1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
|
/*
* Copyright © 2016 Mozilla Foundation
*
* This program is made available under an ISC-style license. See the
* accompanying file LICENSE for details.
*/
#if !defined(CUBEB_RESAMPLER_INTERNAL)
#define CUBEB_RESAMPLER_INTERNAL
#include <cmath>
#include <cassert>
#include <algorithm>
#include <memory>
#ifdef CUBEB_GECKO_BUILD
#include "mozilla/UniquePtr.h"
// In libc++, symbols such as std::unique_ptr may be defined in std::__1.
// The _LIBCPP_BEGIN_NAMESPACE_STD and _LIBCPP_END_NAMESPACE_STD macros
// will expand to the correct namespace.
#ifdef _LIBCPP_BEGIN_NAMESPACE_STD
#define MOZ_BEGIN_STD_NAMESPACE _LIBCPP_BEGIN_NAMESPACE_STD
#define MOZ_END_STD_NAMESPACE _LIBCPP_END_NAMESPACE_STD
#else
#define MOZ_BEGIN_STD_NAMESPACE namespace std {
#define MOZ_END_STD_NAMESPACE }
#endif
MOZ_BEGIN_STD_NAMESPACE
using mozilla::DefaultDelete;
using mozilla::UniquePtr;
#define default_delete DefaultDelete
#define unique_ptr UniquePtr
MOZ_END_STD_NAMESPACE
#endif
#include "cubeb/cubeb.h"
#include "cubeb_utils.h"
#include "cubeb-speex-resampler.h"
#include "cubeb_resampler.h"
#include "cubeb_log.h"
#include <stdio.h>
/* This header file contains the internal C++ API of the resamplers, for testing. */
// When dropping audio input frames to prevent building
// an input delay, this function returns the number of frames
// to keep in the buffer.
// @parameter sample_rate The sample rate of the stream.
// @return A number of frames to keep.
uint32_t min_buffered_audio_frame(uint32_t sample_rate);
int to_speex_quality(cubeb_resampler_quality q);
struct cubeb_resampler {
virtual long fill(void * input_buffer, long * input_frames_count,
void * output_buffer, long frames_needed) = 0;
virtual long latency() = 0;
virtual ~cubeb_resampler() {}
};
/** Base class for processors. This is just used to share methods for now. */
class processor {
public:
explicit processor(uint32_t channels)
: channels(channels)
{}
protected:
size_t frames_to_samples(size_t frames) const
{
return frames * channels;
}
size_t samples_to_frames(size_t samples) const
{
assert(!(samples % channels));
return samples / channels;
}
/** The number of channel of the audio buffers to be resampled. */
const uint32_t channels;
};
template<typename T>
class passthrough_resampler : public cubeb_resampler
, public processor {
public:
passthrough_resampler(cubeb_stream * s,
cubeb_data_callback cb,
void * ptr,
uint32_t input_channels,
uint32_t sample_rate);
virtual long fill(void * input_buffer, long * input_frames_count,
void * output_buffer, long output_frames);
virtual long latency()
{
return 0;
}
void drop_audio_if_needed()
{
uint32_t to_keep = min_buffered_audio_frame(sample_rate);
uint32_t available = samples_to_frames(internal_input_buffer.length());
if (available > to_keep) {
internal_input_buffer.pop(nullptr, frames_to_samples(available - to_keep));
}
}
private:
cubeb_stream * const stream;
const cubeb_data_callback data_callback;
void * const user_ptr;
/* This allows to buffer some input to account for the fact that we buffer
* some inputs. */
auto_array<T> internal_input_buffer;
uint32_t sample_rate;
};
/** Bidirectional resampler, can resample an input and an output stream, or just
* an input stream or output stream. In this case a delay is inserted in the
* opposite direction to keep the streams synchronized. */
template<typename T, typename InputProcessing, typename OutputProcessing>
class cubeb_resampler_speex : public cubeb_resampler {
public:
cubeb_resampler_speex(InputProcessing * input_processor,
OutputProcessing * output_processor,
cubeb_stream * s,
cubeb_data_callback cb,
void * ptr);
virtual ~cubeb_resampler_speex();
virtual long fill(void * input_buffer, long * input_frames_count,
void * output_buffer, long output_frames_needed);
virtual long latency()
{
if (input_processor && output_processor) {
assert(input_processor->latency() == output_processor->latency());
return input_processor->latency();
} else if (input_processor) {
return input_processor->latency();
} else {
return output_processor->latency();
}
}
private:
typedef long(cubeb_resampler_speex::*processing_callback)(T * input_buffer, long * input_frames_count, T * output_buffer, long output_frames_needed);
long fill_internal_duplex(T * input_buffer, long * input_frames_count,
T * output_buffer, long output_frames_needed);
long fill_internal_input(T * input_buffer, long * input_frames_count,
T * output_buffer, long output_frames_needed);
long fill_internal_output(T * input_buffer, long * input_frames_count,
T * output_buffer, long output_frames_needed);
std::unique_ptr<InputProcessing> input_processor;
std::unique_ptr<OutputProcessing> output_processor;
processing_callback fill_internal;
cubeb_stream * const stream;
const cubeb_data_callback data_callback;
void * const user_ptr;
bool draining = false;
};
/** Handles one way of a (possibly) duplex resampler, working on interleaved
* audio buffers of type T. This class is designed so that the number of frames
* coming out of the resampler can be precisely controled. It manages its own
* input buffer, and can use the caller's output buffer, or allocate its own. */
template<typename T>
class cubeb_resampler_speex_one_way : public processor {
public:
/** The sample type of this resampler, either 16-bit integers or 32-bit
* floats. */
typedef T sample_type;
/** Construct a resampler resampling from #source_rate to #target_rate, that
* can be arbitrary, strictly positive number.
* @parameter channels The number of channels this resampler will resample.
* @parameter source_rate The sample-rate of the audio input.
* @parameter target_rate The sample-rate of the audio output.
* @parameter quality A number between 0 (fast, low quality) and 10 (slow,
* high quality). */
cubeb_resampler_speex_one_way(uint32_t channels,
uint32_t source_rate,
uint32_t target_rate,
int quality)
: processor(channels)
, resampling_ratio(static_cast<float>(source_rate) / target_rate)
, source_rate(source_rate)
, additional_latency(0)
, leftover_samples(0)
{
int r;
speex_resampler = speex_resampler_init(channels, source_rate,
target_rate, quality, &r);
assert(r == RESAMPLER_ERR_SUCCESS && "resampler allocation failure");
uint32_t input_latency = speex_resampler_get_input_latency(speex_resampler);
const size_t LATENCY_SAMPLES = 8192;
T input_buffer[LATENCY_SAMPLES] = {};
T output_buffer[LATENCY_SAMPLES] = {};
uint32_t input_frame_count = input_latency;
uint32_t output_frame_count = LATENCY_SAMPLES;
assert(input_latency * channels <= LATENCY_SAMPLES);
speex_resample(
input_buffer,
&input_frame_count,
output_buffer,
&output_frame_count);
}
/** Destructor, deallocate the resampler */
virtual ~cubeb_resampler_speex_one_way()
{
speex_resampler_destroy(speex_resampler);
}
/* Fill the resampler with `input_frame_count` frames. */
void input(T * input_buffer, size_t input_frame_count)
{
resampling_in_buffer.push(input_buffer,
frames_to_samples(input_frame_count));
}
/** Outputs exactly `output_frame_count` into `output_buffer`.
* `output_buffer` has to be at least `output_frame_count` long. */
size_t output(T * output_buffer, size_t output_frame_count)
{
uint32_t in_len = samples_to_frames(resampling_in_buffer.length());
uint32_t out_len = output_frame_count;
speex_resample(resampling_in_buffer.data(), &in_len,
output_buffer, &out_len);
/* This shifts back any unresampled samples to the beginning of the input
buffer. */
resampling_in_buffer.pop(nullptr, frames_to_samples(in_len));
return out_len;
}
size_t output_for_input(uint32_t input_frames)
{
return (size_t)floorf((input_frames + samples_to_frames(resampling_in_buffer.length()))
/ resampling_ratio);
}
/** Returns a buffer containing exactly `output_frame_count` resampled frames.
* The consumer should not hold onto the pointer. */
T * output(size_t output_frame_count, size_t * input_frames_used)
{
if (resampling_out_buffer.capacity() < frames_to_samples(output_frame_count)) {
resampling_out_buffer.reserve(frames_to_samples(output_frame_count));
}
uint32_t in_len = samples_to_frames(resampling_in_buffer.length());
uint32_t out_len = output_frame_count;
speex_resample(resampling_in_buffer.data(), &in_len,
resampling_out_buffer.data(), &out_len);
if (out_len < output_frame_count) {
LOGV("underrun during resampling: got %u frames, expected %zu", (unsigned)out_len, output_frame_count);
// silence the rightmost part
T* data = resampling_out_buffer.data();
for (uint32_t i = frames_to_samples(out_len); i < frames_to_samples(output_frame_count); i++) {
data[i] = 0;
}
}
/* This shifts back any unresampled samples to the beginning of the input
buffer. */
resampling_in_buffer.pop(nullptr, frames_to_samples(in_len));
*input_frames_used = in_len;
return resampling_out_buffer.data();
}
/** Get the latency of the resampler, in output frames. */
uint32_t latency() const
{
/* The documentation of the resampler talks about "samples" here, but it
* only consider a single channel here so it's the same number of frames. */
int latency = 0;
latency =
speex_resampler_get_output_latency(speex_resampler) + additional_latency;
assert(latency >= 0);
return latency;
}
/** Returns the number of frames to pass in the input of the resampler to have
* exactly `output_frame_count` resampled frames. This can return a number
* slightly bigger than what is strictly necessary, but it guaranteed that the
* number of output frames will be exactly equal. */
uint32_t input_needed_for_output(int32_t output_frame_count) const
{
assert(output_frame_count >= 0); // Check overflow
int32_t unresampled_frames_left = samples_to_frames(resampling_in_buffer.length());
int32_t resampled_frames_left = samples_to_frames(resampling_out_buffer.length());
float input_frames_needed =
(output_frame_count - unresampled_frames_left) * resampling_ratio
- resampled_frames_left;
if (input_frames_needed < 0) {
return 0;
}
return (uint32_t)ceilf(input_frames_needed);
}
/** Returns a pointer to the input buffer, that contains empty space for at
* least `frame_count` elements. This is useful so that consumer can directly
* write into the input buffer of the resampler. The pointer returned is
* adjusted so that leftover data are not overwritten.
*/
T * input_buffer(size_t frame_count)
{
leftover_samples = resampling_in_buffer.length();
resampling_in_buffer.reserve(leftover_samples +
frames_to_samples(frame_count));
return resampling_in_buffer.data() + leftover_samples;
}
/** This method works with `input_buffer`, and allows to inform the processor
how much frames have been written in the provided buffer. */
void written(size_t written_frames)
{
resampling_in_buffer.set_length(leftover_samples +
frames_to_samples(written_frames));
}
void drop_audio_if_needed()
{
// Keep at most 100ms buffered.
uint32_t available = samples_to_frames(resampling_in_buffer.length());
uint32_t to_keep = min_buffered_audio_frame(source_rate);
if (available > to_keep) {
resampling_in_buffer.pop(nullptr, frames_to_samples(available - to_keep));
}
}
private:
/** Wrapper for the speex resampling functions to have a typed
* interface. */
void speex_resample(float * input_buffer, uint32_t * input_frame_count,
float * output_buffer, uint32_t * output_frame_count)
{
#ifndef NDEBUG
int rv;
rv =
#endif
speex_resampler_process_interleaved_float(speex_resampler,
input_buffer,
input_frame_count,
output_buffer,
output_frame_count);
assert(rv == RESAMPLER_ERR_SUCCESS);
}
void speex_resample(short * input_buffer, uint32_t * input_frame_count,
short * output_buffer, uint32_t * output_frame_count)
{
#ifndef NDEBUG
int rv;
rv =
#endif
speex_resampler_process_interleaved_int(speex_resampler,
input_buffer,
input_frame_count,
output_buffer,
output_frame_count);
assert(rv == RESAMPLER_ERR_SUCCESS);
}
/** The state for the speex resampler used internaly. */
SpeexResamplerState * speex_resampler;
/** Source rate / target rate. */
const float resampling_ratio;
const uint32_t source_rate;
/** Storage for the input frames, to be resampled. Also contains
* any unresampled frames after resampling. */
auto_array<T> resampling_in_buffer;
/* Storage for the resampled frames, to be passed back to the caller. */
auto_array<T> resampling_out_buffer;
/** Additional latency inserted into the pipeline for synchronisation. */
uint32_t additional_latency;
/** When `input_buffer` is called, this allows tracking the number of samples
that were in the buffer. */
uint32_t leftover_samples;
};
/** This class allows delaying an audio stream by `frames` frames. */
template<typename T>
class delay_line : public processor {
public:
/** Constructor
* @parameter frames the number of frames of delay.
* @parameter channels the number of channels of this delay line.
* @parameter sample_rate sample-rate of the audio going through this delay line */
delay_line(uint32_t frames, uint32_t channels, uint32_t sample_rate)
: processor(channels)
, length(frames)
, leftover_samples(0)
, sample_rate(sample_rate)
{
/* Fill the delay line with some silent frames to add latency. */
delay_input_buffer.push_silence(frames * channels);
}
/** Push some frames into the delay line.
* @parameter buffer the frames to push.
* @parameter frame_count the number of frames in #buffer. */
void input(T * buffer, uint32_t frame_count)
{
delay_input_buffer.push(buffer, frames_to_samples(frame_count));
}
/** Pop some frames from the internal buffer, into a internal output buffer.
* @parameter frames_needed the number of frames to be returned.
* @return a buffer containing the delayed frames. The consumer should not
* hold onto the pointer. */
T * output(uint32_t frames_needed, size_t * input_frames_used)
{
if (delay_output_buffer.capacity() < frames_to_samples(frames_needed)) {
delay_output_buffer.reserve(frames_to_samples(frames_needed));
}
delay_output_buffer.clear();
delay_output_buffer.push(delay_input_buffer.data(),
frames_to_samples(frames_needed));
delay_input_buffer.pop(nullptr, frames_to_samples(frames_needed));
*input_frames_used = frames_needed;
return delay_output_buffer.data();
}
/** Get a pointer to the first writable location in the input buffer>
* @parameter frames_needed the number of frames the user needs to write into
* the buffer.
* @returns a pointer to a location in the input buffer where #frames_needed
* can be writen. */
T * input_buffer(uint32_t frames_needed)
{
leftover_samples = delay_input_buffer.length();
delay_input_buffer.reserve(leftover_samples + frames_to_samples(frames_needed));
return delay_input_buffer.data() + leftover_samples;
}
/** This method works with `input_buffer`, and allows to inform the processor
how much frames have been written in the provided buffer. */
void written(size_t frames_written)
{
delay_input_buffer.set_length(leftover_samples +
frames_to_samples(frames_written));
}
/** Drains the delay line, emptying the buffer.
* @parameter output_buffer the buffer in which the frames are written.
* @parameter frames_needed the maximum number of frames to write.
* @return the actual number of frames written. */
size_t output(T * output_buffer, uint32_t frames_needed)
{
uint32_t in_len = samples_to_frames(delay_input_buffer.length());
uint32_t out_len = frames_needed;
uint32_t to_pop = std::min(in_len, out_len);
delay_input_buffer.pop(output_buffer, frames_to_samples(to_pop));
return to_pop;
}
/** Returns the number of frames one needs to input into the delay line to get
* #frames_needed frames back.
* @parameter frames_needed the number of frames one want to write into the
* delay_line
* @returns the number of frames one will get. */
uint32_t input_needed_for_output(int32_t frames_needed) const
{
assert(frames_needed >= 0); // Check overflow
return frames_needed;
}
/** Returns the number of frames produces for `input_frames` frames in input */
size_t output_for_input(uint32_t input_frames)
{
return input_frames;
}
/** The number of frames this delay line delays the stream by.
* @returns The number of frames of delay. */
size_t latency()
{
return length;
}
void drop_audio_if_needed()
{
size_t available = samples_to_frames(delay_input_buffer.length());
uint32_t to_keep = min_buffered_audio_frame(sample_rate);
if (available > to_keep) {
delay_input_buffer.pop(nullptr, frames_to_samples(available - to_keep));
}
}
private:
/** The length, in frames, of this delay line */
uint32_t length;
/** When `input_buffer` is called, this allows tracking the number of samples
that where in the buffer. */
uint32_t leftover_samples;
/** The input buffer, where the delay is applied. */
auto_array<T> delay_input_buffer;
/** The output buffer. This is only ever used if using the ::output with a
* single argument. */
auto_array<T> delay_output_buffer;
uint32_t sample_rate;
};
/** This sits behind the C API and is more typed. */
template<typename T>
cubeb_resampler *
cubeb_resampler_create_internal(cubeb_stream * stream,
cubeb_stream_params * input_params,
cubeb_stream_params * output_params,
unsigned int target_rate,
cubeb_data_callback callback,
void * user_ptr,
cubeb_resampler_quality quality)
{
std::unique_ptr<cubeb_resampler_speex_one_way<T>> input_resampler = nullptr;
std::unique_ptr<cubeb_resampler_speex_one_way<T>> output_resampler = nullptr;
std::unique_ptr<delay_line<T>> input_delay = nullptr;
std::unique_ptr<delay_line<T>> output_delay = nullptr;
assert((input_params || output_params) &&
"need at least one valid parameter pointer.");
/* All the streams we have have a sample rate that matches the target
sample rate, use a no-op resampler, that simply forwards the buffers to the
callback. */
if (((input_params && input_params->rate == target_rate) &&
(output_params && output_params->rate == target_rate)) ||
(input_params && !output_params && (input_params->rate == target_rate)) ||
(output_params && !input_params && (output_params->rate == target_rate))) {
LOG("Input and output sample-rate match, target rate of %dHz", target_rate);
return new passthrough_resampler<T>(stream, callback,
user_ptr,
input_params ? input_params->channels : 0,
target_rate);
}
/* Determine if we need to resampler one or both directions, and create the
resamplers. */
if (output_params && (output_params->rate != target_rate)) {
output_resampler.reset(
new cubeb_resampler_speex_one_way<T>(output_params->channels,
target_rate,
output_params->rate,
to_speex_quality(quality)));
if (!output_resampler) {
return NULL;
}
}
if (input_params && (input_params->rate != target_rate)) {
input_resampler.reset(
new cubeb_resampler_speex_one_way<T>(input_params->channels,
input_params->rate,
target_rate,
to_speex_quality(quality)));
if (!input_resampler) {
return NULL;
}
}
/* If we resample only one direction but we have a duplex stream, insert a
* delay line with a length equal to the resampler latency of the
* other direction so that the streams are synchronized. */
if (input_resampler && !output_resampler && input_params && output_params) {
output_delay.reset(new delay_line<T>(input_resampler->latency(),
output_params->channels,
output_params->rate));
if (!output_delay) {
return NULL;
}
} else if (output_resampler && !input_resampler && input_params && output_params) {
input_delay.reset(new delay_line<T>(output_resampler->latency(),
input_params->channels,
output_params->rate));
if (!input_delay) {
return NULL;
}
}
if (input_resampler && output_resampler) {
LOG("Resampling input (%d) and output (%d) to target rate of %dHz", input_params->rate, output_params->rate, target_rate);
return new cubeb_resampler_speex<T,
cubeb_resampler_speex_one_way<T>,
cubeb_resampler_speex_one_way<T>>
(input_resampler.release(),
output_resampler.release(),
stream, callback, user_ptr);
} else if (input_resampler) {
LOG("Resampling input (%d) to target and output rate of %dHz", input_params->rate, target_rate);
return new cubeb_resampler_speex<T,
cubeb_resampler_speex_one_way<T>,
delay_line<T>>
(input_resampler.release(),
output_delay.release(),
stream, callback, user_ptr);
} else {
LOG("Resampling output (%dHz) to target and input rate of %dHz", output_params->rate, target_rate);
return new cubeb_resampler_speex<T,
delay_line<T>,
cubeb_resampler_speex_one_way<T>>
(input_delay.release(),
output_resampler.release(),
stream, callback, user_ptr);
}
}
#endif /* CUBEB_RESAMPLER_INTERNAL */
|