summaryrefslogtreecommitdiffstats
path: root/media/libcubeb/src/cubeb_opensl.c
blob: a6800197f5da23da6a4f3cf430f062c5774b0db4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
/*
 * Copyright © 2012 Mozilla Foundation
 *
 * This program is made available under an ISC-style license.  See the
 * accompanying file LICENSE for details.
 */
#undef NDEBUG
#include <assert.h>
#include <dlfcn.h>
#include <stdlib.h>
#include <pthread.h>
#include <errno.h>
#include <SLES/OpenSLES.h>
#include <math.h>
#include <time.h>
#if defined(__ANDROID__)
#include <dlfcn.h>
#include <sys/system_properties.h>
#include "android/sles_definitions.h"
#include <SLES/OpenSLES_Android.h>
#include <android/log.h>
#include <android/api-level.h>
#endif
#include "cubeb/cubeb.h"
#include "cubeb-internal.h"
#include "cubeb_resampler.h"
#include "cubeb-sles.h"
#include "cubeb_array_queue.h"
#include "android/cubeb-output-latency.h"
#include "cubeb_android.h"

#if defined(__ANDROID__)
#ifdef LOG
#undef LOG
#endif
//#define LOGGING_ENABLED
#ifdef LOGGING_ENABLED
#define LOG(args...)  __android_log_print(ANDROID_LOG_INFO, "Cubeb_OpenSL" , ## args)
#else
#define LOG(...)
#endif

//#define TIMESTAMP_ENABLED
#ifdef TIMESTAMP_ENABLED
#define FILENAME (strrchr(__FILE__, '/') ? strrchr(__FILE__, '/') + 1 : __FILE__)
#define LOG_TS(args...)  __android_log_print(ANDROID_LOG_INFO, "Cubeb_OpenSL ES: Timestamp(usec)" , ## args)
#define TIMESTAMP(msg) do {                           \
  struct timeval timestamp;                           \
  int ts_ret = gettimeofday(&timestamp, NULL);        \
  if (ts_ret == 0) {                                  \
    LOG_TS("%lld: %s (%s %s:%d)", timestamp.tv_sec * 1000000LL + timestamp.tv_usec, msg, __FUNCTION__, FILENAME, __LINE__);\
  } else {                                            \
    LOG_TS("Error: %s (%s %s:%d) - %s", msg, __FUNCTION__, FILENAME, __LINE__);\
  }                                                   \
} while(0)
#else
#define TIMESTAMP(...)
#endif

#define ANDROID_VERSION_GINGERBREAD_MR1 10
#define ANDROID_VERSION_JELLY_BEAN 18
#define ANDROID_VERSION_LOLLIPOP 21
#define ANDROID_VERSION_MARSHMALLOW 23
#define ANDROID_VERSION_N_MR1 25
#endif

#define DEFAULT_SAMPLE_RATE 48000
#define DEFAULT_NUM_OF_FRAMES 480

static struct cubeb_ops const opensl_ops;

struct cubeb {
  struct cubeb_ops const * ops;
  void * lib;
  SLInterfaceID SL_IID_BUFFERQUEUE;
  SLInterfaceID SL_IID_PLAY;
#if defined(__ANDROID__)
  SLInterfaceID SL_IID_ANDROIDCONFIGURATION;
  SLInterfaceID SL_IID_ANDROIDSIMPLEBUFFERQUEUE;
#endif
  SLInterfaceID SL_IID_VOLUME;
  SLInterfaceID SL_IID_RECORD;
  SLObjectItf engObj;
  SLEngineItf eng;
  SLObjectItf outmixObj;
  output_latency_function * p_output_latency_function;
};

#define NELEMS(A) (sizeof(A) / sizeof A[0])
#define NBUFS 2

struct cubeb_stream {
  /* Note: Must match cubeb_stream layout in cubeb.c. */
  cubeb * context;
  void * user_ptr;
  /**/
  pthread_mutex_t mutex;
  SLObjectItf playerObj;
  SLPlayItf play;
  SLBufferQueueItf bufq;
  SLVolumeItf volume;
  void ** queuebuf;
  uint32_t queuebuf_capacity;
  int queuebuf_idx;
  long queuebuf_len;
  long bytespersec;
  long framesize;
  /* Total number of played frames.
   * Synchronized by stream::mutex lock. */
  long written;
  /* Flag indicating draining. Synchronized
   * by stream::mutex lock. */
  int draining;
  /* Flags to determine in/out.*/
  uint32_t input_enabled;
  uint32_t output_enabled;
  /* Recorder abstract object. */
  SLObjectItf recorderObj;
  /* Recorder Itf for input capture. */
  SLRecordItf recorderItf;
  /* Buffer queue for input capture. */
  SLAndroidSimpleBufferQueueItf recorderBufferQueueItf;
  /* Store input buffers. */
  void ** input_buffer_array;
  /* The capacity of the array.
   * On capture only can be small (4).
   * On full duplex is calculated to
   * store 1 sec of data buffers. */
  uint32_t input_array_capacity;
  /* Current filled index of input buffer array.
   * It is initiated to -1 indicating buffering
   * have not started yet. */
  int input_buffer_index;
  /* Length of input buffer.*/
  uint32_t input_buffer_length;
  /* Input frame size */
  uint32_t input_frame_size;
  /* Device sampling rate. If user rate is not
   * accepted an compatible rate is set. If it is
   * accepted this is equal to params.rate. */
  uint32_t input_device_rate;
  /* Exchange input buffers between input
   * and full duplex threads. */
  array_queue * input_queue;
  /* Silent input buffer used on full duplex. */
  void * input_silent_buffer;
  /* Number of input frames from the start of the stream*/
  uint32_t input_total_frames;
  /* Flag to stop the execution of user callback and
   * close all working threads. Synchronized by
   * stream::mutex lock. */
  uint32_t shutdown;
  /* Store user callback. */
  cubeb_data_callback data_callback;
  /* Store state callback. */
  cubeb_state_callback state_callback;

  cubeb_resampler * resampler;
  unsigned int user_output_rate;
  unsigned int output_configured_rate;
  unsigned int buffer_size_frames;
  // Audio output latency used in cubeb_stream_get_position().
  unsigned int output_latency_ms;
  int64_t lastPosition;
  int64_t lastPositionTimeStamp;
  int64_t lastCompensativePosition;
  int voice_input;
  int voice_output;
};

/* Forward declaration. */
static int opensl_stop_player(cubeb_stream * stm);
static int opensl_stop_recorder(cubeb_stream * stm);

static int
opensl_get_draining(cubeb_stream * stm)
{
#ifdef DEBUG
  int r = pthread_mutex_trylock(&stm->mutex);
  assert((r == EDEADLK || r == EBUSY) && "get_draining: mutex should be locked but it's not.");
#endif
  return stm->draining;
}

static void
opensl_set_draining(cubeb_stream * stm, int value)
{
#ifdef DEBUG
  int r = pthread_mutex_trylock(&stm->mutex);
  LOG("set draining try r = %d", r);
  assert((r == EDEADLK || r == EBUSY) && "set_draining: mutex should be locked but it's not.");
#endif
  assert(value == 0 || value == 1);
  stm->draining = value;
}

static void
opensl_notify_drained(cubeb_stream * stm)
{
  assert(stm);
  int r = pthread_mutex_lock(&stm->mutex);
  assert(r == 0);
  int draining = opensl_get_draining(stm);
  r = pthread_mutex_unlock(&stm->mutex);
  assert(r == 0);
  if (draining) {
    stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_DRAINED);
    if (stm->play) {
      LOG("stop player in play_callback");
      r = opensl_stop_player(stm);
      assert(r == CUBEB_OK);
    }
    if (stm->recorderItf) {
      r = opensl_stop_recorder(stm);
      assert(r == CUBEB_OK);
    }
  }
}

static uint32_t
opensl_get_shutdown(cubeb_stream * stm)
{
#ifdef DEBUG
  int r = pthread_mutex_trylock(&stm->mutex);
  assert((r == EDEADLK || r == EBUSY) && "get_shutdown: mutex should be locked but it's not.");
#endif
  return stm->shutdown;
}

static void
opensl_set_shutdown(cubeb_stream * stm, uint32_t value)
{
#ifdef DEBUG
  int r = pthread_mutex_trylock(&stm->mutex);
  LOG("set shutdown try r = %d", r);
  assert((r == EDEADLK || r == EBUSY) && "set_shutdown: mutex should be locked but it's not.");
#endif
  assert(value == 0 || value == 1);
  stm->shutdown = value;
}

static void
play_callback(SLPlayItf caller, void * user_ptr, SLuint32 event)
{
  cubeb_stream * stm = user_ptr;
  assert(stm);
  switch (event) {
    case SL_PLAYEVENT_HEADATMARKER:
      opensl_notify_drained(stm);
    break;
  default:
    break;
  }
}

static void
recorder_marker_callback (SLRecordItf caller, void * pContext, SLuint32 event)
{
  cubeb_stream * stm = pContext;
  assert(stm);

  if (event == SL_RECORDEVENT_HEADATMARKER) {
    int r = pthread_mutex_lock(&stm->mutex);
    assert(r == 0);
    int draining = opensl_get_draining(stm);
    r = pthread_mutex_unlock(&stm->mutex);
    assert(r == 0);
    if (draining) {
      stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_DRAINED);
      if (stm->recorderItf) {
        r = opensl_stop_recorder(stm);
        assert(r == CUBEB_OK);
      }
      if (stm->play) {
        r = opensl_stop_player(stm);
        assert(r == CUBEB_OK);
      }
    }
  }
}

static void
bufferqueue_callback(SLBufferQueueItf caller, void * user_ptr)
{
  cubeb_stream * stm = user_ptr;
  assert(stm);
  SLBufferQueueState state;
  SLresult res;
  long written = 0;

  res = (*stm->bufq)->GetState(stm->bufq, &state);
  assert(res == SL_RESULT_SUCCESS);

  if (state.count > 1) {
    return;
  }

  uint8_t *buf = stm->queuebuf[stm->queuebuf_idx];
  written = 0;
  int r = pthread_mutex_lock(&stm->mutex);
  assert(r == 0);
  int draining = opensl_get_draining(stm);
  uint32_t shutdown = opensl_get_shutdown(stm);
  r = pthread_mutex_unlock(&stm->mutex);
  assert(r == 0);
  if (!draining && !shutdown) {
    written = cubeb_resampler_fill(stm->resampler,
                                   NULL, NULL,
                                   buf, stm->queuebuf_len / stm->framesize);
    LOG("bufferqueue_callback: resampler fill returned %ld frames", written);
    if (written < 0 || written * stm->framesize > stm->queuebuf_len) {
      r = pthread_mutex_lock(&stm->mutex);
      assert(r == 0);
      opensl_set_shutdown(stm, 1);
      r = pthread_mutex_unlock(&stm->mutex);
      assert(r == 0);
      opensl_stop_player(stm);
      stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_ERROR);
      return;
    }
  }

  // Keep sending silent data even in draining mode to prevent the audio
  // back-end from being stopped automatically by OpenSL/ES.
  assert(stm->queuebuf_len >= written * stm->framesize);
  memset(buf + written * stm->framesize, 0, stm->queuebuf_len - written * stm->framesize);
  res = (*stm->bufq)->Enqueue(stm->bufq, buf, stm->queuebuf_len);
  assert(res == SL_RESULT_SUCCESS);
  stm->queuebuf_idx = (stm->queuebuf_idx + 1) % stm->queuebuf_capacity;

  if (written > 0) {
    pthread_mutex_lock(&stm->mutex);
    stm->written += written;
    pthread_mutex_unlock(&stm->mutex);
  }

  if (!draining && written * stm->framesize < stm->queuebuf_len) {
    LOG("bufferqueue_callback draining");
    r = pthread_mutex_lock(&stm->mutex);
    assert(r == 0);
    int64_t written_duration = INT64_C(1000) * stm->written * stm->framesize / stm->bytespersec;
    opensl_set_draining(stm, 1);
    r = pthread_mutex_unlock(&stm->mutex);
    assert(r == 0);

    if (written_duration == 0) {
      // since we didn't write any sample, it's not possible to reach the marker
      // time and trigger the callback. We should initiative notify drained.
      opensl_notify_drained(stm);
    } else {
      // Use SL_PLAYEVENT_HEADATMARKER event from slPlayCallback of SLPlayItf
      // to make sure all the data has been processed.
      (*stm->play)->SetMarkerPosition(stm->play, (SLmillisecond)written_duration);
    }
    return;
  }
}

static int
opensl_enqueue_recorder(cubeb_stream * stm, void ** last_filled_buffer)
{
  assert(stm);

  int current_index = stm->input_buffer_index;
  void * last_buffer = NULL;

  if (current_index < 0) {
    // This is the first enqueue
    current_index = 0;
  } else {
    // The current index hold the last filled buffer get it before advance index.
    last_buffer = stm->input_buffer_array[current_index];
    // Advance to get next available buffer
    current_index = (current_index + 1) % stm->input_array_capacity;
  }
  // enqueue next empty buffer to be filled by the recorder
  SLresult res = (*stm->recorderBufferQueueItf)->Enqueue(stm->recorderBufferQueueItf,
                                                         stm->input_buffer_array[current_index],
                                                         stm->input_buffer_length);
  if (res != SL_RESULT_SUCCESS ) {
    LOG("Enqueue recorder failed. Error code: %lu", res);
    return CUBEB_ERROR;
  }
  // All good, update buffer and index.
  stm->input_buffer_index = current_index;
  if (last_filled_buffer) {
    *last_filled_buffer = last_buffer;
  }
  return CUBEB_OK;
}

// input data callback
void recorder_callback(SLAndroidSimpleBufferQueueItf bq, void * context)
{
  assert(context);
  cubeb_stream * stm = context;
  assert(stm->recorderBufferQueueItf);

  int r = pthread_mutex_lock(&stm->mutex);
  assert(r == 0);
  uint32_t shutdown = opensl_get_shutdown(stm);
  int draining = opensl_get_draining(stm);
  r = pthread_mutex_unlock(&stm->mutex);
  assert(r == 0);

  if (shutdown || draining) {
    // According to the OpenSL ES 1.1 Specification, 8.14 SLBufferQueueItf
    // page 184, on transition to the SL_RECORDSTATE_STOPPED state,
    // the application should continue to enqueue buffers onto the queue
    // to retrieve the residual recorded data in the system.
    r = opensl_enqueue_recorder(stm, NULL);
    assert(r == CUBEB_OK);
    return;
  }

  // Enqueue next available buffer and get the last filled buffer.
  void * input_buffer = NULL;
  r = opensl_enqueue_recorder(stm, &input_buffer);
  assert(r == CUBEB_OK);
  assert(input_buffer);
  // Fill resampler with last input
  long input_frame_count = stm->input_buffer_length / stm->input_frame_size;
  long got = cubeb_resampler_fill(stm->resampler,
                                  input_buffer,
                                  &input_frame_count,
                                  NULL,
                                  0);
  // Error case
  if (got < 0 || got > input_frame_count) {
    r = pthread_mutex_lock(&stm->mutex);
    assert(r == 0);
    opensl_set_shutdown(stm, 1);
    r = pthread_mutex_unlock(&stm->mutex);
    assert(r == 0);
    r = opensl_stop_recorder(stm);
    assert(r == CUBEB_OK);
    stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_ERROR);
  }

  // Advance total stream frames
  stm->input_total_frames += got;

  if (got < input_frame_count) {
    r = pthread_mutex_lock(&stm->mutex);
    assert(r == 0);
    opensl_set_draining(stm, 1);
    r = pthread_mutex_unlock(&stm->mutex);
    assert(r == 0);
    int64_t duration = INT64_C(1000) * stm->input_total_frames / stm->input_device_rate;
    (*stm->recorderItf)->SetMarkerPosition(stm->recorderItf, (SLmillisecond)duration);
    return;
  }
}

void recorder_fullduplex_callback(SLAndroidSimpleBufferQueueItf bq, void * context)
{
  assert(context);
  cubeb_stream * stm = context;
  assert(stm->recorderBufferQueueItf);

  int r = pthread_mutex_lock(&stm->mutex);
  assert(r == 0);
  int draining = opensl_get_draining(stm);
  uint32_t shutdown = opensl_get_shutdown(stm);
  r = pthread_mutex_unlock(&stm->mutex);
  assert(r == 0);

  if (shutdown || draining) {
    /* On draining and shutdown the recorder should have been stoped from
    *  the one set the flags. Accordint to the doc, on transition to
    *  the SL_RECORDSTATE_STOPPED state, the application should
    *  continue to enqueue buffers onto the queue to retrieve the residual
    *  recorded data in the system. */
    LOG("Input shutdown %d or drain %d", shutdown, draining);
    int r = opensl_enqueue_recorder(stm, NULL);
    assert(r == CUBEB_OK);
    return;
  }

  // Enqueue next available buffer and get the last filled buffer.
  void * input_buffer = NULL;
  r = opensl_enqueue_recorder(stm, &input_buffer);
  assert(r == CUBEB_OK);
  assert(input_buffer);

  assert(stm->input_queue);
  r = array_queue_push(stm->input_queue, input_buffer);
  if (r == -1) {
    LOG("Input queue is full, drop input ...");
    return;
  }

  LOG("Input pushed in the queue, input array %zu",
      array_queue_get_size(stm->input_queue));
}

static void
player_fullduplex_callback(SLBufferQueueItf caller, void * user_ptr)
{
  TIMESTAMP("ENTER");
  cubeb_stream * stm = user_ptr;
  assert(stm);
  SLresult res;

  int r = pthread_mutex_lock(&stm->mutex);
  assert(r == 0);
  int draining = opensl_get_draining(stm);
  uint32_t shutdown = opensl_get_shutdown(stm);
  r = pthread_mutex_unlock(&stm->mutex);
  assert(r == 0);

  // Get output
  void * output_buffer = NULL;
  r = pthread_mutex_lock(&stm->mutex);
  assert(r == 0);
  output_buffer = stm->queuebuf[stm->queuebuf_idx];
  // Advance the output buffer queue index
  stm->queuebuf_idx = (stm->queuebuf_idx + 1) % stm->queuebuf_capacity;
  r = pthread_mutex_unlock(&stm->mutex);
  assert(r == 0);

  if (shutdown || draining) {
    LOG("Shutdown/draining, send silent");
    // Set silent on buffer
    memset(output_buffer, 0, stm->queuebuf_len);

    // Enqueue data in player buffer queue
    res = (*stm->bufq)->Enqueue(stm->bufq,
                                output_buffer,
                                stm->queuebuf_len);
    assert(res == SL_RESULT_SUCCESS);
    return;
  }

  // Get input.
  void * input_buffer = array_queue_pop(stm->input_queue);
  long input_frame_count = stm->input_buffer_length / stm->input_frame_size;
  long frames_needed = stm->queuebuf_len / stm->framesize;
  if (!input_buffer) {
    LOG("Input hole set silent input buffer");
    input_buffer = stm->input_silent_buffer;
  }

  long written = 0;
  // Trigger user callback through resampler
  written = cubeb_resampler_fill(stm->resampler,
                                 input_buffer,
                                 &input_frame_count,
                                 output_buffer,
                                 frames_needed);

  LOG("Fill: written %ld, frames_needed %ld, input array size %zu",
      written, frames_needed, array_queue_get_size(stm->input_queue));

  if (written < 0 || written  > frames_needed) {
    // Error case
    r = pthread_mutex_lock(&stm->mutex);
    assert(r == 0);
    opensl_set_shutdown(stm, 1);
    r = pthread_mutex_unlock(&stm->mutex);
    assert(r == 0);
    opensl_stop_player(stm);
    opensl_stop_recorder(stm);
    stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_ERROR);
    memset(output_buffer, 0, stm->queuebuf_len);

    // Enqueue data in player buffer queue
    res = (*stm->bufq)->Enqueue(stm->bufq,
                                output_buffer,
                                stm->queuebuf_len);
    assert(res == SL_RESULT_SUCCESS);
    return;
  }

  // Advance total out written  frames counter
  r = pthread_mutex_lock(&stm->mutex);
  assert(r == 0);
  stm->written += written;
  r = pthread_mutex_unlock(&stm->mutex);
  assert(r == 0);

  if ( written < frames_needed) {
    r = pthread_mutex_lock(&stm->mutex);
    assert(r == 0);
    int64_t written_duration = INT64_C(1000) * stm->written * stm->framesize / stm->bytespersec;
    opensl_set_draining(stm, 1);
    r = pthread_mutex_unlock(&stm->mutex);
    assert(r == 0);

    // Use SL_PLAYEVENT_HEADATMARKER event from slPlayCallback of SLPlayItf
    // to make sure all the data has been processed.
    (*stm->play)->SetMarkerPosition(stm->play, (SLmillisecond)written_duration);
  }

  // Keep sending silent data even in draining mode to prevent the audio
  // back-end from being stopped automatically by OpenSL/ES.
  memset((uint8_t *)output_buffer + written * stm->framesize, 0,
         stm->queuebuf_len - written * stm->framesize);

  // Enqueue data in player buffer queue
  res = (*stm->bufq)->Enqueue(stm->bufq,
                              output_buffer,
                              stm->queuebuf_len);
  assert(res == SL_RESULT_SUCCESS);
  TIMESTAMP("EXIT");
}

static void opensl_destroy(cubeb * ctx);

#if defined(__ANDROID__)
#if (__ANDROID_API__ >= ANDROID_VERSION_LOLLIPOP)
typedef int (system_property_get)(const char*, char*);

static int
wrap_system_property_get(const char* name, char* value)
{
  void* libc = dlopen("libc.so", RTLD_LAZY);
  if (!libc) {
    LOG("Failed to open libc.so");
    return -1;
  }
  system_property_get* func = (system_property_get*)
                              dlsym(libc, "__system_property_get");
  int ret = -1;
  if (func) {
    ret = func(name, value);
  }
  dlclose(libc);
  return ret;
}
#endif

static int
get_android_version(void)
{
  char version_string[PROP_VALUE_MAX];

  memset(version_string, 0, PROP_VALUE_MAX);

#if (__ANDROID_API__ >= ANDROID_VERSION_LOLLIPOP)
  int len = wrap_system_property_get("ro.build.version.sdk", version_string);
#else
  int len = __system_property_get("ro.build.version.sdk", version_string);
#endif
  if (len <= 0) {
    LOG("Failed to get Android version!\n");
    return len;
  }

  int version = (int)strtol(version_string, NULL, 10);
  LOG("Android version %d", version);
  return version;
}
#endif

/*static*/ int
opensl_init(cubeb ** context, char const * context_name)
{
  cubeb * ctx;

#if defined(__ANDROID__)
  int android_version = get_android_version();
  if (android_version > 0 && android_version <= ANDROID_VERSION_GINGERBREAD_MR1) {
    // Don't even attempt to run on Gingerbread and lower
    return CUBEB_ERROR;
  }
#endif

  *context = NULL;

  ctx = calloc(1, sizeof(*ctx));
  assert(ctx);

  ctx->ops = &opensl_ops;

  ctx->lib = dlopen("libOpenSLES.so", RTLD_LAZY);
  if (!ctx->lib) {
    free(ctx);
    return CUBEB_ERROR;
  }

  typedef SLresult (*slCreateEngine_t)(SLObjectItf *,
                                       SLuint32,
                                       const SLEngineOption *,
                                       SLuint32,
                                       const SLInterfaceID *,
                                       const SLboolean *);
  slCreateEngine_t f_slCreateEngine =
    (slCreateEngine_t)dlsym(ctx->lib, "slCreateEngine");
  SLInterfaceID SL_IID_ENGINE = *(SLInterfaceID *)dlsym(ctx->lib, "SL_IID_ENGINE");
  SLInterfaceID SL_IID_OUTPUTMIX = *(SLInterfaceID *)dlsym(ctx->lib, "SL_IID_OUTPUTMIX");
  ctx->SL_IID_VOLUME = *(SLInterfaceID *)dlsym(ctx->lib, "SL_IID_VOLUME");
  ctx->SL_IID_BUFFERQUEUE = *(SLInterfaceID *)dlsym(ctx->lib, "SL_IID_BUFFERQUEUE");
#if defined(__ANDROID__)
  ctx->SL_IID_ANDROIDCONFIGURATION = *(SLInterfaceID *)dlsym(ctx->lib, "SL_IID_ANDROIDCONFIGURATION");
  ctx->SL_IID_ANDROIDSIMPLEBUFFERQUEUE = *(SLInterfaceID *)dlsym(ctx->lib, "SL_IID_ANDROIDSIMPLEBUFFERQUEUE");
#endif
  ctx->SL_IID_PLAY = *(SLInterfaceID *)dlsym(ctx->lib, "SL_IID_PLAY");
  ctx->SL_IID_RECORD = *(SLInterfaceID *)dlsym(ctx->lib, "SL_IID_RECORD");

  if (!f_slCreateEngine ||
      !SL_IID_ENGINE ||
      !SL_IID_OUTPUTMIX ||
      !ctx->SL_IID_BUFFERQUEUE ||
#if defined(__ANDROID__)
      !ctx->SL_IID_ANDROIDCONFIGURATION ||
      !ctx->SL_IID_ANDROIDSIMPLEBUFFERQUEUE ||
#endif
      !ctx->SL_IID_PLAY ||
      !ctx->SL_IID_RECORD) {
    opensl_destroy(ctx);
    return CUBEB_ERROR;
  }

  const SLEngineOption opt[] = {{SL_ENGINEOPTION_THREADSAFE, SL_BOOLEAN_TRUE}};

  SLresult res;
  res = cubeb_get_sles_engine(&ctx->engObj, 1, opt, 0, NULL, NULL);

  if (res != SL_RESULT_SUCCESS) {
    opensl_destroy(ctx);
    return CUBEB_ERROR;
  }

  res = cubeb_realize_sles_engine(ctx->engObj);
  if (res != SL_RESULT_SUCCESS) {
    opensl_destroy(ctx);
    return CUBEB_ERROR;
  }

  res = (*ctx->engObj)->GetInterface(ctx->engObj, SL_IID_ENGINE, &ctx->eng);
  if (res != SL_RESULT_SUCCESS) {
    opensl_destroy(ctx);
    return CUBEB_ERROR;
  }

  const SLInterfaceID idsom[] = {SL_IID_OUTPUTMIX};
  const SLboolean reqom[] = {SL_BOOLEAN_TRUE};
  res = (*ctx->eng)->CreateOutputMix(ctx->eng, &ctx->outmixObj, 1, idsom, reqom);
  if (res != SL_RESULT_SUCCESS) {
    opensl_destroy(ctx);
    return CUBEB_ERROR;
  }

  res = (*ctx->outmixObj)->Realize(ctx->outmixObj, SL_BOOLEAN_FALSE);
  if (res != SL_RESULT_SUCCESS) {
    opensl_destroy(ctx);
    return CUBEB_ERROR;
  }

  ctx->p_output_latency_function = cubeb_output_latency_load_method(android_version);
  if (!cubeb_output_latency_method_is_loaded(ctx->p_output_latency_function)) {
    LOG("Warning: output latency is not available, cubeb_stream_get_position() is not supported");
  }

  *context = ctx;

  LOG("Cubeb init (%p) success", ctx);
  return CUBEB_OK;
}

static char const *
opensl_get_backend_id(cubeb * ctx)
{
  return "opensl";
}

static int
opensl_get_max_channel_count(cubeb * ctx, uint32_t * max_channels)
{
  assert(ctx && max_channels);
  /* The android mixer handles up to two channels, see
     http://androidxref.com/4.2.2_r1/xref/frameworks/av/services/audioflinger/AudioFlinger.h#67 */
  *max_channels = 2;

  return CUBEB_OK;
}

static void
opensl_destroy(cubeb * ctx)
{
  if (ctx->outmixObj)
    (*ctx->outmixObj)->Destroy(ctx->outmixObj);
  if (ctx->engObj)
    cubeb_destroy_sles_engine(&ctx->engObj);
  dlclose(ctx->lib);
  if (ctx->p_output_latency_function)
    cubeb_output_latency_unload_method(ctx->p_output_latency_function);
  free(ctx);
}

static void opensl_stream_destroy(cubeb_stream * stm);

#if defined(__ANDROID__) && (__ANDROID_API__ >= ANDROID_VERSION_LOLLIPOP)
static int
opensl_set_format_ext(SLAndroidDataFormat_PCM_EX * format, cubeb_stream_params * params)
{
  assert(format);
  assert(params);

  format->formatType = SL_ANDROID_DATAFORMAT_PCM_EX;
  format->numChannels = params->channels;
  // sampleRate is in milliHertz
  format->sampleRate = params->rate * 1000;
  format->channelMask = params->channels == 1 ?
                       SL_SPEAKER_FRONT_CENTER :
                       SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT;

  switch (params->format) {
    case CUBEB_SAMPLE_S16LE:
      format->bitsPerSample = SL_PCMSAMPLEFORMAT_FIXED_16;
      format->containerSize = SL_PCMSAMPLEFORMAT_FIXED_16;
      format->representation = SL_ANDROID_PCM_REPRESENTATION_SIGNED_INT;
      format->endianness = SL_BYTEORDER_LITTLEENDIAN;
      break;
    case CUBEB_SAMPLE_S16BE:
      format->bitsPerSample = SL_PCMSAMPLEFORMAT_FIXED_16;
      format->containerSize = SL_PCMSAMPLEFORMAT_FIXED_16;
      format->representation = SL_ANDROID_PCM_REPRESENTATION_SIGNED_INT;
      format->endianness = SL_BYTEORDER_BIGENDIAN;
      break;
    case CUBEB_SAMPLE_FLOAT32LE:
      format->bitsPerSample = SL_PCMSAMPLEFORMAT_FIXED_32;
      format->containerSize = SL_PCMSAMPLEFORMAT_FIXED_32;
      format->representation = SL_ANDROID_PCM_REPRESENTATION_FLOAT;
      format->endianness = SL_BYTEORDER_LITTLEENDIAN;
      break;
    case CUBEB_SAMPLE_FLOAT32BE:
      format->bitsPerSample = SL_PCMSAMPLEFORMAT_FIXED_32;
      format->containerSize = SL_PCMSAMPLEFORMAT_FIXED_32;
      format->representation = SL_ANDROID_PCM_REPRESENTATION_FLOAT;
      format->endianness = SL_BYTEORDER_BIGENDIAN;
      break;
    default:
      return CUBEB_ERROR_INVALID_FORMAT;
  }
  return CUBEB_OK;
}
#endif

static int
opensl_set_format(SLDataFormat_PCM * format, cubeb_stream_params * params)
{
  assert(format);
  assert(params);

  format->formatType = SL_DATAFORMAT_PCM;
  format->numChannels = params->channels;
  // samplesPerSec is in milliHertz
  format->samplesPerSec = params->rate * 1000;
  format->bitsPerSample = SL_PCMSAMPLEFORMAT_FIXED_16;
  format->containerSize = SL_PCMSAMPLEFORMAT_FIXED_16;
  format->channelMask = params->channels == 1 ?
                       SL_SPEAKER_FRONT_CENTER :
                       SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT;

  switch (params->format) {
    case CUBEB_SAMPLE_S16LE:
      format->endianness = SL_BYTEORDER_LITTLEENDIAN;
          break;
    case CUBEB_SAMPLE_S16BE:
      format->endianness = SL_BYTEORDER_BIGENDIAN;
          break;
    default:
      return CUBEB_ERROR_INVALID_FORMAT;
  }
  return CUBEB_OK;
}

static int
opensl_configure_capture(cubeb_stream * stm, cubeb_stream_params * params)
{
  assert(stm);
  assert(params);

  SLDataLocator_AndroidSimpleBufferQueue lDataLocatorOut;
  lDataLocatorOut.locatorType = SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE;
  lDataLocatorOut.numBuffers = NBUFS;

  SLDataFormat_PCM lDataFormat;
  int r = opensl_set_format(&lDataFormat, params);
  if (r != CUBEB_OK) {
    return CUBEB_ERROR_INVALID_FORMAT;
  }

  /* For now set device rate to params rate. */
  stm->input_device_rate = params->rate;

  SLDataSink lDataSink;
  lDataSink.pLocator = &lDataLocatorOut;
  lDataSink.pFormat = &lDataFormat;

  SLDataLocator_IODevice lDataLocatorIn;
  lDataLocatorIn.locatorType = SL_DATALOCATOR_IODEVICE;
  lDataLocatorIn.deviceType = SL_IODEVICE_AUDIOINPUT;
  lDataLocatorIn.deviceID = SL_DEFAULTDEVICEID_AUDIOINPUT;
  lDataLocatorIn.device = NULL;

  SLDataSource lDataSource;
  lDataSource.pLocator = &lDataLocatorIn;
  lDataSource.pFormat = NULL;

  const SLInterfaceID lSoundRecorderIIDs[] = { stm->context->SL_IID_RECORD,
                                               stm->context->SL_IID_ANDROIDSIMPLEBUFFERQUEUE,
                                               stm->context->SL_IID_ANDROIDCONFIGURATION };

  const SLboolean lSoundRecorderReqs[] = { SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE };
  // create the audio recorder abstract object
  SLresult res = (*stm->context->eng)->CreateAudioRecorder(stm->context->eng,
                                                           &stm->recorderObj,
                                                           &lDataSource,
                                                           &lDataSink,
                                                           NELEMS(lSoundRecorderIIDs),
                                                           lSoundRecorderIIDs,
                                                           lSoundRecorderReqs);
  // Sample rate not supported. Try again with default sample rate!
  if (res == SL_RESULT_CONTENT_UNSUPPORTED) {
    if (stm->output_enabled && stm->output_configured_rate != 0) {
      // Set the same with the player. Since there is no
      // api for input device this is a safe choice.
      stm->input_device_rate = stm->output_configured_rate;
    } else  {
      // The output preferred rate is used for an input only scenario.
      // The default rate expected to be supported from all android devices.
      stm->input_device_rate = DEFAULT_SAMPLE_RATE;
    }
    lDataFormat.samplesPerSec = stm->input_device_rate * 1000;
    res = (*stm->context->eng)->CreateAudioRecorder(stm->context->eng,
                                                    &stm->recorderObj,
                                                    &lDataSource,
                                                    &lDataSink,
                                                    NELEMS(lSoundRecorderIIDs),
                                                    lSoundRecorderIIDs,
                                                    lSoundRecorderReqs);

    if (res != SL_RESULT_SUCCESS) {
      LOG("Failed to create recorder. Error code: %lu", res);
      return CUBEB_ERROR;
    }
  }


  if (get_android_version() > ANDROID_VERSION_JELLY_BEAN) {
    SLAndroidConfigurationItf recorderConfig;
    res = (*stm->recorderObj)
              ->GetInterface(stm->recorderObj,
                             stm->context->SL_IID_ANDROIDCONFIGURATION,
                             &recorderConfig);

    if (res != SL_RESULT_SUCCESS) {
      LOG("Failed to get the android configuration interface for recorder. Error "
          "code: %lu",
          res);
      return CUBEB_ERROR;
    }

    // Voice recognition is the lowest latency, according to the docs. Camcorder
    // uses a microphone that is in the same direction as the camera.
    SLint32 streamType = stm->voice_input ? SL_ANDROID_RECORDING_PRESET_VOICE_RECOGNITION
                                          : SL_ANDROID_RECORDING_PRESET_CAMCORDER;

    res = (*recorderConfig)
              ->SetConfiguration(recorderConfig, SL_ANDROID_KEY_RECORDING_PRESET,
                                 &streamType, sizeof(SLint32));

    if (res != SL_RESULT_SUCCESS) {
      LOG("Failed to set the android configuration to VOICE for the recorder. "
          "Error code: %lu", res);
      return CUBEB_ERROR;
    }
  }
  // realize the audio recorder
  res = (*stm->recorderObj)->Realize(stm->recorderObj, SL_BOOLEAN_FALSE);
  if (res != SL_RESULT_SUCCESS) {
    LOG("Failed to realize recorder. Error code: %lu", res);
    return CUBEB_ERROR;
  }
  // get the record interface
  res = (*stm->recorderObj)->GetInterface(stm->recorderObj,
                                          stm->context->SL_IID_RECORD,
                                          &stm->recorderItf);
  if (res != SL_RESULT_SUCCESS) {
    LOG("Failed to get recorder interface. Error code: %lu", res);
    return CUBEB_ERROR;
  }

  res = (*stm->recorderItf)->RegisterCallback(stm->recorderItf, recorder_marker_callback, stm);
  if (res != SL_RESULT_SUCCESS) {
    LOG("Failed to register recorder marker callback. Error code: %lu", res);
    return CUBEB_ERROR;
  }

  (*stm->recorderItf)->SetMarkerPosition(stm->recorderItf, (SLmillisecond)0);

  res = (*stm->recorderItf)->SetCallbackEventsMask(stm->recorderItf, (SLuint32)SL_RECORDEVENT_HEADATMARKER);
  if (res != SL_RESULT_SUCCESS) {
    LOG("Failed to set headatmarker event mask. Error code: %lu", res);
    return CUBEB_ERROR;
  }
  // get the simple android buffer queue interface
  res = (*stm->recorderObj)->GetInterface(stm->recorderObj,
                                          stm->context->SL_IID_ANDROIDSIMPLEBUFFERQUEUE,
                                          &stm->recorderBufferQueueItf);
  if (res != SL_RESULT_SUCCESS) {
    LOG("Failed to get recorder (android) buffer queue interface. Error code: %lu", res);
    return CUBEB_ERROR;
  }

  // register callback on record (input) buffer queue
  slAndroidSimpleBufferQueueCallback rec_callback = recorder_callback;
  if (stm->output_enabled) {
    // Register full duplex callback instead.
    rec_callback = recorder_fullduplex_callback;
  }
  res = (*stm->recorderBufferQueueItf)->RegisterCallback(stm->recorderBufferQueueItf,
                                                         rec_callback,
                                                         stm);
  if (res != SL_RESULT_SUCCESS) {
    LOG("Failed to register recorder buffer queue callback. Error code: %lu", res);
    return CUBEB_ERROR;
  }

  // Calculate length of input buffer according to requested latency
  stm->input_frame_size = params->channels * sizeof(int16_t);
  stm->input_buffer_length = (stm->input_frame_size * stm->buffer_size_frames);

  // Calculate the capacity of input array
  stm->input_array_capacity = NBUFS;
  if (stm->output_enabled) {
    // Full duplex, update capacity to hold 1 sec of data
    stm->input_array_capacity = 1 * stm->input_device_rate / stm->input_buffer_length;
  }
  // Allocate input array
  stm->input_buffer_array = (void**)calloc(1, sizeof(void*)*stm->input_array_capacity);
  // Buffering has not started yet.
  stm->input_buffer_index = -1;
  // Prepare input buffers
  for(uint32_t i = 0; i < stm->input_array_capacity; ++i) {
    stm->input_buffer_array[i] = calloc(1, stm->input_buffer_length);
  }

  // On full duplex allocate input queue and silent buffer
  if (stm->output_enabled) {
    stm->input_queue = array_queue_create(stm->input_array_capacity);
    assert(stm->input_queue);
    stm->input_silent_buffer = calloc(1, stm->input_buffer_length);
    assert(stm->input_silent_buffer);
  }

  // Enqueue buffer to start rolling once recorder started
  r = opensl_enqueue_recorder(stm, NULL);
  if (r != CUBEB_OK) {
    return r;
  }

  LOG("Cubeb stream init recorder success");

  return CUBEB_OK;
}

static int
opensl_configure_playback(cubeb_stream * stm, cubeb_stream_params * params) {
  assert(stm);
  assert(params);

  stm->user_output_rate = params->rate;
  if(params->format == CUBEB_SAMPLE_S16NE || params->format == CUBEB_SAMPLE_S16BE) {
    stm->framesize = params->channels * sizeof(int16_t);
  } else if(params->format == CUBEB_SAMPLE_FLOAT32NE || params->format == CUBEB_SAMPLE_FLOAT32BE) {
    stm->framesize = params->channels * sizeof(float);
  }
  stm->lastPosition = -1;
  stm->lastPositionTimeStamp = 0;
  stm->lastCompensativePosition = -1;

  void* format = NULL;
  SLuint32* format_sample_rate = NULL;

#if defined(__ANDROID__) && (__ANDROID_API__ >= ANDROID_VERSION_LOLLIPOP)
  SLAndroidDataFormat_PCM_EX pcm_ext_format;
  if (get_android_version() >= ANDROID_VERSION_LOLLIPOP) {
    if (opensl_set_format_ext(&pcm_ext_format, params) != CUBEB_OK) {
      return CUBEB_ERROR_INVALID_FORMAT;
    }
    format = &pcm_ext_format;
    format_sample_rate = &pcm_ext_format.sampleRate;
  }
#endif

  SLDataFormat_PCM pcm_format;
  if(!format) {
    if(opensl_set_format(&pcm_format, params) != CUBEB_OK) {
      return CUBEB_ERROR_INVALID_FORMAT;
    }
    format = &pcm_format;
    format_sample_rate = &pcm_format.samplesPerSec;
  }

  SLDataLocator_BufferQueue loc_bufq;
  loc_bufq.locatorType = SL_DATALOCATOR_BUFFERQUEUE;
  loc_bufq.numBuffers = NBUFS;
  SLDataSource source;
  source.pLocator = &loc_bufq;
  source.pFormat = format;

  SLDataLocator_OutputMix loc_outmix;
  loc_outmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
  loc_outmix.outputMix = stm->context->outmixObj;
  SLDataSink sink;
  sink.pLocator = &loc_outmix;
  sink.pFormat = NULL;

#if defined(__ANDROID__)
  const SLInterfaceID ids[] = {stm->context->SL_IID_BUFFERQUEUE,
                               stm->context->SL_IID_VOLUME,
                               stm->context->SL_IID_ANDROIDCONFIGURATION};
  const SLboolean req[] = {SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE};
#else
  const SLInterfaceID ids[] = {ctx->SL_IID_BUFFERQUEUE, ctx->SL_IID_VOLUME};
  const SLboolean req[] = {SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE};
#endif
  assert(NELEMS(ids) == NELEMS(req));

  uint32_t preferred_sampling_rate = stm->user_output_rate;
  SLresult res = SL_RESULT_CONTENT_UNSUPPORTED;
  if (preferred_sampling_rate) {
    res = (*stm->context->eng)->CreateAudioPlayer(stm->context->eng,
                                                  &stm->playerObj,
                                                  &source,
                                                  &sink,
                                                  NELEMS(ids),
                                                  ids,
                                                  req);
  }

  // Sample rate not supported? Try again with primary sample rate!
  if (res == SL_RESULT_CONTENT_UNSUPPORTED &&
      preferred_sampling_rate != DEFAULT_SAMPLE_RATE) {
    preferred_sampling_rate = DEFAULT_SAMPLE_RATE;
    *format_sample_rate = preferred_sampling_rate * 1000;
    res = (*stm->context->eng)->CreateAudioPlayer(stm->context->eng,
                                                  &stm->playerObj,
                                                  &source,
                                                  &sink,
                                                  NELEMS(ids),
                                                  ids,
                                                  req);
  }

  if (res != SL_RESULT_SUCCESS) {
    LOG("Failed to create audio player. Error code: %lu", res);
    return CUBEB_ERROR;
  }

  stm->output_configured_rate = preferred_sampling_rate;
  stm->bytespersec = stm->output_configured_rate * stm->framesize;
  stm->queuebuf_len = stm->framesize * stm->buffer_size_frames;

  // Calculate the capacity of input array
  stm->queuebuf_capacity = NBUFS;
  if (stm->output_enabled) {
    // Full duplex, update capacity to hold 1 sec of data
    stm->queuebuf_capacity = 1 * stm->output_configured_rate / stm->queuebuf_len;
  }
  // Allocate input array
  stm->queuebuf = (void**)calloc(1, sizeof(void*) * stm->queuebuf_capacity);
  for (uint32_t i = 0; i < stm->queuebuf_capacity; ++i) {
    stm->queuebuf[i] = calloc(1, stm->queuebuf_len);
    assert(stm->queuebuf[i]);
  }

  SLAndroidConfigurationItf playerConfig = NULL;

  if (get_android_version() >= ANDROID_VERSION_N_MR1) {
    res = (*stm->playerObj)
              ->GetInterface(stm->playerObj,
                             stm->context->SL_IID_ANDROIDCONFIGURATION,
                             &playerConfig);
    if (res != SL_RESULT_SUCCESS) {
      LOG("Failed to get Android configuration interface. Error code: %lu", res);
      return CUBEB_ERROR;
    }

    SLint32 streamType = SL_ANDROID_STREAM_MEDIA;
    if (stm->voice_output) {
      streamType = SL_ANDROID_STREAM_VOICE;
    }
    res = (*playerConfig)->SetConfiguration(playerConfig,
                                            SL_ANDROID_KEY_STREAM_TYPE,
                                            &streamType,
                                            sizeof(streamType));
    if (res != SL_RESULT_SUCCESS) {
      LOG("Failed to set Android configuration to %d Error code: %lu",
          streamType, res);
    }

    SLuint32 performanceMode = SL_ANDROID_PERFORMANCE_LATENCY;
    if (stm->buffer_size_frames > POWERSAVE_LATENCY_FRAMES_THRESHOLD) {
      performanceMode = SL_ANDROID_PERFORMANCE_POWER_SAVING;
    }

    res = (*playerConfig)->SetConfiguration(playerConfig,
                                            SL_ANDROID_KEY_PERFORMANCE_MODE,
                                            &performanceMode,
                                            sizeof(performanceMode));
    if (res != SL_RESULT_SUCCESS) {
      LOG("Failed to set Android performance mode to %d Error code: %lu. This is"
          " not fatal", performanceMode, res);
    }
  }

  res = (*stm->playerObj)->Realize(stm->playerObj, SL_BOOLEAN_FALSE);
  if (res != SL_RESULT_SUCCESS) {
    LOG("Failed to realize player object. Error code: %lu", res);
    return CUBEB_ERROR;
  }

  // There are two ways of getting the audio output latency:
  // - a configuration value, only available on some devices (notably devices
  // running FireOS)
  // - A Java method, that we call using JNI.
  //
  // The first method is prefered, if available, because it can account for more
  // latency causes, and is more precise.

  // Latency has to be queried after the realization of the interface, when
  // using SL_IID_ANDROIDCONFIGURATION.
  SLuint32 audioLatency = 0;
  SLuint32 paramSize = sizeof(SLuint32);
  // The reported latency is in milliseconds.
  if (playerConfig) {
    res = (*playerConfig)->GetConfiguration(playerConfig,
                                            (const SLchar *)"androidGetAudioLatency",
                                            &paramSize,
                                            &audioLatency);
    if (res == SL_RESULT_SUCCESS) {
      LOG("Got playback latency using android configuration extension");
      stm->output_latency_ms = audioLatency;
    }
  }
  // `playerConfig` is available, but the above failed, or `playerConfig` is not
  // available. In both cases, we need to acquire the output latency by an other
  // mean.
  if ((playerConfig && res != SL_RESULT_SUCCESS) ||
      !playerConfig) {
    if (cubeb_output_latency_method_is_loaded(stm->context->p_output_latency_function)) {
      LOG("Got playback latency using JNI");
      stm->output_latency_ms = cubeb_get_output_latency(stm->context->p_output_latency_function);
    } else {
      LOG("No alternate latency querying method loaded, A/V sync will be off.");
      stm->output_latency_ms = 0;
    }
  }

  LOG("Audio output latency: %dms", stm->output_latency_ms);

  res = (*stm->playerObj)->GetInterface(stm->playerObj,
                                        stm->context->SL_IID_PLAY,
                                        &stm->play);
  if (res != SL_RESULT_SUCCESS) {
    LOG("Failed to get play interface. Error code: %lu", res);
    return CUBEB_ERROR;
  }

  res = (*stm->playerObj)->GetInterface(stm->playerObj,
                                        stm->context->SL_IID_BUFFERQUEUE,
                                        &stm->bufq);
  if (res != SL_RESULT_SUCCESS) {
    LOG("Failed to get bufferqueue interface. Error code: %lu", res);
    return CUBEB_ERROR;
  }

  res = (*stm->playerObj)->GetInterface(stm->playerObj,
                                        stm->context->SL_IID_VOLUME,
                                        &stm->volume);
  if (res != SL_RESULT_SUCCESS) {
    LOG("Failed to get volume interface. Error code: %lu", res);
    return CUBEB_ERROR;
  }

  res = (*stm->play)->RegisterCallback(stm->play, play_callback, stm);
  if (res != SL_RESULT_SUCCESS) {
    LOG("Failed to register play callback. Error code: %lu", res);
    return CUBEB_ERROR;
  }

  // Work around wilhelm/AudioTrack badness, bug 1221228
  (*stm->play)->SetMarkerPosition(stm->play, (SLmillisecond)0);

  res = (*stm->play)->SetCallbackEventsMask(stm->play, (SLuint32)SL_PLAYEVENT_HEADATMARKER);
  if (res != SL_RESULT_SUCCESS) {
    LOG("Failed to set headatmarker event mask. Error code: %lu", res);
    return CUBEB_ERROR;
  }

  slBufferQueueCallback player_callback = bufferqueue_callback;
  if (stm->input_enabled) {
    player_callback = player_fullduplex_callback;
  }
  res = (*stm->bufq)->RegisterCallback(stm->bufq, player_callback, stm);
  if (res != SL_RESULT_SUCCESS) {
    LOG("Failed to register bufferqueue callback. Error code: %lu", res);
    return CUBEB_ERROR;
  }

  {
    // Enqueue a silent frame so once the player becomes playing, the frame
    // will be consumed and kick off the buffer queue callback.
    // Note the duration of a single frame is less than 1ms. We don't bother
    // adjusting the playback position.
    uint8_t *buf = stm->queuebuf[stm->queuebuf_idx++];
    memset(buf, 0, stm->framesize);
    res = (*stm->bufq)->Enqueue(stm->bufq, buf, stm->framesize);
    assert(res == SL_RESULT_SUCCESS);
  }

  LOG("Cubeb stream init playback success");
  return CUBEB_OK;
}

static int
opensl_validate_stream_param(cubeb_stream_params * stream_params)
{
  if ((stream_params &&
       (stream_params->channels < 1 || stream_params->channels > 32))) {
    return CUBEB_ERROR_INVALID_FORMAT;
  }
  if ((stream_params &&
       (stream_params->prefs & CUBEB_STREAM_PREF_LOOPBACK))) {
    LOG("Loopback is not supported");
    return CUBEB_ERROR_NOT_SUPPORTED;
  }
  return CUBEB_OK;
}

int has_pref_set(cubeb_stream_params* input_params,
                 cubeb_stream_params* output_params,
                 cubeb_stream_prefs pref)
{
  return (input_params && input_params->prefs & pref) ||
         (output_params && output_params->prefs & pref);
}

static int
opensl_stream_init(cubeb * ctx, cubeb_stream ** stream, char const * stream_name,
                   cubeb_devid input_device,
                   cubeb_stream_params * input_stream_params,
                   cubeb_devid output_device,
                   cubeb_stream_params * output_stream_params,
                   unsigned int latency_frames,
                   cubeb_data_callback data_callback, cubeb_state_callback state_callback,
                   void * user_ptr)
{
  cubeb_stream * stm;

  assert(ctx);
  if (input_device || output_device) {
    LOG("Device selection is not supported in Android. The default will be used");
  }

  *stream = NULL;

  int r = opensl_validate_stream_param(output_stream_params);
  if(r != CUBEB_OK) {
    LOG("Output stream params not valid");
    return r;
  }
  r = opensl_validate_stream_param(input_stream_params);
  if(r != CUBEB_OK) {
    LOG("Input stream params not valid");
    return r;
  }

  stm = calloc(1, sizeof(*stm));
  assert(stm);

  stm->context = ctx;
  stm->data_callback = data_callback;
  stm->state_callback = state_callback;
  stm->user_ptr = user_ptr;
  stm->buffer_size_frames = latency_frames ? latency_frames : DEFAULT_NUM_OF_FRAMES;
  stm->input_enabled = (input_stream_params) ? 1 : 0;
  stm->output_enabled = (output_stream_params) ? 1 : 0;
  stm->shutdown = 1;
  stm->voice_input = has_pref_set(input_stream_params, NULL, CUBEB_STREAM_PREF_VOICE);
  stm->voice_output = has_pref_set(NULL, output_stream_params, CUBEB_STREAM_PREF_VOICE);

  LOG("cubeb stream prefs: voice_input: %s voice_output: %s", stm->voice_input ? "true" : "false",
                                                              stm->voice_output ? "true" : "false");

#ifdef DEBUG
  pthread_mutexattr_t attr;
  pthread_mutexattr_init(&attr);
  pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
  r = pthread_mutex_init(&stm->mutex, &attr);
#else
  r = pthread_mutex_init(&stm->mutex, NULL);
#endif
  assert(r == 0);

  if (output_stream_params) {
    LOG("Playback params: Rate %d, channels %d, format %d, latency in frames %d.",
        output_stream_params->rate, output_stream_params->channels,
        output_stream_params->format, stm->buffer_size_frames);
    r = opensl_configure_playback(stm, output_stream_params);
    if (r != CUBEB_OK) {
      opensl_stream_destroy(stm);
      return r;
    }
  }

  if (input_stream_params) {
    LOG("Capture params: Rate %d, channels %d, format %d, latency in frames %d.",
        input_stream_params->rate, input_stream_params->channels,
        input_stream_params->format, stm->buffer_size_frames);
    r = opensl_configure_capture(stm, input_stream_params);
    if (r != CUBEB_OK) {
      opensl_stream_destroy(stm);
      return r;
    }
  }

  /* Configure resampler*/
  uint32_t target_sample_rate;
  if (input_stream_params) {
    target_sample_rate = input_stream_params->rate;
  } else {
    assert(output_stream_params);
    target_sample_rate = output_stream_params->rate;
  }

  // Use the actual configured rates for input
  // and output.
  cubeb_stream_params input_params;
  if (input_stream_params) {
    input_params = *input_stream_params;
    input_params.rate = stm->input_device_rate;
  }
  cubeb_stream_params output_params;
  if (output_stream_params) {
    output_params = *output_stream_params;
    output_params.rate = stm->output_configured_rate;
  }

  stm->resampler = cubeb_resampler_create(stm,
                                          input_stream_params ? &input_params : NULL,
                                          output_stream_params ? &output_params : NULL,
                                          target_sample_rate,
                                          data_callback,
                                          user_ptr,
                                          CUBEB_RESAMPLER_QUALITY_DEFAULT);
  if (!stm->resampler) {
    LOG("Failed to create resampler");
    opensl_stream_destroy(stm);
    return CUBEB_ERROR;
  }

  *stream = stm;
  LOG("Cubeb stream (%p) init success", stm);
  return CUBEB_OK;
}

static int
opensl_start_player(cubeb_stream * stm)
{
  assert(stm->playerObj);
  SLuint32 playerState;
  (*stm->playerObj)->GetState(stm->playerObj, &playerState);
  if (playerState == SL_OBJECT_STATE_REALIZED) {
    SLresult res = (*stm->play)->SetPlayState(stm->play, SL_PLAYSTATE_PLAYING);
    if(res != SL_RESULT_SUCCESS) {
      LOG("Failed to start player. Error code: %lu", res);
      return CUBEB_ERROR;
    }
  }
  return CUBEB_OK;
}

static int
opensl_start_recorder(cubeb_stream * stm)
{
  assert(stm->recorderObj);
  SLuint32 recorderState;
  (*stm->recorderObj)->GetState(stm->recorderObj, &recorderState);
  if (recorderState == SL_OBJECT_STATE_REALIZED) {
    SLresult res = (*stm->recorderItf)->SetRecordState(stm->recorderItf, SL_RECORDSTATE_RECORDING);
    if(res != SL_RESULT_SUCCESS) {
      LOG("Failed to start recorder. Error code: %lu", res);
      return CUBEB_ERROR;
    }
  }
  return CUBEB_OK;
}

static int
opensl_stream_start(cubeb_stream * stm)
{
  assert(stm);

  int r = pthread_mutex_lock(&stm->mutex);
  assert(r == 0);
  opensl_set_shutdown(stm, 0);
  opensl_set_draining(stm, 0);
  r = pthread_mutex_unlock(&stm->mutex);
  assert(r == 0);

  if (stm->playerObj) {
    r = opensl_start_player(stm);
    if (r != CUBEB_OK) {
      return r;
    }
  }

  if (stm->recorderObj) {
    int r = opensl_start_recorder(stm);
    if (r != CUBEB_OK) {
      return r;
    }
  }

  stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_STARTED);
  LOG("Cubeb stream (%p) started", stm);
  return CUBEB_OK;
}

static int
opensl_stop_player(cubeb_stream * stm)
{
  assert(stm->playerObj);
  assert(stm->shutdown || stm->draining);

  SLresult res = (*stm->play)->SetPlayState(stm->play, SL_PLAYSTATE_PAUSED);
  if (res != SL_RESULT_SUCCESS) {
    LOG("Failed to stop player. Error code: %lu", res);
    return CUBEB_ERROR;
  }

  return CUBEB_OK;
}

static int
opensl_stop_recorder(cubeb_stream * stm)
{
  assert(stm->recorderObj);
  assert(stm->shutdown || stm->draining);

  SLresult res = (*stm->recorderItf)->SetRecordState(stm->recorderItf, SL_RECORDSTATE_PAUSED);
  if (res != SL_RESULT_SUCCESS) {
    LOG("Failed to stop recorder. Error code: %lu", res);
    return CUBEB_ERROR;
  }

  return CUBEB_OK;
}

static int
opensl_stream_stop(cubeb_stream * stm)
{
  assert(stm);

  int r = pthread_mutex_lock(&stm->mutex);
  assert(r == 0);
  opensl_set_shutdown(stm, 1);
  r = pthread_mutex_unlock(&stm->mutex);
  assert(r == 0);

  if (stm->playerObj) {
    r = opensl_stop_player(stm);
    if (r != CUBEB_OK) {
      return r;
    }
  }

  if (stm->recorderObj) {
    int r = opensl_stop_recorder(stm);
    if (r != CUBEB_OK) {
      return r;
    }
  }

  stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_STOPPED);
  LOG("Cubeb stream (%p) stopped", stm);
  return CUBEB_OK;
}

static int
opensl_destroy_recorder(cubeb_stream * stm)
{
  assert(stm);
  assert(stm->recorderObj);

  if (stm->recorderBufferQueueItf) {
    SLresult res = (*stm->recorderBufferQueueItf)->Clear(stm->recorderBufferQueueItf);
    if (res != SL_RESULT_SUCCESS) {
      LOG("Failed to clear recorder buffer queue. Error code: %lu", res);
      return CUBEB_ERROR;
    }
    stm->recorderBufferQueueItf = NULL;
    for (uint32_t i = 0; i < stm->input_array_capacity; ++i) {
      free(stm->input_buffer_array[i]);
    }
  }

  (*stm->recorderObj)->Destroy(stm->recorderObj);
  stm->recorderObj = NULL;
  stm->recorderItf = NULL;

  if (stm->input_queue) {
    array_queue_destroy(stm->input_queue);
  }
  free(stm->input_silent_buffer);

  return CUBEB_OK;
}

static void
opensl_stream_destroy(cubeb_stream * stm)
{
  assert(stm->draining || stm->shutdown);

  if (stm->playerObj) {
    (*stm->playerObj)->Destroy(stm->playerObj);
    stm->playerObj = NULL;
    stm->play = NULL;
    stm->bufq = NULL;
    for (uint32_t i = 0; i < stm->queuebuf_capacity; ++i) {
      free(stm->queuebuf[i]);
    }
  }

  if (stm->recorderObj) {
    int r = opensl_destroy_recorder(stm);
    assert(r == CUBEB_OK);
  }

  if (stm->resampler) {
    cubeb_resampler_destroy(stm->resampler);
  }

  pthread_mutex_destroy(&stm->mutex);

  LOG("Cubeb stream (%p) destroyed", stm);
  free(stm);
}

static int
opensl_stream_get_position(cubeb_stream * stm, uint64_t * position)
{
  SLmillisecond msec;
  uint32_t compensation_msec = 0;
  SLresult res;

  res = (*stm->play)->GetPosition(stm->play, &msec);
  if (res != SL_RESULT_SUCCESS)
    return CUBEB_ERROR;

  struct timespec t;
  clock_gettime(CLOCK_MONOTONIC, &t);
  if(stm->lastPosition == msec) {
    compensation_msec =
      (t.tv_sec*1000000000LL + t.tv_nsec - stm->lastPositionTimeStamp) / 1000000;
  } else {
    stm->lastPositionTimeStamp = t.tv_sec*1000000000LL + t.tv_nsec;
    stm->lastPosition = msec;
  }

  uint64_t samplerate = stm->user_output_rate;
  uint32_t output_latency = stm->output_latency_ms;

  pthread_mutex_lock(&stm->mutex);
  int64_t maximum_position = stm->written * (int64_t)stm->user_output_rate / stm->output_configured_rate;
  pthread_mutex_unlock(&stm->mutex);
  assert(maximum_position >= 0);

  if (msec > output_latency) {
    int64_t unadjusted_position;
    if (stm->lastCompensativePosition > msec + compensation_msec) {
      // Over compensation, use lastCompensativePosition.
      unadjusted_position =
        samplerate * (stm->lastCompensativePosition - output_latency) / 1000;
    } else {
      unadjusted_position =
        samplerate * (msec - output_latency + compensation_msec) / 1000;
      stm->lastCompensativePosition = msec + compensation_msec;
    }
    *position = unadjusted_position < maximum_position ?
      unadjusted_position : maximum_position;
  } else {
    *position = 0;
  }
  return CUBEB_OK;
}

static int
opensl_stream_get_latency(cubeb_stream * stm, uint32_t * latency)
{
  assert(stm);
  assert(latency);

  uint32_t stream_latency_frames =
    stm->user_output_rate * stm->output_latency_ms / 1000;

  return stream_latency_frames + cubeb_resampler_latency(stm->resampler);
}

int
opensl_stream_set_volume(cubeb_stream * stm, float volume)
{
  SLresult res;
  SLmillibel max_level, millibels;
  float unclamped_millibels;

  res = (*stm->volume)->GetMaxVolumeLevel(stm->volume, &max_level);

  if (res != SL_RESULT_SUCCESS) {
    return CUBEB_ERROR;
  }

  /* millibels are 100*dB, so the conversion from the volume's linear amplitude
   * is 100 * 20 * log(volume). However we clamp the resulting value before
   * passing it to lroundf() in order to prevent it from silently returning an
   * erroneous value when the unclamped value exceeds the size of a long. */
  unclamped_millibels = 100.0f * 20.0f * log10f(fmaxf(volume, 0.0f));
  unclamped_millibels = fmaxf(unclamped_millibels, SL_MILLIBEL_MIN);
  unclamped_millibels = fminf(unclamped_millibels, max_level);

  millibels = lroundf(unclamped_millibels);

  res = (*stm->volume)->SetVolumeLevel(stm->volume, millibels);

  if (res != SL_RESULT_SUCCESS) {
    return CUBEB_ERROR;
  }
  return CUBEB_OK;
}

static struct cubeb_ops const opensl_ops = {
  .init = opensl_init,
  .get_backend_id = opensl_get_backend_id,
  .get_max_channel_count = opensl_get_max_channel_count,
  .get_min_latency = NULL,
  .get_preferred_sample_rate = NULL,
  .enumerate_devices = NULL,
  .device_collection_destroy = NULL,
  .destroy = opensl_destroy,
  .stream_init = opensl_stream_init,
  .stream_destroy = opensl_stream_destroy,
  .stream_start = opensl_stream_start,
  .stream_stop = opensl_stream_stop,
  .stream_reset_default_device = NULL,
  .stream_get_position = opensl_stream_get_position,
  .stream_get_latency = opensl_stream_get_latency,
  .stream_get_input_latency = NULL,
  .stream_set_volume = opensl_stream_set_volume,
  .stream_set_name = NULL,
  .stream_get_current_device = NULL,
  .stream_device_destroy = NULL,
  .stream_register_device_changed_callback = NULL,
  .register_device_collection_changed = NULL
};