASSERT_EQ(output_frames.size(), input_frames.size()) << "#Output frames != #input frames";
  size_t num_frames = output_frames.size();
  std::vector<double> normalized_output_frames = normalize_frames(output_frames);
  std::vector<double> normalized_input_frames = normalize_frames(input_frames);

  /* calculate mean absolute errors */
  /* mean absolute errors between output and input */
  double io_mas = 0.0;
  /* mean absolute errors between output and silence */
  double output_silence_mas = 0.0;
  /* mean absolute errors between input and silence */
  double input_silence_mas = 0.0;
  for (size_t i = 0; i < num_frames; i++) {
    io_mas += abs(normalized_output_frames.at(i) - normalized_input_frames.at(i));
    output_silence_mas += abs(normalized_output_frames.at(i));
    input_silence_mas += abs(normalized_input_frames.at(i));
  }
  io_mas /= num_frames;
  output_silence_mas /= num_frames;
  input_silence_mas /= num_frames;

  ASSERT_LT(io_mas, output_silence_mas)
    << "Error between output and input should be less than output and silence!";
  ASSERT_LT(io_mas, input_silence_mas)
    << "Error between output and input should be less than output and silence!";

  /* make sure extrema are in (roughly) correct location */
  /* number of maxima + minama expected in the frames*/
  const long NUM_EXTREMA = 2 * TONE_FREQUENCY * NUM_FRAMES_TO_OUTPUT / SAMPLE_FREQUENCY;
  /* expected index of first maxima */
  const long FIRST_MAXIMUM_INDEX = SAMPLE_FREQUENCY / TONE_FREQUENCY / 4;
  /* Threshold we expect all maxima and minima to be above or below. Ideally
     the extrema would be 1 or -1, but particularly at the start of loopback
     the values seen can be significantly lower. */
  const double THRESHOLD = 0.5;

  for (size_t i = 0; i < NUM_EXTREMA; i++) {
    bool is_maximum = i % 2 == 0;
    /* expected offset to current extreme: i * stide between extrema */
    size_t offset = i * SAMPLE_FREQUENCY / TONE_FREQUENCY / 2;
    if (is_maximum) {
      ASSERT_GT(normalized_output_frames.at(FIRST_MAXIMUM_INDEX + offset), THRESHOLD)
        << "Output frames have unexpected missing maximum!";
      ASSERT_GT(normalized_input_frames.at(FIRST_MAXIMUM_INDEX + offset), THRESHOLD)
        << "Input frames have unexpected missing maximum!";
    } else {
      ASSERT_LT(normalized_output_frames.at(FIRST_MAXIMUM_INDEX + offset), -THRESHOLD)
        << "Output frames have unexpected missing minimum!";
      ASSERT_LT(normalized_input_frames.at(FIRST_MAXIMUM_INDEX + offset), -THRESHOLD)
        << "Input frames have unexpected missing minimum!";
    }
  }
}

struct user_state_loopback {
  std::mutex user_state_mutex;
  long position = 0;
  /* track output */
  std::vector<double> output_frames;
  /* track input */
  std::vector<double> input_frames;
};

template<typename T>
long data_cb_loop_duplex(cubeb_stream * stream, void * user, const void * inputbuffer, void * outputbuffer, long nframes)
{
  struct user_state_loopback * u = (struct user_state_loopback *) user;
  T * ib = (T *) inputbuffer;
  T * ob = (T *) outputbuffer;

  if (stream == NULL || inputbuffer == NULL || outputbuffer == NULL) {
    return CUBEB_ERROR;
  }

  std::lock_guard<std::mutex> lock(u->user_state_mutex);
  /* generate our test tone on the fly */
  for (int i = 0; i < nframes; i++) {
    double tone = 0.0;
    if (u->position + i < NUM_FRAMES_TO_OUTPUT) {
      /* generate sine wave */
      tone = sin(2 * M_PI*(i + u->position) * TONE_FREQUENCY / SAMPLE_FREQUENCY);
      tone *= OUTPUT_AMPLITUDE;
    }
    ob[i] = ConvertSampleToOutput<T>(tone);
    u->output_frames.push_back(tone);
    /* store any looped back output, may be silence */
    u->input_frames.push_back(ConvertSampleFromOutput(ib[i]));
  }

  u->position += nframes;

  return nframes;
}

template<typename T>
long data_cb_loop_input_only(cubeb_stream * stream, void * user, const void * inputbuffer, void * outputbuffer, long nframes)
{
  struct user_state_loopback * u = (struct user_state_loopback *) user;
  T * ib = (T *) inputbuffer;

  if (outputbuffer != NULL) {
    // Can't assert as it needs to return, so expect to fail instead
    EXPECT_EQ(outputbuffer, (void *) NULL) << "outputbuffer should be null in input only callback";
    return CUBEB_ERROR;
  }

  if (stream == NULL || inputbuffer == NULL) {
    return CUBEB_ERROR;
  }

  std::lock_guard<std::mutex> lock(u->user_state_mutex);
  for (int i = 0; i < nframes; i++) {
    u->input_frames.push_back(ConvertSampleFromOutput(ib[i]));
  }

  return nframes;
}

template<typename T>
long data_cb_playback(cubeb_stream * stream, void * user, const void * inputbuffer, void * outputbuffer, long nframes)
{
  struct user_state_loopback * u = (struct user_state_loopback *) user;
  T * ob = (T *) outputbuffer;

  if (stream == NULL || outputbuffer == NULL) {
    return CUBEB_ERROR;
  }

  std::lock_guard<std::mutex> lock(u->user_state_mutex);
  /* generate our test tone on the fly */
  for (int i = 0; i < nframes; i++) {
    double tone = 0.0;
    if (u->position + i < NUM_FRAMES_TO_OUTPUT) {
      /* generate sine wave */
      tone = sin(2 * M_PI*(i + u->position) * TONE_FREQUENCY / SAMPLE_FREQUENCY);
      tone *= OUTPUT_AMPLITUDE;
    }
    ob[i] = ConvertSampleToOutput<T>(tone);
    u->output_frames.push_back(tone);
  }

  u->position += nframes;

  return nframes;
}

void state_cb_loop(cubeb_stream * stream, void * /*user*/, cubeb_state state)
{
  if (stream == NULL)
    return;

  switch (state) {
  case CUBEB_STATE_STARTED:
    fprintf(stderr, "stream started\n"); break;
  case CUBEB_STATE_STOPPED:
    fprintf(stderr, "stream stopped\n"); break;
  case CUBEB_STATE_DRAINED:
    fprintf(stderr, "stream drained\n"); break;
  default:
    fprintf(stderr, "unknown stream state %d\n", state);
  }

  return;
}

void run_loopback_duplex_test(bool is_float)
{
  cubeb * ctx;
  cubeb_stream * stream;
  cubeb_stream_params input_params;
  cubeb_stream_params output_params;
  int r;
  uint32_t latency_frames = 0;

  r = common_init(&ctx, "Cubeb loopback example: duplex stream");
  ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb library";

  std::unique_ptr<cubeb, decltype(&cubeb_destroy)>
    cleanup_cubeb_at_exit(ctx, cubeb_destroy);

  input_params.format = is_float ? CUBEB_SAMPLE_FLOAT32NE : CUBEB_SAMPLE_S16LE;
  input_params.rate = SAMPLE_FREQUENCY;
  input_params.channels = 1;
  input_params.layout = CUBEB_LAYOUT_MONO;
  input_params.prefs = CUBEB_STREAM_PREF_LOOPBACK;
  output_params.format = is_float ? CUBEB_SAMPLE_FLOAT32NE : CUBEB_SAMPLE_S16LE;
  output_params.rate = SAMPLE_FREQUENCY;
  output_params.channels = 1;
  output_params.layout = CUBEB_LAYOUT_MONO;
  output_params.prefs = CUBEB_STREAM_PREF_NONE;

  std::unique_ptr<user_state_loopback> user_data(new user_state_loopback());
  ASSERT_TRUE(!!user_data) << "Error allocating user data";

  r = cubeb_get_min_latency(ctx, &output_params, &latency_frames);
  ASSERT_EQ(r, CUBEB_OK) << "Could not get minimal latency";

  /* setup a duplex stream with loopback */
  r = cubeb_stream_init(ctx, &stream, "Cubeb loopback",
                        NULL, &input_params, NULL, &output_params, latency_frames,
                        is_float ? data_cb_loop_duplex<float> : data_cb_loop_duplex<short>,
                        state_cb_loop, user_data.get());
  ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb stream";

  std::unique_ptr<cubeb_stream, decltype(&cubeb_stream_destroy)>
    cleanup_stream_at_exit(stream, cubeb_stream_destroy);

  cubeb_stream_start(stream);
  delay(300);
  cubeb_stream_stop(stream);

  /* access after stop should not happen, but lock just in case and to appease sanitization tools */
  std::lock_guard<std::mutex> lock(user_data->user_state_mutex);
  std::vector<double> & output_frames = user_data->output_frames;
  std::vector<double> & input_frames = user_data->input_frames;
  ASSERT_EQ(output_frames.size(), input_frames.size())
    << "#Output frames != #input frames";

  size_t phase = find_phase(user_data->output_frames, user_data->input_frames, NUM_FRAMES_TO_OUTPUT);

  /* extract vectors of just the relevant signal from output and input */
  auto output_frames_signal_start = output_frames.begin();
  auto output_frames_signal_end = output_frames.begin() + NUM_FRAMES_TO_OUTPUT;
  std::vector<double> trimmed_output_frames(output_frames_signal_start, output_frames_signal_end);
  auto input_frames_signal_start = input_frames.begin() + phase;
  auto input_frames_signal_end = input_frames.begin() + phase + NUM_FRAMES_TO_OUTPUT;
  std::vector<double> trimmed_input_frames(input_frames_signal_start, input_frames_signal_end);

  compare_signals(trimmed_output_frames, trimmed_input_frames);
}

TEST(cubeb, loopback_duplex)
{
  run_loopback_duplex_test(true);
  run_loopback_duplex_test(false);
}

void run_loopback_separate_streams_test(bool is_float)
{
  cubeb * ctx;
  cubeb_stream * input_stream;
  cubeb_stream * output_stream;
  cubeb_stream_params input_params;
  cubeb_stream_params output_params;
  int r;
  uint32_t latency_frames = 0;

  r = common_init(&ctx, "Cubeb loopback example: separate streams");
  ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb library";

  std::unique_ptr<cubeb, decltype(&cubeb_destroy)>
    cleanup_cubeb_at_exit(ctx, cubeb_destroy);

  input_params.format = is_float ? CUBEB_SAMPLE_FLOAT32NE : CUBEB_SAMPLE_S16LE;
  input_params.rate = SAMPLE_FREQUENCY;
  input_params.channels = 1;
  input_params.layout = CUBEB_LAYOUT_MONO;
  input_params.prefs = CUBEB_STREAM_PREF_LOOPBACK;
  output_params.format = is_float ? CUBEB_SAMPLE_FLOAT32NE : CUBEB_SAMPLE_S16LE;
  output_params.rate = SAMPLE_FREQUENCY;
  output_params.channels = 1;
  output_params.layout = CUBEB_LAYOUT_MONO;
  output_params.prefs = CUBEB_STREAM_PREF_NONE;

  std::unique_ptr<user_state_loopback> user_data(new user_state_loopback());
  ASSERT_TRUE(!!user_data) << "Error allocating user data";

  r = cubeb_get_min_latency(ctx, &output_params, &latency_frames);
  ASSERT_EQ(r, CUBEB_OK) << "Could not get minimal latency";

  /* setup an input stream with loopback */
  r = cubeb_stream_init(ctx, &input_stream, "Cubeb loopback input only",
                        NULL, &input_params, NULL, NULL, latency_frames,
                        is_float ? data_cb_loop_input_only<float> : data_cb_loop_input_only<short>,
                        state_cb_loop, user_data.get());
  ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb stream";

  std::unique_ptr<cubeb_stream, decltype(&cubeb_stream_destroy)>
    cleanup_input_stream_at_exit(input_stream, cubeb_stream_destroy);

  /* setup an output stream */
  r = cubeb_stream_init(ctx, &output_stream, "Cubeb loopback output only",
                        NULL, NULL, NULL, &output_params, latency_frames,
                        is_float ? data_cb_playback<float> : data_cb_playback<short>,
                        state_cb_loop, user_data.get());
  ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb stream";

  std::unique_ptr<cubeb_stream, decltype(&cubeb_stream_destroy)>
    cleanup_output_stream_at_exit(output_stream, cubeb_stream_destroy);

  cubeb_stream_start(input_stream);
  cubeb_stream_start(output_stream);
  delay(300);
  cubeb_stream_stop(output_stream);
  cubeb_stream_stop(input_stream);

  /* access after stop should not happen, but lock just in case and to appease sanitization tools */
  std::lock_guard<std::mutex> lock(user_data->user_state_mutex);
  std::vector<double> & output_frames = user_data->output_frames;
  std::vector<double> & input_frames = user_data->input_frames;
  ASSERT_LE(output_frames.size(), input_frames.size())
    << "#Output frames should be less or equal to #input frames";

  size_t phase = find_phase(user_data->output_frames, user_data->input_frames, NUM_FRAMES_TO_OUTPUT);

  /* extract vectors of just the relevant signal from output and input */
  auto output_frames_signal_start = output_frames.begin();
  auto output_frames_signal_end = output_frames.begin() + NUM_FRAMES_TO_OUTPUT;
  std::vector<double> trimmed_output_frames(output_frames_signal_start, output_frames_signal_end);
  auto input_frames_signal_start = input_frames.begin() + phase;
  auto input_frames_signal_end = input_frames.begin() + phase + NUM_FRAMES_TO_OUTPUT;
  std::vector<double> trimmed_input_frames(input_frames_signal_start, input_frames_signal_end);

  compare_signals(trimmed_output_frames, trimmed_input_frames);
}

TEST(cubeb, loopback_separate_streams)
{
  run_loopback_separate_streams_test(true);
  run_loopback_separate_streams_test(false);
}

void run_loopback_silence_test(bool is_float)
{
  cubeb * ctx;
  cubeb_stream * input_stream;
  cubeb_stream_params input_params;
  int r;
  uint32_t latency_frames = 0;

  r = common_init(&ctx, "Cubeb loopback example: record silence");
  ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb library";

  std::unique_ptr<cubeb, decltype(&cubeb_destroy)>
    cleanup_cubeb_at_exit(ctx, cubeb_destroy);

  input_params.format = is_float ? CUBEB_SAMPLE_FLOAT32NE : CUBEB_SAMPLE_S16LE;
  input_params.rate = SAMPLE_FREQUENCY;
  input_params.channels = 1;
  input_params.layout = CUBEB_LAYOUT_MONO;
  input_params.prefs = CUBEB_STREAM_PREF_LOOPBACK;

  std::unique_ptr<user_state_loopback> user_data(new user_state_loopback());
  ASSERT_TRUE(!!user_data) << "Error allocating user data";

  r = cubeb_get_min_latency(ctx, &input_params, &latency_frames);
  ASSERT_EQ(r, CUBEB_OK) << "Could not get minimal latency";

  /* setup an input stream with loopback */
  r = cubeb_stream_init(ctx, &input_stream, "Cubeb loopback input only",
                        NULL, &input_params, NULL, NULL, latency_frames,
                        is_float ? data_cb_loop_input_only<float> : data_cb_loop_input_only<short>,
                        state_cb_loop, user_data.get());
  ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb stream";

  std::unique_ptr<cubeb_stream, decltype(&cubeb_stream_destroy)>
    cleanup_input_stream_at_exit(input_stream, cubeb_stream_destroy);

  cubeb_stream_start(input_stream);
  delay(300);
  cubeb_stream_stop(input_stream);

  /* access after stop should not happen, but lock just in case and to appease sanitization tools */
  std::lock_guard<std::mutex> lock(user_data->user_state_mutex);
  std::vector<double> & input_frames = user_data->input_frames;

  /* expect to have at least ~50ms of frames */
  ASSERT_GE(input_frames.size(), SAMPLE_FREQUENCY / 20);
  double EPISILON = 0.0001;
  /* frames should be 0.0, but use epsilon to avoid possible issues with impls
  that may use ~0.0 silence values. */
  for (double frame : input_frames) {
    ASSERT_LT(abs(frame), EPISILON);
  }
}

TEST(cubeb, loopback_silence)
{
  run_loopback_silence_test(true);
  run_loopback_silence_test(false);
}

void run_loopback_device_selection_test(bool is_float)
{
  cubeb * ctx;
  cubeb_device_collection collection;
  cubeb_stream * input_stream;
  cubeb_stream * output_stream;
  cubeb_stream_params input_params;
  cubeb_stream_params output_params;
  int r;
  uint32_t latency_frames = 0;

  r = common_init(&ctx, "Cubeb loopback example: device selection, separate streams");
  ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb library";

  std::unique_ptr<cubeb, decltype(&cubeb_destroy)>
    cleanup_cubeb_at_exit(ctx, cubeb_destroy);

  r = cubeb_enumerate_devices(ctx, CUBEB_DEVICE_TYPE_OUTPUT, &collection);
  if (r == CUBEB_ERROR_NOT_SUPPORTED) {
    fprintf(stderr, "Device enumeration not supported"
            " for this backend, skipping this test.\n");
    return;
  }

  ASSERT_EQ(r, CUBEB_OK) << "Error enumerating devices " << r;
  /* get first preferred output device id */
  std::string device_id;
  for (size_t i = 0; i < collection.count; i++) {
    if (collection.device[i].preferred) {
      device_id = collection.device[i].device_id;
      break;
    }
  }
  cubeb_device_collection_destroy(ctx, &collection);
  if (device_id.empty()) {
    fprintf(stderr, "Could not find preferred device, aborting test.\n");
    return;
  }

  input_params.format = is_float ? CUBEB_SAMPLE_FLOAT32NE : CUBEB_SAMPLE_S16LE;
  input_params.rate = SAMPLE_FREQUENCY;
  input_params.channels = 1;
  input_params.layout = CUBEB_LAYOUT_MONO;
  input_params.prefs = CUBEB_STREAM_PREF_LOOPBACK;
  output_params.format = is_float ? CUBEB_SAMPLE_FLOAT32NE : CUBEB_SAMPLE_S16LE;
  output_params.rate = SAMPLE_FREQUENCY;
  output_params.channels = 1;
  output_params.layout = CUBEB_LAYOUT_MONO;
  output_params.prefs = CUBEB_STREAM_PREF_NONE;

  std::unique_ptr<user_state_loopback> user_data(new user_state_loopback());
  ASSERT_TRUE(!!user_data) << "Error allocating user data";

  r = cubeb_get_min_latency(ctx, &output_params, &latency_frames);
  ASSERT_EQ(r, CUBEB_OK) << "Could not get minimal latency";

  /* setup an input stream with loopback */
  r = cubeb_stream_init(ctx, &input_stream, "Cubeb loopback input only",
                        device_id.c_str(), &input_params, NULL, NULL, latency_frames,
                        is_float ? data_cb_loop_input_only<float> : data_cb_loop_input_only<short>,
                        state_cb_loop, user_data.get());
  ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb stream";

  std::unique_ptr<cubeb_stream, decltype(&cubeb_stream_destroy)>
    cleanup_input_stream_at_exit(input_stream, cubeb_stream_destroy);

  /* setup an output stream */
  r = cubeb_stream_init(ctx, &output_stream, "Cubeb loopback output only",
                        NULL, NULL, device_id.c_str(), &output_params, latency_frames,
                        is_float ? data_cb_playback<float> : data_cb_playback<short>,
                        state_cb_loop, user_data.get());
  ASSERT_EQ(r, CUBEB_OK) << "Error initializing cubeb stream";

  std::unique_ptr<cubeb_stream, decltype(&cubeb_stream_destroy)>
    cleanup_output_stream_at_exit(output_stream, cubeb_stream_destroy);

  cubeb_stream_start(input_stream);
  cubeb_stream_start(output_stream);
  delay(300);
  cubeb_stream_stop(output_stream);
  cubeb_stream_stop(input_stream);

  /* access after stop should not happen, but lock just in case and to appease sanitization tools */
  std::lock_guard<std::mutex> lock(user_data->user_state_mutex);
  std::vector<double> & output_frames = user_data->output_frames;
  std::vector<double> & input_frames = user_data->input_frames;
  ASSERT_LE(output_frames.size(), input_frames.size())
    << "#Output frames should be less or equal to #input frames";

  size_t phase = find_phase(user_data->output_frames, user_data->input_frames, NUM_FRAMES_TO_OUTPUT);

  /* extract vectors of just the relevant signal from output and input */
  auto output_frames_signal_start = output_frames.begin();
  auto output_frames_signal_end = output_frames.begin() + NUM_FRAMES_TO_OUTPUT;
  std::vector<double> trimmed_output_frames(output_frames_signal_start, output_frames_signal_end);
  auto input_frames_signal_start = input_frames.begin() + phase;
  auto input_frames_signal_end = input_frames.begin() + phase + NUM_FRAMES_TO_OUTPUT;
  std::vector<double> trimmed_input_frames(input_frames_signal_start, input_frames_signal_end);

  compare_signals(trimmed_output_frames, trimmed_input_frames);
}

TEST(cubeb, loopback_device_selection)
{
  run_loopback_device_selection_test(true);
  run_loopback_device_selection_test(false);
}