summaryrefslogtreecommitdiffstats
path: root/memory/build/mozjemalloc.cpp
blob: bd7c812916220e0525c376d2ffcec2da3d7f2a70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

// Portions of this file were originally under the following license:
//
// Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>.
// All rights reserved.
// Copyright (C) 2007-2017 Mozilla Foundation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
//    notice(s), this list of conditions and the following disclaimer as
//    the first lines of this file unmodified other than the possible
//    addition of one or more copyright notices.
// 2. Redistributions in binary form must reproduce the above copyright
//    notice(s), this list of conditions and the following disclaimer in
//    the documentation and/or other materials provided with the
//    distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
// OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// *****************************************************************************
//
// This allocator implementation is designed to provide scalable performance
// for multi-threaded programs on multi-processor systems.  The following
// features are included for this purpose:
//
//   + Multiple arenas are used if there are multiple CPUs, which reduces lock
//     contention and cache sloshing.
//
//   + Cache line sharing between arenas is avoided for internal data
//     structures.
//
//   + Memory is managed in chunks and runs (chunks can be split into runs),
//     rather than as individual pages.  This provides a constant-time
//     mechanism for associating allocations with particular arenas.
//
// Allocation requests are rounded up to the nearest size class, and no record
// of the original request size is maintained.  Allocations are broken into
// categories according to size class.  Assuming runtime defaults, 4 kB pages
// and a 16 byte quantum on a 32-bit system, the size classes in each category
// are as follows:
//
//   |=====================================|
//   | Category | Subcategory    |    Size |
//   |=====================================|
//   | Small    | Tiny           |       4 |
//   |          |                |       8 |
//   |          |----------------+---------|
//   |          | Quantum-spaced |      16 |
//   |          |                |      32 |
//   |          |                |      48 |
//   |          |                |     ... |
//   |          |                |     480 |
//   |          |                |     496 |
//   |          |                |     512 |
//   |          |----------------+---------|
//   |          | Sub-page       |    1 kB |
//   |          |                |    2 kB |
//   |=====================================|
//   | Large                     |    4 kB |
//   |                           |    8 kB |
//   |                           |   12 kB |
//   |                           |     ... |
//   |                           | 1012 kB |
//   |                           | 1016 kB |
//   |                           | 1020 kB |
//   |=====================================|
//   | Huge                      |    1 MB |
//   |                           |    2 MB |
//   |                           |    3 MB |
//   |                           |     ... |
//   |=====================================|
//
// NOTE: Due to Mozilla bug 691003, we cannot reserve less than one word for an
// allocation on Linux or Mac.  So on 32-bit *nix, the smallest bucket size is
// 4 bytes, and on 64-bit, the smallest bucket size is 8 bytes.
//
// A different mechanism is used for each category:
//
//   Small : Each size class is segregated into its own set of runs.  Each run
//           maintains a bitmap of which regions are free/allocated.
//
//   Large : Each allocation is backed by a dedicated run.  Metadata are stored
//           in the associated arena chunk header maps.
//
//   Huge : Each allocation is backed by a dedicated contiguous set of chunks.
//          Metadata are stored in a separate red-black tree.
//
// *****************************************************************************

#include "mozmemory_wrap.h"
#include "mozjemalloc.h"
#include "mozjemalloc_types.h"

#include <cstring>
#include <cerrno>
#ifdef XP_WIN
#  include <io.h>
#  include <windows.h>
#else
#  include <sys/mman.h>
#  include <unistd.h>
#endif
#ifdef XP_DARWIN
#  include <libkern/OSAtomic.h>
#  include <mach/mach_init.h>
#  include <mach/vm_map.h>
#endif

#include "mozilla/Atomics.h"
#include "mozilla/Alignment.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/Assertions.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/DoublyLinkedList.h"
#include "mozilla/HelperMacros.h"
#include "mozilla/Likely.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/RandomNum.h"
#include "mozilla/Sprintf.h"
// Note: MozTaggedAnonymousMmap() could call an LD_PRELOADed mmap
// instead of the one defined here; use only MozTagAnonymousMemory().
#include "mozilla/TaggedAnonymousMemory.h"
#include "mozilla/ThreadLocal.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/Unused.h"
#include "mozilla/XorShift128PlusRNG.h"
#include "mozilla/fallible.h"
#include "rb.h"
#include "Mutex.h"
#include "Utils.h"

using namespace mozilla;

// On Linux, we use madvise(MADV_DONTNEED) to release memory back to the
// operating system.  If we release 1MB of live pages with MADV_DONTNEED, our
// RSS will decrease by 1MB (almost) immediately.
//
// On Mac, we use madvise(MADV_FREE).  Unlike MADV_DONTNEED on Linux, MADV_FREE
// on Mac doesn't cause the OS to release the specified pages immediately; the
// OS keeps them in our process until the machine comes under memory pressure.
//
// It's therefore difficult to measure the process's RSS on Mac, since, in the
// absence of memory pressure, the contribution from the heap to RSS will not
// decrease due to our madvise calls.
//
// We therefore define MALLOC_DOUBLE_PURGE on Mac.  This causes jemalloc to
// track which pages have been MADV_FREE'd.  You can then call
// jemalloc_purge_freed_pages(), which will force the OS to release those
// MADV_FREE'd pages, making the process's RSS reflect its true memory usage.
//
// The jemalloc_purge_freed_pages definition in memory/build/mozmemory.h needs
// to be adjusted if MALLOC_DOUBLE_PURGE is ever enabled on Linux.

#ifdef XP_DARWIN
#  define MALLOC_DOUBLE_PURGE
#endif

#ifdef XP_WIN
#  define MALLOC_DECOMMIT
#endif

// When MALLOC_STATIC_PAGESIZE is defined, the page size is fixed at
// compile-time for better performance, as opposed to determined at
// runtime. Some platforms can have different page sizes at runtime
// depending on kernel configuration, so they are opted out by default.
// Debug builds are opted out too, for test coverage.
#ifndef MOZ_DEBUG
#  if !defined(__ia64__) && !defined(__sparc__) && !defined(__mips__) && \
      !defined(__aarch64__) && !defined(__powerpc__) && !defined(XP_MACOSX)
#    define MALLOC_STATIC_PAGESIZE 1
#  endif
#endif

#ifdef XP_WIN
#  define STDERR_FILENO 2

// Implement getenv without using malloc.
static char mozillaMallocOptionsBuf[64];

#  define getenv xgetenv
static char* getenv(const char* name) {
  if (GetEnvironmentVariableA(name, mozillaMallocOptionsBuf,
                              sizeof(mozillaMallocOptionsBuf)) > 0) {
    return mozillaMallocOptionsBuf;
  }

  return nullptr;
}
#endif

#ifndef XP_WIN
// Newer Linux systems support MADV_FREE, but we're not supporting
// that properly. bug #1406304.
#  if defined(XP_LINUX) && defined(MADV_FREE)
#    undef MADV_FREE
#  endif
#  ifndef MADV_FREE
#    define MADV_FREE MADV_DONTNEED
#  endif
#endif

// Some tools, such as /dev/dsp wrappers, LD_PRELOAD libraries that
// happen to override mmap() and call dlsym() from their overridden
// mmap(). The problem is that dlsym() calls malloc(), and this ends
// up in a dead lock in jemalloc.
// On these systems, we prefer to directly use the system call.
// We do that for Linux systems and kfreebsd with GNU userland.
// Note sanity checks are not done (alignment of offset, ...) because
// the uses of mmap are pretty limited, in jemalloc.
//
// On Alpha, glibc has a bug that prevents syscall() to work for system
// calls with 6 arguments.
#if (defined(XP_LINUX) && !defined(__alpha__)) || \
    (defined(__FreeBSD_kernel__) && defined(__GLIBC__))
#  include <sys/syscall.h>
#  if defined(SYS_mmap) || defined(SYS_mmap2)
static inline void* _mmap(void* addr, size_t length, int prot, int flags,
                          int fd, off_t offset) {
// S390 only passes one argument to the mmap system call, which is a
// pointer to a structure containing the arguments.
#    ifdef __s390__
  struct {
    void* addr;
    size_t length;
    long prot;
    long flags;
    long fd;
    off_t offset;
  } args = {addr, length, prot, flags, fd, offset};
  return (void*)syscall(SYS_mmap, &args);
#    else
#      if defined(ANDROID) && defined(__aarch64__) && defined(SYS_mmap2)
// Android NDK defines SYS_mmap2 for AArch64 despite it not supporting mmap2.
#        undef SYS_mmap2
#      endif
#      ifdef SYS_mmap2
  return (void*)syscall(SYS_mmap2, addr, length, prot, flags, fd, offset >> 12);
#      else
  return (void*)syscall(SYS_mmap, addr, length, prot, flags, fd, offset);
#      endif
#    endif
}
#    define mmap _mmap
#    define munmap(a, l) syscall(SYS_munmap, a, l)
#  endif
#endif

// ***************************************************************************
// Structures for chunk headers for chunks used for non-huge allocations.

struct arena_t;

// Each element of the chunk map corresponds to one page within the chunk.
struct arena_chunk_map_t {
  // Linkage for run trees.  There are two disjoint uses:
  //
  // 1) arena_t's tree or available runs.
  // 2) arena_run_t conceptually uses this linkage for in-use non-full
  //    runs, rather than directly embedding linkage.
  RedBlackTreeNode<arena_chunk_map_t> link;

  // Run address (or size) and various flags are stored together.  The bit
  // layout looks like (assuming 32-bit system):
  //
  //   ???????? ???????? ????---- -mckdzla
  //
  // ? : Unallocated: Run address for first/last pages, unset for internal
  //                  pages.
  //     Small: Run address.
  //     Large: Run size for first page, unset for trailing pages.
  // - : Unused.
  // m : MADV_FREE/MADV_DONTNEED'ed?
  // c : decommitted?
  // k : key?
  // d : dirty?
  // z : zeroed?
  // l : large?
  // a : allocated?
  //
  // Following are example bit patterns for the three types of runs.
  //
  // r : run address
  // s : run size
  // x : don't care
  // - : 0
  // [cdzla] : bit set
  //
  //   Unallocated:
  //     ssssssss ssssssss ssss---- --c-----
  //     xxxxxxxx xxxxxxxx xxxx---- ----d---
  //     ssssssss ssssssss ssss---- -----z--
  //
  //   Small:
  //     rrrrrrrr rrrrrrrr rrrr---- -------a
  //     rrrrrrrr rrrrrrrr rrrr---- -------a
  //     rrrrrrrr rrrrrrrr rrrr---- -------a
  //
  //   Large:
  //     ssssssss ssssssss ssss---- ------la
  //     -------- -------- -------- ------la
  //     -------- -------- -------- ------la
  size_t bits;

// Note that CHUNK_MAP_DECOMMITTED's meaning varies depending on whether
// MALLOC_DECOMMIT and MALLOC_DOUBLE_PURGE are defined.
//
// If MALLOC_DECOMMIT is defined, a page which is CHUNK_MAP_DECOMMITTED must be
// re-committed with pages_commit() before it may be touched.  If
// MALLOC_DECOMMIT is defined, MALLOC_DOUBLE_PURGE may not be defined.
//
// If neither MALLOC_DECOMMIT nor MALLOC_DOUBLE_PURGE is defined, pages which
// are madvised (with either MADV_DONTNEED or MADV_FREE) are marked with
// CHUNK_MAP_MADVISED.
//
// Otherwise, if MALLOC_DECOMMIT is not defined and MALLOC_DOUBLE_PURGE is
// defined, then a page which is madvised is marked as CHUNK_MAP_MADVISED.
// When it's finally freed with jemalloc_purge_freed_pages, the page is marked
// as CHUNK_MAP_DECOMMITTED.
#define CHUNK_MAP_MADVISED ((size_t)0x40U)
#define CHUNK_MAP_DECOMMITTED ((size_t)0x20U)
#define CHUNK_MAP_MADVISED_OR_DECOMMITTED \
  (CHUNK_MAP_MADVISED | CHUNK_MAP_DECOMMITTED)
#define CHUNK_MAP_KEY ((size_t)0x10U)
#define CHUNK_MAP_DIRTY ((size_t)0x08U)
#define CHUNK_MAP_ZEROED ((size_t)0x04U)
#define CHUNK_MAP_LARGE ((size_t)0x02U)
#define CHUNK_MAP_ALLOCATED ((size_t)0x01U)
};

// Arena chunk header.
struct arena_chunk_t {
  // Arena that owns the chunk.
  arena_t* arena;

  // Linkage for the arena's tree of dirty chunks.
  RedBlackTreeNode<arena_chunk_t> link_dirty;

#ifdef MALLOC_DOUBLE_PURGE
  // If we're double-purging, we maintain a linked list of chunks which
  // have pages which have been madvise(MADV_FREE)'d but not explicitly
  // purged.
  //
  // We're currently lazy and don't remove a chunk from this list when
  // all its madvised pages are recommitted.
  DoublyLinkedListElement<arena_chunk_t> chunks_madvised_elem;
#endif

  // Number of dirty pages.
  size_t ndirty;

  // Map of pages within chunk that keeps track of free/large/small.
  arena_chunk_map_t map[1];  // Dynamically sized.
};

// ***************************************************************************
// Constants defining allocator size classes and behavior.

// Maximum size of L1 cache line.  This is used to avoid cache line aliasing,
// so over-estimates are okay (up to a point), but under-estimates will
// negatively affect performance.
static const size_t kCacheLineSize = 64;

// Smallest size class to support.  On Windows the smallest allocation size
// must be 8 bytes on 32-bit, 16 bytes on 64-bit.  On Linux and Mac, even
// malloc(1) must reserve a word's worth of memory (see Mozilla bug 691003).
#ifdef XP_WIN
static const size_t kMinTinyClass = sizeof(void*) * 2;
#else
static const size_t kMinTinyClass = sizeof(void*);
#endif

// Maximum tiny size class.
static const size_t kMaxTinyClass = 8;

// Amount (quantum) separating quantum-spaced size classes.
static const size_t kQuantum = 16;
static const size_t kQuantumMask = kQuantum - 1;

// Smallest quantum-spaced size classes. It could actually also be labelled a
// tiny allocation, and is spaced as such from the largest tiny size class.
// Tiny classes being powers of 2, this is twice as large as the largest of
// them.
static const size_t kMinQuantumClass = kMaxTinyClass * 2;

// Largest quantum-spaced size classes.
static const size_t kMaxQuantumClass = 512;

static_assert(kMaxQuantumClass % kQuantum == 0,
              "kMaxQuantumClass is not a multiple of kQuantum");

// Number of (2^n)-spaced tiny classes.
static const size_t kNumTinyClasses =
    LOG2(kMinQuantumClass) - LOG2(kMinTinyClass);

// Number of quantum-spaced classes.
static const size_t kNumQuantumClasses = kMaxQuantumClass / kQuantum;

// Size and alignment of memory chunks that are allocated by the OS's virtual
// memory system.
static const size_t kChunkSize = 1_MiB;
static const size_t kChunkSizeMask = kChunkSize - 1;

#ifdef MALLOC_STATIC_PAGESIZE
// VM page size. It must divide the runtime CPU page size or the code
// will abort.
// Platform specific page size conditions copied from js/public/HeapAPI.h
#  if defined(__powerpc64__)
static const size_t gPageSize = 64_KiB;
#  else
static const size_t gPageSize = 4_KiB;
#  endif

#else
static size_t gPageSize;
#endif

#ifdef MALLOC_STATIC_PAGESIZE
#  define DECLARE_GLOBAL(type, name)
#  define DEFINE_GLOBALS
#  define END_GLOBALS
#  define DEFINE_GLOBAL(type) static const type
#  define GLOBAL_LOG2 LOG2
#  define GLOBAL_ASSERT_HELPER1(x) static_assert(x, #  x)
#  define GLOBAL_ASSERT_HELPER2(x, y) static_assert(x, y)
#  define GLOBAL_ASSERT(...)                                               \
    MACRO_CALL(                                                            \
        MOZ_PASTE_PREFIX_AND_ARG_COUNT(GLOBAL_ASSERT_HELPER, __VA_ARGS__), \
        (__VA_ARGS__))
#else
#  define DECLARE_GLOBAL(type, name) static type name;
#  define DEFINE_GLOBALS static void DefineGlobals() {
#  define END_GLOBALS }
#  define DEFINE_GLOBAL(type)
#  define GLOBAL_LOG2 FloorLog2
#  define GLOBAL_ASSERT MOZ_RELEASE_ASSERT
#endif

DECLARE_GLOBAL(size_t, gMaxSubPageClass)
DECLARE_GLOBAL(uint8_t, gNumSubPageClasses)
DECLARE_GLOBAL(uint8_t, gPageSize2Pow)
DECLARE_GLOBAL(size_t, gPageSizeMask)
DECLARE_GLOBAL(size_t, gChunkNumPages)
DECLARE_GLOBAL(size_t, gChunkHeaderNumPages)
DECLARE_GLOBAL(size_t, gMaxLargeClass)

DEFINE_GLOBALS
// Largest sub-page size class.
DEFINE_GLOBAL(size_t) gMaxSubPageClass = gPageSize / 2;

// Max size class for bins.
#define gMaxBinClass gMaxSubPageClass

// Number of (2^n)-spaced sub-page bins.
DEFINE_GLOBAL(uint8_t)
gNumSubPageClasses = GLOBAL_LOG2(gMaxSubPageClass) - LOG2(kMaxQuantumClass);

DEFINE_GLOBAL(uint8_t) gPageSize2Pow = GLOBAL_LOG2(gPageSize);
DEFINE_GLOBAL(size_t) gPageSizeMask = gPageSize - 1;

// Number of pages in a chunk.
DEFINE_GLOBAL(size_t) gChunkNumPages = kChunkSize >> gPageSize2Pow;

// Number of pages necessary for a chunk header.
DEFINE_GLOBAL(size_t)
gChunkHeaderNumPages =
    ((sizeof(arena_chunk_t) + sizeof(arena_chunk_map_t) * (gChunkNumPages - 1) +
      gPageSizeMask) &
     ~gPageSizeMask) >>
    gPageSize2Pow;

// One chunk, minus the header, minus a guard page
DEFINE_GLOBAL(size_t)
gMaxLargeClass =
    kChunkSize - gPageSize - (gChunkHeaderNumPages << gPageSize2Pow);

// Various sanity checks that regard configuration.
GLOBAL_ASSERT(1ULL << gPageSize2Pow == gPageSize,
              "Page size is not a power of two");
GLOBAL_ASSERT(kQuantum >= sizeof(void*));
GLOBAL_ASSERT(kQuantum <= gPageSize);
GLOBAL_ASSERT(kChunkSize >= gPageSize);
GLOBAL_ASSERT(kQuantum * 4 <= kChunkSize);
END_GLOBALS

// Recycle at most 128 MiB of chunks. This means we retain at most
// 6.25% of the process address space on a 32-bit OS for later use.
static const size_t gRecycleLimit = 128_MiB;

// The current amount of recycled bytes, updated atomically.
static Atomic<size_t, ReleaseAcquire> gRecycledSize;

// Maximum number of dirty pages per arena.
#define DIRTY_MAX_DEFAULT (1U << 8)

static size_t opt_dirty_max = DIRTY_MAX_DEFAULT;

// Return the smallest chunk multiple that is >= s.
#define CHUNK_CEILING(s) (((s) + kChunkSizeMask) & ~kChunkSizeMask)

// Return the smallest cacheline multiple that is >= s.
#define CACHELINE_CEILING(s) \
  (((s) + (kCacheLineSize - 1)) & ~(kCacheLineSize - 1))

// Return the smallest quantum multiple that is >= a.
#define QUANTUM_CEILING(a) (((a) + (kQuantumMask)) & ~(kQuantumMask))

// Return the smallest pagesize multiple that is >= s.
#define PAGE_CEILING(s) (((s) + gPageSizeMask) & ~gPageSizeMask)

// Number of all the small-allocated classes
#define NUM_SMALL_CLASSES \
  (kNumTinyClasses + kNumQuantumClasses + gNumSubPageClasses)

// ***************************************************************************
// MALLOC_DECOMMIT and MALLOC_DOUBLE_PURGE are mutually exclusive.
#if defined(MALLOC_DECOMMIT) && defined(MALLOC_DOUBLE_PURGE)
#  error MALLOC_DECOMMIT and MALLOC_DOUBLE_PURGE are mutually exclusive.
#endif

static void* base_alloc(size_t aSize);

// Set to true once the allocator has been initialized.
#if defined(_MSC_VER) && !defined(__clang__)
// MSVC may create a static initializer for an Atomic<bool>, which may actually
// run after `malloc_init` has been called once, which triggers multiple
// initializations.
// We work around the problem by not using an Atomic<bool> at all. There is a
// theoretical problem with using `malloc_initialized` non-atomically, but
// practically, this is only true if `malloc_init` is never called before
// threads are created.
static bool malloc_initialized;
#else
static Atomic<bool, SequentiallyConsistent> malloc_initialized;
#endif

static StaticMutex gInitLock = {STATIC_MUTEX_INIT};

// ***************************************************************************
// Statistics data structures.

struct arena_stats_t {
  // Number of bytes currently mapped.
  size_t mapped;

  // Current number of committed pages.
  size_t committed;

  // Per-size-category statistics.
  size_t allocated_small;

  size_t allocated_large;
};

// ***************************************************************************
// Extent data structures.

enum ChunkType {
  UNKNOWN_CHUNK,
  ZEROED_CHUNK,    // chunk only contains zeroes.
  ARENA_CHUNK,     // used to back arena runs created by arena_t::AllocRun.
  HUGE_CHUNK,      // used to back huge allocations (e.g. arena_t::MallocHuge).
  RECYCLED_CHUNK,  // chunk has been stored for future use by chunk_recycle.
};

// Tree of extents.
struct extent_node_t {
  union {
    // Linkage for the size/address-ordered tree for chunk recycling.
    RedBlackTreeNode<extent_node_t> mLinkBySize;
    // Arena id for huge allocations. It's meant to match mArena->mId,
    // which only holds true when the arena hasn't been disposed of.
    arena_id_t mArenaId;
  };

  // Linkage for the address-ordered tree.
  RedBlackTreeNode<extent_node_t> mLinkByAddr;

  // Pointer to the extent that this tree node is responsible for.
  void* mAddr;

  // Total region size.
  size_t mSize;

  union {
    // What type of chunk is there; used for chunk recycling.
    ChunkType mChunkType;

    // A pointer to the associated arena, for huge allocations.
    arena_t* mArena;
  };
};

struct ExtentTreeSzTrait {
  static RedBlackTreeNode<extent_node_t>& GetTreeNode(extent_node_t* aThis) {
    return aThis->mLinkBySize;
  }

  static inline Order Compare(extent_node_t* aNode, extent_node_t* aOther) {
    Order ret = CompareInt(aNode->mSize, aOther->mSize);
    return (ret != Order::eEqual) ? ret
                                  : CompareAddr(aNode->mAddr, aOther->mAddr);
  }
};

struct ExtentTreeTrait {
  static RedBlackTreeNode<extent_node_t>& GetTreeNode(extent_node_t* aThis) {
    return aThis->mLinkByAddr;
  }

  static inline Order Compare(extent_node_t* aNode, extent_node_t* aOther) {
    return CompareAddr(aNode->mAddr, aOther->mAddr);
  }
};

struct ExtentTreeBoundsTrait : public ExtentTreeTrait {
  static inline Order Compare(extent_node_t* aKey, extent_node_t* aNode) {
    uintptr_t key_addr = reinterpret_cast<uintptr_t>(aKey->mAddr);
    uintptr_t node_addr = reinterpret_cast<uintptr_t>(aNode->mAddr);
    size_t node_size = aNode->mSize;

    // Is aKey within aNode?
    if (node_addr <= key_addr && key_addr < node_addr + node_size) {
      return Order::eEqual;
    }

    return CompareAddr(aKey->mAddr, aNode->mAddr);
  }
};

// Describe size classes to which allocations are rounded up to.
// TODO: add large and huge types when the arena allocation code
// changes in a way that allows it to be beneficial.
class SizeClass {
 public:
  enum ClassType {
    Tiny,
    Quantum,
    SubPage,
    Large,
  };

  explicit inline SizeClass(size_t aSize) {
    if (aSize <= kMaxTinyClass) {
      mType = Tiny;
      mSize = std::max(RoundUpPow2(aSize), kMinTinyClass);
    } else if (aSize <= kMaxQuantumClass) {
      mType = Quantum;
      mSize = QUANTUM_CEILING(aSize);
    } else if (aSize <= gMaxSubPageClass) {
      mType = SubPage;
      mSize = RoundUpPow2(aSize);
    } else if (aSize <= gMaxLargeClass) {
      mType = Large;
      mSize = PAGE_CEILING(aSize);
    } else {
      MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Invalid size");
    }
  }

  SizeClass& operator=(const SizeClass& aOther) = default;

  bool operator==(const SizeClass& aOther) { return aOther.mSize == mSize; }

  size_t Size() { return mSize; }

  ClassType Type() { return mType; }

  SizeClass Next() { return SizeClass(mSize + 1); }

 private:
  ClassType mType;
  size_t mSize;
};

// ***************************************************************************
// Radix tree data structures.
//
// The number of bits passed to the template is the number of significant bits
// in an address to do a radix lookup with.
//
// An address is looked up by splitting it in kBitsPerLevel bit chunks, except
// the most significant bits, where the bit chunk is kBitsAtLevel1 which can be
// different if Bits is not a multiple of kBitsPerLevel.
//
// With e.g. sizeof(void*)=4, Bits=16 and kBitsPerLevel=8, an address is split
// like the following:
// 0x12345678 -> mRoot[0x12][0x34]
template <size_t Bits>
class AddressRadixTree {
// Size of each radix tree node (as a power of 2).
// This impacts tree depth.
#ifdef HAVE_64BIT_BUILD
  static const size_t kNodeSize = kCacheLineSize;
#else
  static const size_t kNodeSize = 16_KiB;
#endif
  static const size_t kBitsPerLevel = LOG2(kNodeSize) - LOG2(sizeof(void*));
  static const size_t kBitsAtLevel1 =
      (Bits % kBitsPerLevel) ? Bits % kBitsPerLevel : kBitsPerLevel;
  static const size_t kHeight = (Bits + kBitsPerLevel - 1) / kBitsPerLevel;
  static_assert(kBitsAtLevel1 + (kHeight - 1) * kBitsPerLevel == Bits,
                "AddressRadixTree parameters don't work out");

  Mutex mLock;
  void** mRoot;

 public:
  bool Init();

  inline void* Get(void* aAddr);

  // Returns whether the value was properly set.
  inline bool Set(void* aAddr, void* aValue);

  inline bool Unset(void* aAddr) { return Set(aAddr, nullptr); }

 private:
  inline void** GetSlot(void* aAddr, bool aCreate = false);
};

// ***************************************************************************
// Arena data structures.

struct arena_bin_t;

struct ArenaChunkMapLink {
  static RedBlackTreeNode<arena_chunk_map_t>& GetTreeNode(
      arena_chunk_map_t* aThis) {
    return aThis->link;
  }
};

struct ArenaRunTreeTrait : public ArenaChunkMapLink {
  static inline Order Compare(arena_chunk_map_t* aNode,
                              arena_chunk_map_t* aOther) {
    MOZ_ASSERT(aNode);
    MOZ_ASSERT(aOther);
    return CompareAddr(aNode, aOther);
  }
};

struct ArenaAvailTreeTrait : public ArenaChunkMapLink {
  static inline Order Compare(arena_chunk_map_t* aNode,
                              arena_chunk_map_t* aOther) {
    size_t size1 = aNode->bits & ~gPageSizeMask;
    size_t size2 = aOther->bits & ~gPageSizeMask;
    Order ret = CompareInt(size1, size2);
    return (ret != Order::eEqual)
               ? ret
               : CompareAddr((aNode->bits & CHUNK_MAP_KEY) ? nullptr : aNode,
                             aOther);
  }
};

struct ArenaDirtyChunkTrait {
  static RedBlackTreeNode<arena_chunk_t>& GetTreeNode(arena_chunk_t* aThis) {
    return aThis->link_dirty;
  }

  static inline Order Compare(arena_chunk_t* aNode, arena_chunk_t* aOther) {
    MOZ_ASSERT(aNode);
    MOZ_ASSERT(aOther);
    return CompareAddr(aNode, aOther);
  }
};

#ifdef MALLOC_DOUBLE_PURGE
namespace mozilla {

template <>
struct GetDoublyLinkedListElement<arena_chunk_t> {
  static DoublyLinkedListElement<arena_chunk_t>& Get(arena_chunk_t* aThis) {
    return aThis->chunks_madvised_elem;
  }
};
}  // namespace mozilla
#endif

struct arena_run_t {
#if defined(MOZ_DIAGNOSTIC_ASSERT_ENABLED)
  uint32_t mMagic;
#  define ARENA_RUN_MAGIC 0x384adf93

  // On 64-bit platforms, having the arena_bin_t pointer following
  // the mMagic field means there's padding between both fields, making
  // the run header larger than necessary.
  // But when MOZ_DIAGNOSTIC_ASSERT_ENABLED is not set, starting the
  // header with this field followed by the arena_bin_t pointer yields
  // the same padding. We do want the mMagic field to appear first, so
  // depending whether MOZ_DIAGNOSTIC_ASSERT_ENABLED is set or not, we
  // move some field to avoid padding.

  // Number of free regions in run.
  unsigned mNumFree;
#endif

  // Bin this run is associated with.
  arena_bin_t* mBin;

  // Index of first element that might have a free region.
  unsigned mRegionsMinElement;

#if !defined(MOZ_DIAGNOSTIC_ASSERT_ENABLED)
  // Number of free regions in run.
  unsigned mNumFree;
#endif

  // Bitmask of in-use regions (0: in use, 1: free).
  unsigned mRegionsMask[1];  // Dynamically sized.
};

struct arena_bin_t {
  // Current run being used to service allocations of this bin's size
  // class.
  arena_run_t* mCurrentRun;

  // Tree of non-full runs.  This tree is used when looking for an
  // existing run when mCurrentRun is no longer usable.  We choose the
  // non-full run that is lowest in memory; this policy tends to keep
  // objects packed well, and it can also help reduce the number of
  // almost-empty chunks.
  RedBlackTree<arena_chunk_map_t, ArenaRunTreeTrait> mNonFullRuns;

  // Bin's size class.
  size_t mSizeClass;

  // Total size of a run for this bin's size class.
  size_t mRunSize;

  // Total number of regions in a run for this bin's size class.
  uint32_t mRunNumRegions;

  // Number of elements in a run's mRegionsMask for this bin's size class.
  uint32_t mRunNumRegionsMask;

  // Offset of first region in a run for this bin's size class.
  uint32_t mRunFirstRegionOffset;

  // Current number of runs in this bin, full or otherwise.
  unsigned long mNumRuns;

  // Amount of overhead runs are allowed to have.
  static constexpr double kRunOverhead = 1.6_percent;
  static constexpr double kRunRelaxedOverhead = 2.4_percent;

  // Initialize a bin for the given size class.
  // The generated run sizes, for a page size of 4 KiB, are:
  //   size|run       size|run       size|run       size|run
  //  class|size     class|size     class|size     class|size
  //     4   4 KiB      8   4 KiB     16   4 KiB     32   4 KiB
  //    48   4 KiB     64   4 KiB     80   4 KiB     96   4 KiB
  //   112   4 KiB    128   8 KiB    144   4 KiB    160   8 KiB
  //   176   4 KiB    192   4 KiB    208   8 KiB    224   4 KiB
  //   240   8 KiB    256  16 KiB    272   8 KiB    288   4 KiB
  //   304  12 KiB    320  12 KiB    336   4 KiB    352   8 KiB
  //   368   4 KiB    384   8 KiB    400  20 KiB    416  16 KiB
  //   432  12 KiB    448   4 KiB    464  16 KiB    480   8 KiB
  //   496  20 KiB    512  32 KiB   1024  64 KiB   2048 128 KiB
  inline void Init(SizeClass aSizeClass);
};

struct arena_t {
#if defined(MOZ_DIAGNOSTIC_ASSERT_ENABLED)
  uint32_t mMagic;
#  define ARENA_MAGIC 0x947d3d24
#endif

  // Linkage for the tree of arenas by id.
  RedBlackTreeNode<arena_t> mLink;

  // Arena id, that we keep away from the beginning of the struct so that
  // free list pointers in TypedBaseAlloc<arena_t> don't overflow in it,
  // and it keeps the value it had after the destructor.
  arena_id_t mId;

  // All operations on this arena require that lock be locked.
  Mutex mLock;

  arena_stats_t mStats;

 private:
  // Tree of dirty-page-containing chunks this arena manages.
  RedBlackTree<arena_chunk_t, ArenaDirtyChunkTrait> mChunksDirty;

#ifdef MALLOC_DOUBLE_PURGE
  // Head of a linked list of MADV_FREE'd-page-containing chunks this
  // arena manages.
  DoublyLinkedList<arena_chunk_t> mChunksMAdvised;
#endif

  // In order to avoid rapid chunk allocation/deallocation when an arena
  // oscillates right on the cusp of needing a new chunk, cache the most
  // recently freed chunk.  The spare is left in the arena's chunk trees
  // until it is deleted.
  //
  // There is one spare chunk per arena, rather than one spare total, in
  // order to avoid interactions between multiple threads that could make
  // a single spare inadequate.
  arena_chunk_t* mSpare;

  // A per-arena opt-in to randomize the offset of small allocations
  bool mRandomizeSmallAllocations;

  // Whether this is a private arena. Multiple public arenas are just a
  // performance optimization and not a safety feature.
  //
  // Since, for example, we don't want thread-local arenas to grow too much, we
  // use the default arena for bigger allocations. We use this member to allow
  // realloc() to switch out of our arena if needed (which is not allowed for
  // private arenas for security).
  bool mIsPrivate;

  // A pseudorandom number generator. Initially null, it gets initialized
  // on first use to avoid recursive malloc initialization (e.g. on OSX
  // arc4random allocates memory).
  mozilla::non_crypto::XorShift128PlusRNG* mPRNG;

 public:
  // Current count of pages within unused runs that are potentially
  // dirty, and for which madvise(... MADV_FREE) has not been called.  By
  // tracking this, we can institute a limit on how much dirty unused
  // memory is mapped for each arena.
  size_t mNumDirty;

  // Maximum value allowed for mNumDirty.
  size_t mMaxDirty;

 private:
  // Size/address-ordered tree of this arena's available runs.  This tree
  // is used for first-best-fit run allocation.
  RedBlackTree<arena_chunk_map_t, ArenaAvailTreeTrait> mRunsAvail;

 public:
  // mBins is used to store rings of free regions of the following sizes,
  // assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
  //
  //   mBins[i] | size |
  //   --------+------+
  //        0  |    2 |
  //        1  |    4 |
  //        2  |    8 |
  //   --------+------+
  //        3  |   16 |
  //        4  |   32 |
  //        5  |   48 |
  //        6  |   64 |
  //           :      :
  //           :      :
  //       33  |  496 |
  //       34  |  512 |
  //   --------+------+
  //       35  | 1024 |
  //       36  | 2048 |
  //   --------+------+
  arena_bin_t mBins[1];  // Dynamically sized.

  explicit arena_t(arena_params_t* aParams, bool aIsPrivate);
  ~arena_t();

 private:
  void InitChunk(arena_chunk_t* aChunk, bool aZeroed);

  void DeallocChunk(arena_chunk_t* aChunk);

  arena_run_t* AllocRun(size_t aSize, bool aLarge, bool aZero);

  void DallocRun(arena_run_t* aRun, bool aDirty);

  [[nodiscard]] bool SplitRun(arena_run_t* aRun, size_t aSize, bool aLarge,
                              bool aZero);

  void TrimRunHead(arena_chunk_t* aChunk, arena_run_t* aRun, size_t aOldSize,
                   size_t aNewSize);

  void TrimRunTail(arena_chunk_t* aChunk, arena_run_t* aRun, size_t aOldSize,
                   size_t aNewSize, bool dirty);

  arena_run_t* GetNonFullBinRun(arena_bin_t* aBin);

  inline uint8_t FindFreeBitInMask(uint32_t aMask, uint32_t& aRng);

  inline void* ArenaRunRegAlloc(arena_run_t* aRun, arena_bin_t* aBin);

  inline void* MallocSmall(size_t aSize, bool aZero);

  void* MallocLarge(size_t aSize, bool aZero);

  void* MallocHuge(size_t aSize, bool aZero);

  void* PallocLarge(size_t aAlignment, size_t aSize, size_t aAllocSize);

  void* PallocHuge(size_t aSize, size_t aAlignment, bool aZero);

  void RallocShrinkLarge(arena_chunk_t* aChunk, void* aPtr, size_t aSize,
                         size_t aOldSize);

  bool RallocGrowLarge(arena_chunk_t* aChunk, void* aPtr, size_t aSize,
                       size_t aOldSize);

  void* RallocSmallOrLarge(void* aPtr, size_t aSize, size_t aOldSize);

  void* RallocHuge(void* aPtr, size_t aSize, size_t aOldSize);

 public:
  inline void* Malloc(size_t aSize, bool aZero);

  void* Palloc(size_t aAlignment, size_t aSize);

  inline void DallocSmall(arena_chunk_t* aChunk, void* aPtr,
                          arena_chunk_map_t* aMapElm);

  void DallocLarge(arena_chunk_t* aChunk, void* aPtr);

  void* Ralloc(void* aPtr, size_t aSize, size_t aOldSize);

  void Purge(bool aAll);

  void HardPurge();

  void* operator new(size_t aCount) = delete;

  void* operator new(size_t aCount, const fallible_t&) noexcept;

  void operator delete(void*);
};

struct ArenaTreeTrait {
  static RedBlackTreeNode<arena_t>& GetTreeNode(arena_t* aThis) {
    return aThis->mLink;
  }

  static inline Order Compare(arena_t* aNode, arena_t* aOther) {
    MOZ_ASSERT(aNode);
    MOZ_ASSERT(aOther);
    return CompareInt(aNode->mId, aOther->mId);
  }
};

// Bookkeeping for all the arenas used by the allocator.
// Arenas are separated in two categories:
// - "private" arenas, used through the moz_arena_* API
// - all the other arenas: the default arena, and thread-local arenas,
//   used by the standard API.
class ArenaCollection {
 public:
  bool Init() {
    mArenas.Init();
    mPrivateArenas.Init();
    arena_params_t params;
    // The main arena allows more dirty pages than the default for other arenas.
    params.mMaxDirty = opt_dirty_max;
    mDefaultArena =
        mLock.Init() ? CreateArena(/* IsPrivate = */ false, &params) : nullptr;
    return bool(mDefaultArena);
  }

  inline arena_t* GetById(arena_id_t aArenaId, bool aIsPrivate);

  arena_t* CreateArena(bool aIsPrivate, arena_params_t* aParams);

  void DisposeArena(arena_t* aArena) {
    MutexAutoLock lock(mLock);
    MOZ_RELEASE_ASSERT(mPrivateArenas.Search(aArena),
                       "Can only dispose of private arenas");
    mPrivateArenas.Remove(aArena);
    delete aArena;
  }

  using Tree = RedBlackTree<arena_t, ArenaTreeTrait>;

  struct Iterator : Tree::Iterator {
    explicit Iterator(Tree* aTree, Tree* aSecondTree)
        : Tree::Iterator(aTree), mNextTree(aSecondTree) {}

    Item<Iterator> begin() {
      return Item<Iterator>(this, *Tree::Iterator::begin());
    }

    Item<Iterator> end() { return Item<Iterator>(this, nullptr); }

    arena_t* Next() {
      arena_t* result = Tree::Iterator::Next();
      if (!result && mNextTree) {
        new (this) Iterator(mNextTree, nullptr);
        result = *Tree::Iterator::begin();
      }
      return result;
    }

   private:
    Tree* mNextTree;
  };

  Iterator iter() { return Iterator(&mArenas, &mPrivateArenas); }

  inline arena_t* GetDefault() { return mDefaultArena; }

  Mutex mLock;

 private:
  inline arena_t* GetByIdInternal(arena_id_t aArenaId, bool aIsPrivate);

  arena_t* mDefaultArena;
  arena_id_t mLastPublicArenaId;
  Tree mArenas;
  Tree mPrivateArenas;
};

static ArenaCollection gArenas;

// ******
// Chunks.
static AddressRadixTree<(sizeof(void*) << 3) - LOG2(kChunkSize)> gChunkRTree;

// Protects chunk-related data structures.
static Mutex chunks_mtx;

// Trees of chunks that were previously allocated (trees differ only in node
// ordering).  These are used when allocating chunks, in an attempt to re-use
// address space.  Depending on function, different tree orderings are needed,
// which is why there are two trees with the same contents.
static RedBlackTree<extent_node_t, ExtentTreeSzTrait> gChunksBySize;
static RedBlackTree<extent_node_t, ExtentTreeTrait> gChunksByAddress;

// Protects huge allocation-related data structures.
static Mutex huge_mtx;

// Tree of chunks that are stand-alone huge allocations.
static RedBlackTree<extent_node_t, ExtentTreeTrait> huge;

// Huge allocation statistics.
static size_t huge_allocated;
static size_t huge_mapped;

// **************************
// base (internal allocation).

// Current pages that are being used for internal memory allocations.  These
// pages are carved up in cacheline-size quanta, so that there is no chance of
// false cache line sharing.

static void* base_pages;
static void* base_next_addr;
static void* base_next_decommitted;
static void* base_past_addr;  // Addr immediately past base_pages.
static Mutex base_mtx;
static size_t base_mapped;
static size_t base_committed;

// ******
// Arenas.

// The arena associated with the current thread (per
// jemalloc_thread_local_arena) On OSX, __thread/thread_local circles back
// calling malloc to allocate storage on first access on each thread, which
// leads to an infinite loop, but pthread-based TLS somehow doesn't have this
// problem.
#if !defined(XP_DARWIN)
static MOZ_THREAD_LOCAL(arena_t*) thread_arena;
#else
static detail::ThreadLocal<arena_t*, detail::ThreadLocalKeyStorage>
    thread_arena;
#endif

// *****************************
// Runtime configuration options.

const uint8_t kAllocJunk = 0xe4;
const uint8_t kAllocPoison = 0xe5;

#ifdef MOZ_DEBUG
static bool opt_junk = true;
static bool opt_zero = false;
#else
static const bool opt_junk = false;
static const bool opt_zero = false;
#endif
static bool opt_randomize_small = true;

// ***************************************************************************
// Begin forward declarations.

static void* chunk_alloc(size_t aSize, size_t aAlignment, bool aBase,
                         bool* aZeroed = nullptr);
static void chunk_dealloc(void* aChunk, size_t aSize, ChunkType aType);
static void chunk_ensure_zero(void* aPtr, size_t aSize, bool aZeroed);
static void huge_dalloc(void* aPtr, arena_t* aArena);
static bool malloc_init_hard();

#ifdef XP_DARWIN
#  define FORK_HOOK extern "C"
#else
#  define FORK_HOOK static
#endif
FORK_HOOK void _malloc_prefork(void);
FORK_HOOK void _malloc_postfork_parent(void);
FORK_HOOK void _malloc_postfork_child(void);

// End forward declarations.
// ***************************************************************************

// FreeBSD's pthreads implementation calls malloc(3), so the malloc
// implementation has to take pains to avoid infinite recursion during
// initialization.
// Returns whether the allocator was successfully initialized.
static inline bool malloc_init() {
  if (malloc_initialized == false) {
    return malloc_init_hard();
  }

  return true;
}

static void _malloc_message(const char* p) {
#if !defined(XP_WIN)
#  define _write write
#endif
  // Pretend to check _write() errors to suppress gcc warnings about
  // warn_unused_result annotations in some versions of glibc headers.
  if (_write(STDERR_FILENO, p, (unsigned int)strlen(p)) < 0) {
    return;
  }
}

template <typename... Args>
static void _malloc_message(const char* p, Args... args) {
  _malloc_message(p);
  _malloc_message(args...);
}

#ifdef ANDROID
// Android's pthread.h does not declare pthread_atfork() until SDK 21.
extern "C" MOZ_EXPORT int pthread_atfork(void (*)(void), void (*)(void),
                                         void (*)(void));
#endif

// ***************************************************************************
// Begin Utility functions/macros.

// Return the chunk address for allocation address a.
static inline arena_chunk_t* GetChunkForPtr(const void* aPtr) {
  return (arena_chunk_t*)(uintptr_t(aPtr) & ~kChunkSizeMask);
}

// Return the chunk offset of address a.
static inline size_t GetChunkOffsetForPtr(const void* aPtr) {
  return (size_t)(uintptr_t(aPtr) & kChunkSizeMask);
}

static inline const char* _getprogname(void) { return "<jemalloc>"; }

// Fill the given range of memory with zeroes or junk depending on opt_junk and
// opt_zero. Callers can force filling with zeroes through the aForceZero
// argument.
static inline void ApplyZeroOrJunk(void* aPtr, size_t aSize) {
  if (opt_junk) {
    memset(aPtr, kAllocJunk, aSize);
  } else if (opt_zero) {
    memset(aPtr, 0, aSize);
  }
}

// ***************************************************************************

static inline void pages_decommit(void* aAddr, size_t aSize) {
#ifdef XP_WIN
  // The region starting at addr may have been allocated in multiple calls
  // to VirtualAlloc and recycled, so decommitting the entire region in one
  // go may not be valid. However, since we allocate at least a chunk at a
  // time, we may touch any region in chunksized increments.
  size_t pages_size = std::min(aSize, kChunkSize - GetChunkOffsetForPtr(aAddr));
  while (aSize > 0) {
    // This will cause Access Violation on read and write and thus act as a
    // guard page or region as well.
    if (!VirtualFree(aAddr, pages_size, MEM_DECOMMIT)) {
      MOZ_CRASH();
    }
    aAddr = (void*)((uintptr_t)aAddr + pages_size);
    aSize -= pages_size;
    pages_size = std::min(aSize, kChunkSize);
  }
#else
  if (mmap(aAddr, aSize, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1,
           0) == MAP_FAILED) {
    // We'd like to report the OOM for our tooling, but we can't allocate
    // memory at this point, so avoid the use of printf.
    const char out_of_mappings[] =
        "[unhandlable oom] Failed to mmap, likely no more mappings "
        "available " __FILE__ " : " MOZ_STRINGIFY(__LINE__);
    if (errno == ENOMEM) {
#  ifndef ANDROID
      fputs(out_of_mappings, stderr);
      fflush(stderr);
#  endif
      MOZ_CRASH_ANNOTATE(out_of_mappings);
    }
    MOZ_REALLY_CRASH(__LINE__);
  }
  MozTagAnonymousMemory(aAddr, aSize, "jemalloc-decommitted");
#endif
}

// Commit pages. Returns whether pages were committed.
[[nodiscard]] static inline bool pages_commit(void* aAddr, size_t aSize) {
#ifdef XP_WIN
  // The region starting at addr may have been allocated in multiple calls
  // to VirtualAlloc and recycled, so committing the entire region in one
  // go may not be valid. However, since we allocate at least a chunk at a
  // time, we may touch any region in chunksized increments.
  size_t pages_size = std::min(aSize, kChunkSize - GetChunkOffsetForPtr(aAddr));
  while (aSize > 0) {
    if (!VirtualAlloc(aAddr, pages_size, MEM_COMMIT, PAGE_READWRITE)) {
      return false;
    }
    aAddr = (void*)((uintptr_t)aAddr + pages_size);
    aSize -= pages_size;
    pages_size = std::min(aSize, kChunkSize);
  }
#else
  if (mmap(aAddr, aSize, PROT_READ | PROT_WRITE,
           MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == MAP_FAILED) {
    return false;
  }
  MozTagAnonymousMemory(aAddr, aSize, "jemalloc");
#endif
  return true;
}

static bool base_pages_alloc(size_t minsize) {
  size_t csize;
  size_t pminsize;

  MOZ_ASSERT(minsize != 0);
  csize = CHUNK_CEILING(minsize);
  base_pages = chunk_alloc(csize, kChunkSize, true);
  if (!base_pages) {
    return true;
  }
  base_next_addr = base_pages;
  base_past_addr = (void*)((uintptr_t)base_pages + csize);
  // Leave enough pages for minsize committed, since otherwise they would
  // have to be immediately recommitted.
  pminsize = PAGE_CEILING(minsize);
  base_next_decommitted = (void*)((uintptr_t)base_pages + pminsize);
  if (pminsize < csize) {
    pages_decommit(base_next_decommitted, csize - pminsize);
  }
  base_mapped += csize;
  base_committed += pminsize;

  return false;
}

static void* base_alloc(size_t aSize) {
  void* ret;
  size_t csize;

  // Round size up to nearest multiple of the cacheline size.
  csize = CACHELINE_CEILING(aSize);

  MutexAutoLock lock(base_mtx);
  // Make sure there's enough space for the allocation.
  if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
    if (base_pages_alloc(csize)) {
      return nullptr;
    }
  }
  // Allocate.
  ret = base_next_addr;
  base_next_addr = (void*)((uintptr_t)base_next_addr + csize);
  // Make sure enough pages are committed for the new allocation.
  if ((uintptr_t)base_next_addr > (uintptr_t)base_next_decommitted) {
    void* pbase_next_addr = (void*)(PAGE_CEILING((uintptr_t)base_next_addr));

    if (!pages_commit(
            base_next_decommitted,
            (uintptr_t)pbase_next_addr - (uintptr_t)base_next_decommitted)) {
      return nullptr;
    }

    base_committed +=
        (uintptr_t)pbase_next_addr - (uintptr_t)base_next_decommitted;
    base_next_decommitted = pbase_next_addr;
  }

  return ret;
}

static void* base_calloc(size_t aNumber, size_t aSize) {
  void* ret = base_alloc(aNumber * aSize);
  if (ret) {
    memset(ret, 0, aNumber * aSize);
  }
  return ret;
}

// A specialization of the base allocator with a free list.
template <typename T>
struct TypedBaseAlloc {
  static T* sFirstFree;

  static size_t size_of() { return sizeof(T); }

  static T* alloc() {
    T* ret;

    base_mtx.Lock();
    if (sFirstFree) {
      ret = sFirstFree;
      sFirstFree = *(T**)ret;
      base_mtx.Unlock();
    } else {
      base_mtx.Unlock();
      ret = (T*)base_alloc(size_of());
    }

    return ret;
  }

  static void dealloc(T* aNode) {
    MutexAutoLock lock(base_mtx);
    *(T**)aNode = sFirstFree;
    sFirstFree = aNode;
  }
};

using ExtentAlloc = TypedBaseAlloc<extent_node_t>;

template <>
extent_node_t* ExtentAlloc::sFirstFree = nullptr;

template <>
arena_t* TypedBaseAlloc<arena_t>::sFirstFree = nullptr;

template <>
size_t TypedBaseAlloc<arena_t>::size_of() {
  // Allocate enough space for trailing bins.
  return sizeof(arena_t) + (sizeof(arena_bin_t) * (NUM_SMALL_CLASSES - 1));
}

template <typename T>
struct BaseAllocFreePolicy {
  void operator()(T* aPtr) { TypedBaseAlloc<T>::dealloc(aPtr); }
};

using UniqueBaseNode =
    UniquePtr<extent_node_t, BaseAllocFreePolicy<extent_node_t>>;

// End Utility functions/macros.
// ***************************************************************************
// Begin chunk management functions.

#ifdef XP_WIN

static void* pages_map(void* aAddr, size_t aSize) {
  void* ret = nullptr;
  ret = VirtualAlloc(aAddr, aSize, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
  return ret;
}

static void pages_unmap(void* aAddr, size_t aSize) {
  if (VirtualFree(aAddr, 0, MEM_RELEASE) == 0) {
    _malloc_message(_getprogname(), ": (malloc) Error in VirtualFree()\n");
  }
}
#else

static void pages_unmap(void* aAddr, size_t aSize) {
  if (munmap(aAddr, aSize) == -1) {
    char buf[64];

    if (strerror_r(errno, buf, sizeof(buf)) == 0) {
      _malloc_message(_getprogname(), ": (malloc) Error in munmap(): ", buf,
                      "\n");
    }
  }
}

static void* pages_map(void* aAddr, size_t aSize) {
  void* ret;
#  if defined(__ia64__) || \
      (defined(__sparc__) && defined(__arch64__) && defined(__linux__))
  // The JS engine assumes that all allocated pointers have their high 17 bits
  // clear, which ia64's mmap doesn't support directly. However, we can emulate
  // it by passing mmap an "addr" parameter with those bits clear. The mmap will
  // return that address, or the nearest available memory above that address,
  // providing a near-guarantee that those bits are clear. If they are not, we
  // return nullptr below to indicate out-of-memory.
  //
  // The addr is chosen as 0x0000070000000000, which still allows about 120TB of
  // virtual address space.
  //
  // See Bug 589735 for more information.
  bool check_placement = true;
  if (!aAddr) {
    aAddr = (void*)0x0000070000000000;
    check_placement = false;
  }
#  endif

#  if defined(__sparc__) && defined(__arch64__) && defined(__linux__)
  const uintptr_t start = 0x0000070000000000ULL;
  const uintptr_t end = 0x0000800000000000ULL;

  // Copied from js/src/gc/Memory.cpp and adapted for this source
  uintptr_t hint;
  void* region = MAP_FAILED;
  for (hint = start; region == MAP_FAILED && hint + aSize <= end;
       hint += kChunkSize) {
    region = mmap((void*)hint, aSize, PROT_READ | PROT_WRITE,
                  MAP_PRIVATE | MAP_ANON, -1, 0);
    if (region != MAP_FAILED) {
      if (((size_t)region + (aSize - 1)) & 0xffff800000000000) {
        if (munmap(region, aSize)) {
          MOZ_ASSERT(errno == ENOMEM);
        }
        region = MAP_FAILED;
      }
    }
  }
  ret = region;
#  else
  // We don't use MAP_FIXED here, because it can cause the *replacement*
  // of existing mappings, and we only want to create new mappings.
  ret =
      mmap(aAddr, aSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0);
  MOZ_ASSERT(ret);
#  endif
  if (ret == MAP_FAILED) {
    ret = nullptr;
  }
#  if defined(__ia64__) || \
      (defined(__sparc__) && defined(__arch64__) && defined(__linux__))
  // If the allocated memory doesn't have its upper 17 bits clear, consider it
  // as out of memory.
  else if ((long long)ret & 0xffff800000000000) {
    munmap(ret, aSize);
    ret = nullptr;
  }
  // If the caller requested a specific memory location, verify that's what mmap
  // returned.
  else if (check_placement && ret != aAddr) {
#  else
  else if (aAddr && ret != aAddr) {
#  endif
    // We succeeded in mapping memory, but not in the right place.
    pages_unmap(ret, aSize);
    ret = nullptr;
  }
  if (ret) {
    MozTagAnonymousMemory(ret, aSize, "jemalloc");
  }

#  if defined(__ia64__) || \
      (defined(__sparc__) && defined(__arch64__) && defined(__linux__))
  MOZ_ASSERT(!ret || (!check_placement && ret) ||
             (check_placement && ret == aAddr));
#  else
  MOZ_ASSERT(!ret || (!aAddr && ret != aAddr) || (aAddr && ret == aAddr));
#  endif
  return ret;
}
#endif

#ifdef XP_DARWIN
#  define VM_COPY_MIN kChunkSize
static inline void pages_copy(void* dest, const void* src, size_t n) {
  MOZ_ASSERT((void*)((uintptr_t)dest & ~gPageSizeMask) == dest);
  MOZ_ASSERT(n >= VM_COPY_MIN);
  MOZ_ASSERT((void*)((uintptr_t)src & ~gPageSizeMask) == src);

  kern_return_t r = vm_copy(mach_task_self(), (vm_address_t)src, (vm_size_t)n,
                            (vm_address_t)dest);
  if (r != KERN_SUCCESS) {
    MOZ_CRASH("vm_copy() failed");
  }
}

#endif

template <size_t Bits>
bool AddressRadixTree<Bits>::Init() {
  mLock.Init();
  mRoot = (void**)base_calloc(1 << kBitsAtLevel1, sizeof(void*));
  return mRoot;
}

template <size_t Bits>
void** AddressRadixTree<Bits>::GetSlot(void* aKey, bool aCreate) {
  uintptr_t key = reinterpret_cast<uintptr_t>(aKey);
  uintptr_t subkey;
  unsigned i, lshift, height, bits;
  void** node;
  void** child;

  for (i = lshift = 0, height = kHeight, node = mRoot; i < height - 1;
       i++, lshift += bits, node = child) {
    bits = i ? kBitsPerLevel : kBitsAtLevel1;
    subkey = (key << lshift) >> ((sizeof(void*) << 3) - bits);
    child = (void**)node[subkey];
    if (!child && aCreate) {
      child = (void**)base_calloc(1 << kBitsPerLevel, sizeof(void*));
      if (child) {
        node[subkey] = child;
      }
    }
    if (!child) {
      return nullptr;
    }
  }

  // node is a leaf, so it contains values rather than node
  // pointers.
  bits = i ? kBitsPerLevel : kBitsAtLevel1;
  subkey = (key << lshift) >> ((sizeof(void*) << 3) - bits);
  return &node[subkey];
}

template <size_t Bits>
void* AddressRadixTree<Bits>::Get(void* aKey) {
  void* ret = nullptr;

  void** slot = GetSlot(aKey);

  if (slot) {
    ret = *slot;
  }
#ifdef MOZ_DEBUG
  MutexAutoLock lock(mLock);

  // Suppose that it were possible for a jemalloc-allocated chunk to be
  // munmap()ped, followed by a different allocator in another thread re-using
  // overlapping virtual memory, all without invalidating the cached rtree
  // value.  The result would be a false positive (the rtree would claim that
  // jemalloc owns memory that it had actually discarded).  I don't think this
  // scenario is possible, but the following assertion is a prudent sanity
  // check.
  if (!slot) {
    // In case a slot has been created in the meantime.
    slot = GetSlot(aKey);
  }
  if (slot) {
    // The MutexAutoLock above should act as a memory barrier, forcing
    // the compiler to emit a new read instruction for *slot.
    MOZ_ASSERT(ret == *slot);
  } else {
    MOZ_ASSERT(ret == nullptr);
  }
#endif
  return ret;
}

template <size_t Bits>
bool AddressRadixTree<Bits>::Set(void* aKey, void* aValue) {
  MutexAutoLock lock(mLock);
  void** slot = GetSlot(aKey, /* create = */ true);
  if (slot) {
    *slot = aValue;
  }
  return slot;
}

// pages_trim, chunk_alloc_mmap_slow and chunk_alloc_mmap were cherry-picked
// from upstream jemalloc 3.4.1 to fix Mozilla bug 956501.

// Return the offset between a and the nearest aligned address at or below a.
#define ALIGNMENT_ADDR2OFFSET(a, alignment) \
  ((size_t)((uintptr_t)(a) & (alignment - 1)))

// Return the smallest alignment multiple that is >= s.
#define ALIGNMENT_CEILING(s, alignment) \
  (((s) + (alignment - 1)) & (~(alignment - 1)))

static void* pages_trim(void* addr, size_t alloc_size, size_t leadsize,
                        size_t size) {
  void* ret = (void*)((uintptr_t)addr + leadsize);

  MOZ_ASSERT(alloc_size >= leadsize + size);
#ifdef XP_WIN
  {
    void* new_addr;

    pages_unmap(addr, alloc_size);
    new_addr = pages_map(ret, size);
    if (new_addr == ret) {
      return ret;
    }
    if (new_addr) {
      pages_unmap(new_addr, size);
    }
    return nullptr;
  }
#else
  {
    size_t trailsize = alloc_size - leadsize - size;

    if (leadsize != 0) {
      pages_unmap(addr, leadsize);
    }
    if (trailsize != 0) {
      pages_unmap((void*)((uintptr_t)ret + size), trailsize);
    }
    return ret;
  }
#endif
}

static void* chunk_alloc_mmap_slow(size_t size, size_t alignment) {
  void *ret, *pages;
  size_t alloc_size, leadsize;

  alloc_size = size + alignment - gPageSize;
  // Beware size_t wrap-around.
  if (alloc_size < size) {
    return nullptr;
  }
  do {
    pages = pages_map(nullptr, alloc_size);
    if (!pages) {
      return nullptr;
    }
    leadsize =
        ALIGNMENT_CEILING((uintptr_t)pages, alignment) - (uintptr_t)pages;
    ret = pages_trim(pages, alloc_size, leadsize, size);
  } while (!ret);

  MOZ_ASSERT(ret);
  return ret;
}

static void* chunk_alloc_mmap(size_t size, size_t alignment) {
  void* ret;
  size_t offset;

  // Ideally, there would be a way to specify alignment to mmap() (like
  // NetBSD has), but in the absence of such a feature, we have to work
  // hard to efficiently create aligned mappings. The reliable, but
  // slow method is to create a mapping that is over-sized, then trim the
  // excess. However, that always results in one or two calls to
  // pages_unmap().
  //
  // Optimistically try mapping precisely the right amount before falling
  // back to the slow method, with the expectation that the optimistic
  // approach works most of the time.
  ret = pages_map(nullptr, size);
  if (!ret) {
    return nullptr;
  }
  offset = ALIGNMENT_ADDR2OFFSET(ret, alignment);
  if (offset != 0) {
    pages_unmap(ret, size);
    return chunk_alloc_mmap_slow(size, alignment);
  }

  MOZ_ASSERT(ret);
  return ret;
}

// Purge and release the pages in the chunk of length `length` at `addr` to
// the OS.
// Returns whether the pages are guaranteed to be full of zeroes when the
// function returns.
// The force_zero argument explicitly requests that the memory is guaranteed
// to be full of zeroes when the function returns.
static bool pages_purge(void* addr, size_t length, bool force_zero) {
  pages_decommit(addr, length);
  return true;
}

static void* chunk_recycle(size_t aSize, size_t aAlignment, bool* aZeroed) {
  extent_node_t key;

  size_t alloc_size = aSize + aAlignment - kChunkSize;
  // Beware size_t wrap-around.
  if (alloc_size < aSize) {
    return nullptr;
  }
  key.mAddr = nullptr;
  key.mSize = alloc_size;
  chunks_mtx.Lock();
  extent_node_t* node = gChunksBySize.SearchOrNext(&key);
  if (!node) {
    chunks_mtx.Unlock();
    return nullptr;
  }
  size_t leadsize = ALIGNMENT_CEILING((uintptr_t)node->mAddr, aAlignment) -
                    (uintptr_t)node->mAddr;
  MOZ_ASSERT(node->mSize >= leadsize + aSize);
  size_t trailsize = node->mSize - leadsize - aSize;
  void* ret = (void*)((uintptr_t)node->mAddr + leadsize);
  ChunkType chunk_type = node->mChunkType;
  if (aZeroed) {
    *aZeroed = (chunk_type == ZEROED_CHUNK);
  }
  // Remove node from the tree.
  gChunksBySize.Remove(node);
  gChunksByAddress.Remove(node);
  if (leadsize != 0) {
    // Insert the leading space as a smaller chunk.
    node->mSize = leadsize;
    gChunksBySize.Insert(node);
    gChunksByAddress.Insert(node);
    node = nullptr;
  }
  if (trailsize != 0) {
    // Insert the trailing space as a smaller chunk.
    if (!node) {
      // An additional node is required, but
      // TypedBaseAlloc::alloc() can cause a new base chunk to be
      // allocated.  Drop chunks_mtx in order to avoid
      // deadlock, and if node allocation fails, deallocate
      // the result before returning an error.
      chunks_mtx.Unlock();
      node = ExtentAlloc::alloc();
      if (!node) {
        chunk_dealloc(ret, aSize, chunk_type);
        return nullptr;
      }
      chunks_mtx.Lock();
    }
    node->mAddr = (void*)((uintptr_t)(ret) + aSize);
    node->mSize = trailsize;
    node->mChunkType = chunk_type;
    gChunksBySize.Insert(node);
    gChunksByAddress.Insert(node);
    node = nullptr;
  }

  gRecycledSize -= aSize;

  chunks_mtx.Unlock();

  if (node) {
    ExtentAlloc::dealloc(node);
  }
  if (!pages_commit(ret, aSize)) {
    return nullptr;
  }
  // pages_commit is guaranteed to zero the chunk.
  if (aZeroed) {
    *aZeroed = true;
  }

  return ret;
}

#ifdef XP_WIN
// On Windows, calls to VirtualAlloc and VirtualFree must be matched, making it
// awkward to recycle allocations of varying sizes. Therefore we only allow
// recycling when the size equals the chunksize, unless deallocation is entirely
// disabled.
#  define CAN_RECYCLE(size) (size == kChunkSize)
#else
#  define CAN_RECYCLE(size) true
#endif

// Allocates `size` bytes of system memory aligned for `alignment`.
// `base` indicates whether the memory will be used for the base allocator
// (e.g. base_alloc).
// `zeroed` is an outvalue that returns whether the allocated memory is
// guaranteed to be full of zeroes. It can be omitted when the caller doesn't
// care about the result.
static void* chunk_alloc(size_t aSize, size_t aAlignment, bool aBase,
                         bool* aZeroed) {
  void* ret = nullptr;

  MOZ_ASSERT(aSize != 0);
  MOZ_ASSERT((aSize & kChunkSizeMask) == 0);
  MOZ_ASSERT(aAlignment != 0);
  MOZ_ASSERT((aAlignment & kChunkSizeMask) == 0);

  // Base allocations can't be fulfilled by recycling because of
  // possible deadlock or infinite recursion.
  if (CAN_RECYCLE(aSize) && !aBase) {
    ret = chunk_recycle(aSize, aAlignment, aZeroed);
  }
  if (!ret) {
    ret = chunk_alloc_mmap(aSize, aAlignment);
    if (aZeroed) {
      *aZeroed = true;
    }
  }
  if (ret && !aBase) {
    if (!gChunkRTree.Set(ret, ret)) {
      chunk_dealloc(ret, aSize, UNKNOWN_CHUNK);
      return nullptr;
    }
  }

  MOZ_ASSERT(GetChunkOffsetForPtr(ret) == 0);
  return ret;
}

static void chunk_ensure_zero(void* aPtr, size_t aSize, bool aZeroed) {
  if (aZeroed == false) {
    memset(aPtr, 0, aSize);
  }
#ifdef MOZ_DEBUG
  else {
    size_t i;
    size_t* p = (size_t*)(uintptr_t)aPtr;

    for (i = 0; i < aSize / sizeof(size_t); i++) {
      MOZ_ASSERT(p[i] == 0);
    }
  }
#endif
}

static void chunk_record(void* aChunk, size_t aSize, ChunkType aType) {
  extent_node_t key;

  if (aType != ZEROED_CHUNK) {
    if (pages_purge(aChunk, aSize, aType == HUGE_CHUNK)) {
      aType = ZEROED_CHUNK;
    }
  }

  // Allocate a node before acquiring chunks_mtx even though it might not
  // be needed, because TypedBaseAlloc::alloc() may cause a new base chunk to
  // be allocated, which could cause deadlock if chunks_mtx were already
  // held.
  UniqueBaseNode xnode(ExtentAlloc::alloc());
  // Use xprev to implement conditional deferred deallocation of prev.
  UniqueBaseNode xprev;

  // RAII deallocates xnode and xprev defined above after unlocking
  // in order to avoid potential dead-locks
  MutexAutoLock lock(chunks_mtx);
  key.mAddr = (void*)((uintptr_t)aChunk + aSize);
  extent_node_t* node = gChunksByAddress.SearchOrNext(&key);
  // Try to coalesce forward.
  if (node && node->mAddr == key.mAddr) {
    // Coalesce chunk with the following address range.  This does
    // not change the position within gChunksByAddress, so only
    // remove/insert from/into gChunksBySize.
    gChunksBySize.Remove(node);
    node->mAddr = aChunk;
    node->mSize += aSize;
    if (node->mChunkType != aType) {
      node->mChunkType = RECYCLED_CHUNK;
    }
    gChunksBySize.Insert(node);
  } else {
    // Coalescing forward failed, so insert a new node.
    if (!xnode) {
      // TypedBaseAlloc::alloc() failed, which is an exceedingly
      // unlikely failure.  Leak chunk; its pages have
      // already been purged, so this is only a virtual
      // memory leak.
      return;
    }
    node = xnode.release();
    node->mAddr = aChunk;
    node->mSize = aSize;
    node->mChunkType = aType;
    gChunksByAddress.Insert(node);
    gChunksBySize.Insert(node);
  }

  // Try to coalesce backward.
  extent_node_t* prev = gChunksByAddress.Prev(node);
  if (prev && (void*)((uintptr_t)prev->mAddr + prev->mSize) == aChunk) {
    // Coalesce chunk with the previous address range.  This does
    // not change the position within gChunksByAddress, so only
    // remove/insert node from/into gChunksBySize.
    gChunksBySize.Remove(prev);
    gChunksByAddress.Remove(prev);

    gChunksBySize.Remove(node);
    node->mAddr = prev->mAddr;
    node->mSize += prev->mSize;
    if (node->mChunkType != prev->mChunkType) {
      node->mChunkType = RECYCLED_CHUNK;
    }
    gChunksBySize.Insert(node);

    xprev.reset(prev);
  }

  gRecycledSize += aSize;
}

static void chunk_dealloc(void* aChunk, size_t aSize, ChunkType aType) {
  MOZ_ASSERT(aChunk);
  MOZ_ASSERT(GetChunkOffsetForPtr(aChunk) == 0);
  MOZ_ASSERT(aSize != 0);
  MOZ_ASSERT((aSize & kChunkSizeMask) == 0);

  gChunkRTree.Unset(aChunk);

  if (CAN_RECYCLE(aSize)) {
    size_t recycled_so_far = gRecycledSize;
    // In case some race condition put us above the limit.
    if (recycled_so_far < gRecycleLimit) {
      size_t recycle_remaining = gRecycleLimit - recycled_so_far;
      size_t to_recycle;
      if (aSize > recycle_remaining) {
        to_recycle = recycle_remaining;
        // Drop pages that would overflow the recycle limit
        pages_trim(aChunk, aSize, 0, to_recycle);
      } else {
        to_recycle = aSize;
      }
      chunk_record(aChunk, to_recycle, aType);
      return;
    }
  }

  pages_unmap(aChunk, aSize);
}

#undef CAN_RECYCLE

// End chunk management functions.
// ***************************************************************************
// Begin arena.

static inline arena_t* thread_local_arena(bool enabled) {
  arena_t* arena;

  if (enabled) {
    // The arena will essentially be leaked if this function is
    // called with `false`, but it doesn't matter at the moment.
    // because in practice nothing actually calls this function
    // with `false`, except maybe at shutdown.
    arena =
        gArenas.CreateArena(/* IsPrivate = */ false, /* Params = */ nullptr);
  } else {
    arena = gArenas.GetDefault();
  }
  thread_arena.set(arena);
  return arena;
}

template <>
inline void MozJemalloc::jemalloc_thread_local_arena(bool aEnabled) {
  if (malloc_init()) {
    thread_local_arena(aEnabled);
  }
}

// Choose an arena based on a per-thread value.
static inline arena_t* choose_arena(size_t size) {
  arena_t* ret = nullptr;

  // We can only use TLS if this is a PIC library, since for the static
  // library version, libc's malloc is used by TLS allocation, which
  // introduces a bootstrapping issue.

  if (size > kMaxQuantumClass) {
    // Force the default arena for larger allocations.
    ret = gArenas.GetDefault();
  } else {
    // Check TLS to see if our thread has requested a pinned arena.
    ret = thread_arena.get();
    if (!ret) {
      // Nothing in TLS. Pin this thread to the default arena.
      ret = thread_local_arena(false);
    }
  }

  MOZ_DIAGNOSTIC_ASSERT(ret);
  return ret;
}

inline uint8_t arena_t::FindFreeBitInMask(uint32_t aMask, uint32_t& aRng) {
  if (mPRNG != nullptr) {
    if (aRng == UINT_MAX) {
      aRng = mPRNG->next() % 32;
    }
    uint8_t bitIndex;
    // RotateRight asserts when provided bad input.
    aMask = aRng ? RotateRight(aMask, aRng)
                 : aMask;  // Rotate the mask a random number of slots
    bitIndex = CountTrailingZeroes32(aMask);
    return (bitIndex + aRng) % 32;
  }
  return CountTrailingZeroes32(aMask);
}

inline void* arena_t::ArenaRunRegAlloc(arena_run_t* aRun, arena_bin_t* aBin) {
  void* ret;
  unsigned i, mask, bit, regind;
  uint32_t rndPos = UINT_MAX;

  MOZ_DIAGNOSTIC_ASSERT(aRun->mMagic == ARENA_RUN_MAGIC);
  MOZ_ASSERT(aRun->mRegionsMinElement < aBin->mRunNumRegionsMask);

  // Move the first check outside the loop, so that aRun->mRegionsMinElement can
  // be updated unconditionally, without the possibility of updating it
  // multiple times.
  i = aRun->mRegionsMinElement;
  mask = aRun->mRegionsMask[i];
  if (mask != 0) {
    bit = FindFreeBitInMask(mask, rndPos);

    regind = ((i << (LOG2(sizeof(int)) + 3)) + bit);
    MOZ_ASSERT(regind < aBin->mRunNumRegions);
    ret = (void*)(((uintptr_t)aRun) + aBin->mRunFirstRegionOffset +
                  (aBin->mSizeClass * regind));

    // Clear bit.
    mask ^= (1U << bit);
    aRun->mRegionsMask[i] = mask;

    return ret;
  }

  for (i++; i < aBin->mRunNumRegionsMask; i++) {
    mask = aRun->mRegionsMask[i];
    if (mask != 0) {
      bit = FindFreeBitInMask(mask, rndPos);

      regind = ((i << (LOG2(sizeof(int)) + 3)) + bit);
      MOZ_ASSERT(regind < aBin->mRunNumRegions);
      ret = (void*)(((uintptr_t)aRun) + aBin->mRunFirstRegionOffset +
                    (aBin->mSizeClass * regind));

      // Clear bit.
      mask ^= (1U << bit);
      aRun->mRegionsMask[i] = mask;

      // Make a note that nothing before this element
      // contains a free region.
      aRun->mRegionsMinElement = i;  // Low payoff: + (mask == 0);

      return ret;
    }
  }
  // Not reached.
  MOZ_DIAGNOSTIC_ASSERT(0);
  return nullptr;
}

static inline void arena_run_reg_dalloc(arena_run_t* run, arena_bin_t* bin,
                                        void* ptr, size_t size) {
  // To divide by a number D that is not a power of two we multiply
  // by (2^21 / D) and then right shift by 21 positions.
  //
  //   X / D
  //
  // becomes
  //
  //   (X * size_invs[(D / kQuantum) - 3]) >> SIZE_INV_SHIFT

#define SIZE_INV_SHIFT 21
#define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s * kQuantum)) + 1)
  // clang-format off
  static const unsigned size_invs[] = {
    SIZE_INV(3),
    SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
    SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
    SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
    SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
    SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
    SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
    SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
  };
  // clang-format on
  unsigned diff, regind, elm, bit;

  MOZ_DIAGNOSTIC_ASSERT(run->mMagic == ARENA_RUN_MAGIC);
  static_assert(
      ((sizeof(size_invs)) / sizeof(unsigned)) + 3 >= kNumQuantumClasses,
      "size_invs doesn't have enough values");

  // Avoid doing division with a variable divisor if possible.  Using
  // actual division here can reduce allocator throughput by over 20%!
  diff =
      (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->mRunFirstRegionOffset);
  if (mozilla::IsPowerOfTwo(size)) {
    regind = diff >> FloorLog2(size);
  } else if (size <= ((sizeof(size_invs) / sizeof(unsigned)) * kQuantum) + 2) {
    regind = size_invs[(size / kQuantum) - 3] * diff;
    regind >>= SIZE_INV_SHIFT;
  } else {
    // size_invs isn't large enough to handle this size class, so
    // calculate regind using actual division.  This only happens
    // if the user increases small_max via the 'S' runtime
    // configuration option.
    regind = diff / size;
  };
  MOZ_DIAGNOSTIC_ASSERT(diff == regind * size);
  MOZ_DIAGNOSTIC_ASSERT(regind < bin->mRunNumRegions);

  elm = regind >> (LOG2(sizeof(int)) + 3);
  if (elm < run->mRegionsMinElement) {
    run->mRegionsMinElement = elm;
  }
  bit = regind - (elm << (LOG2(sizeof(int)) + 3));
  MOZ_RELEASE_ASSERT((run->mRegionsMask[elm] & (1U << bit)) == 0,
                     "Double-free?");
  run->mRegionsMask[elm] |= (1U << bit);
#undef SIZE_INV
#undef SIZE_INV_SHIFT
}

bool arena_t::SplitRun(arena_run_t* aRun, size_t aSize, bool aLarge,
                       bool aZero) {
  arena_chunk_t* chunk;
  size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i;

  chunk = GetChunkForPtr(aRun);
  old_ndirty = chunk->ndirty;
  run_ind = (unsigned)((uintptr_t(aRun) - uintptr_t(chunk)) >> gPageSize2Pow);
  total_pages = (chunk->map[run_ind].bits & ~gPageSizeMask) >> gPageSize2Pow;
  need_pages = (aSize >> gPageSize2Pow);
  MOZ_ASSERT(need_pages > 0);
  MOZ_ASSERT(need_pages <= total_pages);
  rem_pages = total_pages - need_pages;

  for (i = 0; i < need_pages; i++) {
    // Commit decommitted pages if necessary.  If a decommitted
    // page is encountered, commit all needed adjacent decommitted
    // pages in one operation, in order to reduce system call
    // overhead.
    if (chunk->map[run_ind + i].bits & CHUNK_MAP_MADVISED_OR_DECOMMITTED) {
      size_t j;

      // Advance i+j to just past the index of the last page
      // to commit.  Clear CHUNK_MAP_DECOMMITTED and
      // CHUNK_MAP_MADVISED along the way.
      for (j = 0; i + j < need_pages && (chunk->map[run_ind + i + j].bits &
                                         CHUNK_MAP_MADVISED_OR_DECOMMITTED);
           j++) {
        // DECOMMITTED and MADVISED are mutually exclusive.
        MOZ_ASSERT(!(chunk->map[run_ind + i + j].bits & CHUNK_MAP_DECOMMITTED &&
                     chunk->map[run_ind + i + j].bits & CHUNK_MAP_MADVISED));

        chunk->map[run_ind + i + j].bits &= ~CHUNK_MAP_MADVISED_OR_DECOMMITTED;
      }

#ifdef MALLOC_DECOMMIT
      bool committed = pages_commit(
          (void*)(uintptr_t(chunk) + ((run_ind + i) << gPageSize2Pow)),
          j << gPageSize2Pow);
      // pages_commit zeroes pages, so mark them as such if it succeeded.
      // That's checked further below to avoid manually zeroing the pages.
      for (size_t k = 0; k < j; k++) {
        chunk->map[run_ind + i + k].bits |=
            committed ? CHUNK_MAP_ZEROED : CHUNK_MAP_DECOMMITTED;
      }
      if (!committed) {
        return false;
      }
#endif

      mStats.committed += j;
    }
  }

  mRunsAvail.Remove(&chunk->map[run_ind]);

  // Keep track of trailing unused pages for later use.
  if (rem_pages > 0) {
    chunk->map[run_ind + need_pages].bits =
        (rem_pages << gPageSize2Pow) |
        (chunk->map[run_ind + need_pages].bits & gPageSizeMask);
    chunk->map[run_ind + total_pages - 1].bits =
        (rem_pages << gPageSize2Pow) |
        (chunk->map[run_ind + total_pages - 1].bits & gPageSizeMask);
    mRunsAvail.Insert(&chunk->map[run_ind + need_pages]);
  }

  for (i = 0; i < need_pages; i++) {
    // Zero if necessary.
    if (aZero) {
      if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED) == 0) {
        memset((void*)(uintptr_t(chunk) + ((run_ind + i) << gPageSize2Pow)), 0,
               gPageSize);
        // CHUNK_MAP_ZEROED is cleared below.
      }
    }

    // Update dirty page accounting.
    if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) {
      chunk->ndirty--;
      mNumDirty--;
      // CHUNK_MAP_DIRTY is cleared below.
    }

    // Initialize the chunk map.
    if (aLarge) {
      chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED;
    } else {
      chunk->map[run_ind + i].bits = size_t(aRun) | CHUNK_MAP_ALLOCATED;
    }
  }

  // Set the run size only in the first element for large runs.  This is
  // primarily a debugging aid, since the lack of size info for trailing
  // pages only matters if the application tries to operate on an
  // interior pointer.
  if (aLarge) {
    chunk->map[run_ind].bits |= aSize;
  }

  if (chunk->ndirty == 0 && old_ndirty > 0) {
    mChunksDirty.Remove(chunk);
  }
  return true;
}

void arena_t::InitChunk(arena_chunk_t* aChunk, bool aZeroed) {
  size_t i;
  // WARNING: The following relies on !aZeroed meaning "used to be an arena
  // chunk".
  // When the chunk we're initializating as an arena chunk is zeroed, we
  // mark all runs are decommitted and zeroed.
  // When it is not, which we can assume means it's a recycled arena chunk,
  // all it can contain is an arena chunk header (which we're overwriting),
  // and zeroed or poisoned memory (because a recycled arena chunk will
  // have been emptied before being recycled). In that case, we can get
  // away with reusing the chunk as-is, marking all runs as madvised.

  size_t flags =
      aZeroed ? CHUNK_MAP_DECOMMITTED | CHUNK_MAP_ZEROED : CHUNK_MAP_MADVISED;

  mStats.mapped += kChunkSize;

  aChunk->arena = this;

  // Claim that no pages are in use, since the header is merely overhead.
  aChunk->ndirty = 0;

  // Initialize the map to contain one maximal free untouched run.
#ifdef MALLOC_DECOMMIT
  arena_run_t* run = (arena_run_t*)(uintptr_t(aChunk) +
                                    (gChunkHeaderNumPages << gPageSize2Pow));
#endif

  for (i = 0; i < gChunkHeaderNumPages; i++) {
    aChunk->map[i].bits = 0;
  }
  aChunk->map[i].bits = gMaxLargeClass | flags;
  for (i++; i < gChunkNumPages - 2; i++) {
    aChunk->map[i].bits = flags;
  }
  aChunk->map[gChunkNumPages - 2].bits = gMaxLargeClass | flags;
  // Mark the guard page as decommited.
  aChunk->map[gChunkNumPages - 1].bits = CHUNK_MAP_DECOMMITTED;

#ifdef MALLOC_DECOMMIT
  // Start out decommitted, in order to force a closer correspondence
  // between dirty pages and committed untouched pages.
  pages_decommit(run, gMaxLargeClass + gPageSize);
#else
  // Only decommit the last page as a guard.
  pages_decommit((void*)(uintptr_t(aChunk) + kChunkSize - gPageSize),
                 gPageSize);
#endif
  mStats.committed += gChunkHeaderNumPages;

  // Insert the run into the tree of available runs.
  mRunsAvail.Insert(&aChunk->map[gChunkHeaderNumPages]);

#ifdef MALLOC_DOUBLE_PURGE
  new (&aChunk->chunks_madvised_elem) DoublyLinkedListElement<arena_chunk_t>();
#endif
}

void arena_t::DeallocChunk(arena_chunk_t* aChunk) {
  if (mSpare) {
    if (mSpare->ndirty > 0) {
      aChunk->arena->mChunksDirty.Remove(mSpare);
      mNumDirty -= mSpare->ndirty;
      mStats.committed -= mSpare->ndirty;
    }

#ifdef MALLOC_DOUBLE_PURGE
    if (mChunksMAdvised.ElementProbablyInList(mSpare)) {
      mChunksMAdvised.remove(mSpare);
    }
#endif

    chunk_dealloc((void*)mSpare, kChunkSize, ARENA_CHUNK);
    mStats.mapped -= kChunkSize;
    mStats.committed -= gChunkHeaderNumPages;
  }

  // Remove run from the tree of available runs, so that the arena does not use
  // it. Dirty page flushing only uses the tree of dirty chunks, so leaving this
  // chunk in the chunks_* trees is sufficient for that purpose.
  mRunsAvail.Remove(&aChunk->map[gChunkHeaderNumPages]);

  mSpare = aChunk;
}

arena_run_t* arena_t::AllocRun(size_t aSize, bool aLarge, bool aZero) {
  arena_run_t* run;
  arena_chunk_map_t* mapelm;
  arena_chunk_map_t key;

  MOZ_ASSERT(aSize <= gMaxLargeClass);
  MOZ_ASSERT((aSize & gPageSizeMask) == 0);

  // Search the arena's chunks for the lowest best fit.
  key.bits = aSize | CHUNK_MAP_KEY;
  mapelm = mRunsAvail.SearchOrNext(&key);
  if (mapelm) {
    arena_chunk_t* chunk = GetChunkForPtr(mapelm);
    size_t pageind =
        (uintptr_t(mapelm) - uintptr_t(chunk->map)) / sizeof(arena_chunk_map_t);

    run = (arena_run_t*)(uintptr_t(chunk) + (pageind << gPageSize2Pow));
  } else if (mSpare) {
    // Use the spare.
    arena_chunk_t* chunk = mSpare;
    mSpare = nullptr;
    run = (arena_run_t*)(uintptr_t(chunk) +
                         (gChunkHeaderNumPages << gPageSize2Pow));
    // Insert the run into the tree of available runs.
    mRunsAvail.Insert(&chunk->map[gChunkHeaderNumPages]);
  } else {
    // No usable runs.  Create a new chunk from which to allocate
    // the run.
    bool zeroed;
    arena_chunk_t* chunk =
        (arena_chunk_t*)chunk_alloc(kChunkSize, kChunkSize, false, &zeroed);
    if (!chunk) {
      return nullptr;
    }

    InitChunk(chunk, zeroed);
    run = (arena_run_t*)(uintptr_t(chunk) +
                         (gChunkHeaderNumPages << gPageSize2Pow));
  }
  // Update page map.
  return SplitRun(run, aSize, aLarge, aZero) ? run : nullptr;
}

void arena_t::Purge(bool aAll) {
  arena_chunk_t* chunk;
  size_t i, npages;
  // If all is set purge all dirty pages.
  size_t dirty_max = aAll ? 1 : mMaxDirty;
#ifdef MOZ_DEBUG
  size_t ndirty = 0;
  for (auto chunk : mChunksDirty.iter()) {
    ndirty += chunk->ndirty;
  }
  MOZ_ASSERT(ndirty == mNumDirty);
#endif
  MOZ_DIAGNOSTIC_ASSERT(aAll || (mNumDirty > mMaxDirty));

  // Iterate downward through chunks until enough dirty memory has been
  // purged.  Terminate as soon as possible in order to minimize the
  // number of system calls, even if a chunk has only been partially
  // purged.
  while (mNumDirty > (dirty_max >> 1)) {
#ifdef MALLOC_DOUBLE_PURGE
    bool madvised = false;
#endif
    chunk = mChunksDirty.Last();
    MOZ_DIAGNOSTIC_ASSERT(chunk);
    // Last page is DECOMMITTED as a guard page.
    MOZ_ASSERT((chunk->map[gChunkNumPages - 1].bits & CHUNK_MAP_DECOMMITTED) !=
               0);
    for (i = gChunkNumPages - 2; chunk->ndirty > 0; i--) {
      MOZ_DIAGNOSTIC_ASSERT(i >= gChunkHeaderNumPages);

      if (chunk->map[i].bits & CHUNK_MAP_DIRTY) {
#ifdef MALLOC_DECOMMIT
        const size_t free_operation = CHUNK_MAP_DECOMMITTED;
#else
        const size_t free_operation = CHUNK_MAP_MADVISED;
#endif
        MOZ_ASSERT((chunk->map[i].bits & CHUNK_MAP_MADVISED_OR_DECOMMITTED) ==
                   0);
        chunk->map[i].bits ^= free_operation | CHUNK_MAP_DIRTY;
        // Find adjacent dirty run(s).
        for (npages = 1; i > gChunkHeaderNumPages &&
                         (chunk->map[i - 1].bits & CHUNK_MAP_DIRTY);
             npages++) {
          i--;
          MOZ_ASSERT((chunk->map[i].bits & CHUNK_MAP_MADVISED_OR_DECOMMITTED) ==
                     0);
          chunk->map[i].bits ^= free_operation | CHUNK_MAP_DIRTY;
        }
        chunk->ndirty -= npages;
        mNumDirty -= npages;

#ifdef MALLOC_DECOMMIT
        pages_decommit((void*)(uintptr_t(chunk) + (i << gPageSize2Pow)),
                       (npages << gPageSize2Pow));
#endif
        mStats.committed -= npages;

#ifndef MALLOC_DECOMMIT
#  ifdef XP_SOLARIS
        posix_madvise((void*)(uintptr_t(chunk) + (i << gPageSize2Pow)),
                      (npages << gPageSize2Pow), MADV_FREE);
#  else
        madvise((void*)(uintptr_t(chunk) + (i << gPageSize2Pow)),
                (npages << gPageSize2Pow), MADV_FREE);
#  endif
#  ifdef MALLOC_DOUBLE_PURGE
        madvised = true;
#  endif
#endif
        if (mNumDirty <= (dirty_max >> 1)) {
          break;
        }
      }
    }

    if (chunk->ndirty == 0) {
      mChunksDirty.Remove(chunk);
    }
#ifdef MALLOC_DOUBLE_PURGE
    if (madvised) {
      // The chunk might already be in the list, but this
      // makes sure it's at the front.
      if (mChunksMAdvised.ElementProbablyInList(chunk)) {
        mChunksMAdvised.remove(chunk);
      }
      mChunksMAdvised.pushFront(chunk);
    }
#endif
  }
}

void arena_t::DallocRun(arena_run_t* aRun, bool aDirty) {
  arena_chunk_t* chunk;
  size_t size, run_ind, run_pages;

  chunk = GetChunkForPtr(aRun);
  run_ind = (size_t)((uintptr_t(aRun) - uintptr_t(chunk)) >> gPageSize2Pow);
  MOZ_DIAGNOSTIC_ASSERT(run_ind >= gChunkHeaderNumPages);
  MOZ_RELEASE_ASSERT(run_ind < gChunkNumPages - 1);
  if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0) {
    size = chunk->map[run_ind].bits & ~gPageSizeMask;
  } else {
    size = aRun->mBin->mRunSize;
  }
  run_pages = (size >> gPageSize2Pow);

  // Mark pages as unallocated in the chunk map.
  if (aDirty) {
    size_t i;

    for (i = 0; i < run_pages; i++) {
      MOZ_DIAGNOSTIC_ASSERT((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) ==
                            0);
      chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY;
    }

    if (chunk->ndirty == 0) {
      mChunksDirty.Insert(chunk);
    }
    chunk->ndirty += run_pages;
    mNumDirty += run_pages;
  } else {
    size_t i;

    for (i = 0; i < run_pages; i++) {
      chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED);
    }
  }
  chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits & gPageSizeMask);
  chunk->map[run_ind + run_pages - 1].bits =
      size | (chunk->map[run_ind + run_pages - 1].bits & gPageSizeMask);

  // Try to coalesce forward.
  if (run_ind + run_pages < gChunkNumPages - 1 &&
      (chunk->map[run_ind + run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) {
    size_t nrun_size = chunk->map[run_ind + run_pages].bits & ~gPageSizeMask;

    // Remove successor from tree of available runs; the coalesced run is
    // inserted later.
    mRunsAvail.Remove(&chunk->map[run_ind + run_pages]);

    size += nrun_size;
    run_pages = size >> gPageSize2Pow;

    MOZ_DIAGNOSTIC_ASSERT((chunk->map[run_ind + run_pages - 1].bits &
                           ~gPageSizeMask) == nrun_size);
    chunk->map[run_ind].bits =
        size | (chunk->map[run_ind].bits & gPageSizeMask);
    chunk->map[run_ind + run_pages - 1].bits =
        size | (chunk->map[run_ind + run_pages - 1].bits & gPageSizeMask);
  }

  // Try to coalesce backward.
  if (run_ind > gChunkHeaderNumPages &&
      (chunk->map[run_ind - 1].bits & CHUNK_MAP_ALLOCATED) == 0) {
    size_t prun_size = chunk->map[run_ind - 1].bits & ~gPageSizeMask;

    run_ind -= prun_size >> gPageSize2Pow;

    // Remove predecessor from tree of available runs; the coalesced run is
    // inserted later.
    mRunsAvail.Remove(&chunk->map[run_ind]);

    size += prun_size;
    run_pages = size >> gPageSize2Pow;

    MOZ_DIAGNOSTIC_ASSERT((chunk->map[run_ind].bits & ~gPageSizeMask) ==
                          prun_size);
    chunk->map[run_ind].bits =
        size | (chunk->map[run_ind].bits & gPageSizeMask);
    chunk->map[run_ind + run_pages - 1].bits =
        size | (chunk->map[run_ind + run_pages - 1].bits & gPageSizeMask);
  }

  // Insert into tree of available runs, now that coalescing is complete.
  mRunsAvail.Insert(&chunk->map[run_ind]);

  // Deallocate chunk if it is now completely unused.
  if ((chunk->map[gChunkHeaderNumPages].bits &
       (~gPageSizeMask | CHUNK_MAP_ALLOCATED)) == gMaxLargeClass) {
    DeallocChunk(chunk);
  }

  // Enforce mMaxDirty.
  if (mNumDirty > mMaxDirty) {
    Purge(false);
  }
}

void arena_t::TrimRunHead(arena_chunk_t* aChunk, arena_run_t* aRun,
                          size_t aOldSize, size_t aNewSize) {
  size_t pageind = (uintptr_t(aRun) - uintptr_t(aChunk)) >> gPageSize2Pow;
  size_t head_npages = (aOldSize - aNewSize) >> gPageSize2Pow;

  MOZ_ASSERT(aOldSize > aNewSize);

  // Update the chunk map so that arena_t::RunDalloc() can treat the
  // leading run as separately allocated.
  aChunk->map[pageind].bits =
      (aOldSize - aNewSize) | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED;
  aChunk->map[pageind + head_npages].bits =
      aNewSize | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED;

  DallocRun(aRun, false);
}

void arena_t::TrimRunTail(arena_chunk_t* aChunk, arena_run_t* aRun,
                          size_t aOldSize, size_t aNewSize, bool aDirty) {
  size_t pageind = (uintptr_t(aRun) - uintptr_t(aChunk)) >> gPageSize2Pow;
  size_t npages = aNewSize >> gPageSize2Pow;

  MOZ_ASSERT(aOldSize > aNewSize);

  // Update the chunk map so that arena_t::RunDalloc() can treat the
  // trailing run as separately allocated.
  aChunk->map[pageind].bits = aNewSize | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED;
  aChunk->map[pageind + npages].bits =
      (aOldSize - aNewSize) | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED;

  DallocRun((arena_run_t*)(uintptr_t(aRun) + aNewSize), aDirty);
}

arena_run_t* arena_t::GetNonFullBinRun(arena_bin_t* aBin) {
  arena_chunk_map_t* mapelm;
  arena_run_t* run;
  unsigned i, remainder;

  // Look for a usable run.
  mapelm = aBin->mNonFullRuns.First();
  if (mapelm) {
    // run is guaranteed to have available space.
    aBin->mNonFullRuns.Remove(mapelm);
    run = (arena_run_t*)(mapelm->bits & ~gPageSizeMask);
    return run;
  }
  // No existing runs have any space available.

  // Allocate a new run.
  run = AllocRun(aBin->mRunSize, false, false);
  if (!run) {
    return nullptr;
  }
  // Don't initialize if a race in arena_t::RunAlloc() allowed an existing
  // run to become usable.
  if (run == aBin->mCurrentRun) {
    return run;
  }

  // Initialize run internals.
  run->mBin = aBin;

  for (i = 0; i < aBin->mRunNumRegionsMask - 1; i++) {
    run->mRegionsMask[i] = UINT_MAX;
  }
  remainder = aBin->mRunNumRegions & ((1U << (LOG2(sizeof(int)) + 3)) - 1);
  if (remainder == 0) {
    run->mRegionsMask[i] = UINT_MAX;
  } else {
    // The last element has spare bits that need to be unset.
    run->mRegionsMask[i] =
        (UINT_MAX >> ((1U << (LOG2(sizeof(int)) + 3)) - remainder));
  }

  run->mRegionsMinElement = 0;

  run->mNumFree = aBin->mRunNumRegions;
#if defined(MOZ_DIAGNOSTIC_ASSERT_ENABLED)
  run->mMagic = ARENA_RUN_MAGIC;
#endif

  aBin->mNumRuns++;
  return run;
}

void arena_bin_t::Init(SizeClass aSizeClass) {
  size_t try_run_size;
  unsigned try_nregs, try_mask_nelms, try_reg0_offset;
  // Size of the run header, excluding mRegionsMask.
  static const size_t kFixedHeaderSize = offsetof(arena_run_t, mRegionsMask);

  MOZ_ASSERT(aSizeClass.Size() <= gMaxBinClass);

  try_run_size = gPageSize;

  mCurrentRun = nullptr;
  mNonFullRuns.Init();
  mSizeClass = aSizeClass.Size();
  mNumRuns = 0;

  // mRunSize expansion loop.
  while (true) {
    try_nregs = ((try_run_size - kFixedHeaderSize) / mSizeClass) +
                1;  // Counter-act try_nregs-- in loop.

    // The do..while loop iteratively reduces the number of regions until
    // the run header and the regions no longer overlap.  A closed formula
    // would be quite messy, since there is an interdependency between the
    // header's mask length and the number of regions.
    do {
      try_nregs--;
      try_mask_nelms =
          (try_nregs >> (LOG2(sizeof(int)) + 3)) +
          ((try_nregs & ((1U << (LOG2(sizeof(int)) + 3)) - 1)) ? 1 : 0);
      try_reg0_offset = try_run_size - (try_nregs * mSizeClass);
    } while (kFixedHeaderSize + (sizeof(unsigned) * try_mask_nelms) >
             try_reg0_offset);

    // Try to keep the run overhead below kRunOverhead.
    if (Fraction(try_reg0_offset, try_run_size) <= kRunOverhead) {
      break;
    }

    // If the overhead is larger than the size class, it means the size class
    // is small and doesn't align very well with the header. It's desirable to
    // have smaller run sizes for them, so relax the overhead requirement.
    if (try_reg0_offset > mSizeClass) {
      if (Fraction(try_reg0_offset, try_run_size) <= kRunRelaxedOverhead) {
        break;
      }
    }

    // The run header includes one bit per region of the given size. For sizes
    // small enough, the number of regions is large enough that growing the run
    // size barely moves the needle for the overhead because of all those bits.
    // For example, for a size of 8 bytes, adding 4KiB to the run size adds
    // close to 512 bits to the header, which is 64 bytes.
    // With such overhead, there is no way to get to the wanted overhead above,
    // so we give up if the required size for mRegionsMask more than doubles the
    // size of the run header.
    if (try_mask_nelms * sizeof(unsigned) >= kFixedHeaderSize) {
      break;
    }

    // If next iteration is going to be larger than the largest possible large
    // size class, then we didn't find a setup where the overhead is small
    // enough, and we can't do better than the current settings, so just use
    // that.
    if (try_run_size + gPageSize > gMaxLargeClass) {
      break;
    }

    // Try more aggressive settings.
    try_run_size += gPageSize;
  }

  MOZ_ASSERT(kFixedHeaderSize + (sizeof(unsigned) * try_mask_nelms) <=
             try_reg0_offset);
  MOZ_ASSERT((try_mask_nelms << (LOG2(sizeof(int)) + 3)) >= try_nregs);

  // Copy final settings.
  mRunSize = try_run_size;
  mRunNumRegions = try_nregs;
  mRunNumRegionsMask = try_mask_nelms;
  mRunFirstRegionOffset = try_reg0_offset;
}

void* arena_t::MallocSmall(size_t aSize, bool aZero) {
  void* ret;
  arena_bin_t* bin;
  arena_run_t* run;
  SizeClass sizeClass(aSize);
  aSize = sizeClass.Size();

  switch (sizeClass.Type()) {
    case SizeClass::Tiny:
      bin = &mBins[FloorLog2(aSize / kMinTinyClass)];
      break;
    case SizeClass::Quantum:
      bin = &mBins[kNumTinyClasses + (aSize / kQuantum) - 1];
      break;
    case SizeClass::SubPage:
      bin = &mBins[kNumTinyClasses + kNumQuantumClasses +
                   (FloorLog2(aSize / kMaxQuantumClass) - 1)];
      break;
    default:
      MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Unexpected size class type");
  }
  MOZ_DIAGNOSTIC_ASSERT(aSize == bin->mSizeClass);

  {
    // Before we lock, we determine if we need to randomize the allocation
    // because if we do, we need to create the PRNG which might require
    // allocating memory (arc4random on OSX for example) and we need to
    // avoid the deadlock
    if (MOZ_UNLIKELY(mRandomizeSmallAllocations && mPRNG == nullptr)) {
      // This is frustrating. Because the code backing RandomUint64 (arc4random
      // for example) may allocate memory, and because
      // mRandomizeSmallAllocations is true and we haven't yet initilized mPRNG,
      // we would re-enter this same case and cause a deadlock inside e.g.
      // arc4random.  So we temporarily disable mRandomizeSmallAllocations to
      // skip this case and then re-enable it
      mRandomizeSmallAllocations = false;
      mozilla::Maybe<uint64_t> prngState1 = mozilla::RandomUint64();
      mozilla::Maybe<uint64_t> prngState2 = mozilla::RandomUint64();
      void* backing =
          base_alloc(sizeof(mozilla::non_crypto::XorShift128PlusRNG));
      mPRNG = new (backing) mozilla::non_crypto::XorShift128PlusRNG(
          prngState1.valueOr(0), prngState2.valueOr(0));
      mRandomizeSmallAllocations = true;
    }
    MOZ_ASSERT(!mRandomizeSmallAllocations || mPRNG);

    MutexAutoLock lock(mLock);
    run = bin->mCurrentRun;
    if (MOZ_UNLIKELY(!run || run->mNumFree == 0)) {
      run = bin->mCurrentRun = GetNonFullBinRun(bin);
    }
    if (MOZ_UNLIKELY(!run)) {
      return nullptr;
    }
    MOZ_DIAGNOSTIC_ASSERT(run->mMagic == ARENA_RUN_MAGIC);
    MOZ_DIAGNOSTIC_ASSERT(run->mNumFree > 0);
    ret = ArenaRunRegAlloc(run, bin);
    MOZ_DIAGNOSTIC_ASSERT(ret);
    run->mNumFree--;
    if (!ret) {
      return nullptr;
    }

    mStats.allocated_small += aSize;
  }

  if (!aZero) {
    ApplyZeroOrJunk(ret, aSize);
  } else {
    memset(ret, 0, aSize);
  }

  return ret;
}

void* arena_t::MallocLarge(size_t aSize, bool aZero) {
  void* ret;

  // Large allocation.
  aSize = PAGE_CEILING(aSize);

  {
    MutexAutoLock lock(mLock);
    ret = AllocRun(aSize, true, aZero);
    if (!ret) {
      return nullptr;
    }
    mStats.allocated_large += aSize;
  }

  if (!aZero) {
    ApplyZeroOrJunk(ret, aSize);
  }

  return ret;
}

void* arena_t::Malloc(size_t aSize, bool aZero) {
  MOZ_DIAGNOSTIC_ASSERT(mMagic == ARENA_MAGIC);
  MOZ_ASSERT(aSize != 0);

  if (aSize <= gMaxBinClass) {
    return MallocSmall(aSize, aZero);
  }
  if (aSize <= gMaxLargeClass) {
    return MallocLarge(aSize, aZero);
  }
  return MallocHuge(aSize, aZero);
}

// Only handles large allocations that require more than page alignment.
void* arena_t::PallocLarge(size_t aAlignment, size_t aSize, size_t aAllocSize) {
  void* ret;
  size_t offset;
  arena_chunk_t* chunk;

  MOZ_ASSERT((aSize & gPageSizeMask) == 0);
  MOZ_ASSERT((aAlignment & gPageSizeMask) == 0);

  {
    MutexAutoLock lock(mLock);
    ret = AllocRun(aAllocSize, true, false);
    if (!ret) {
      return nullptr;
    }

    chunk = GetChunkForPtr(ret);

    offset = uintptr_t(ret) & (aAlignment - 1);
    MOZ_ASSERT((offset & gPageSizeMask) == 0);
    MOZ_ASSERT(offset < aAllocSize);
    if (offset == 0) {
      TrimRunTail(chunk, (arena_run_t*)ret, aAllocSize, aSize, false);
    } else {
      size_t leadsize, trailsize;

      leadsize = aAlignment - offset;
      if (leadsize > 0) {
        TrimRunHead(chunk, (arena_run_t*)ret, aAllocSize,
                    aAllocSize - leadsize);
        ret = (void*)(uintptr_t(ret) + leadsize);
      }

      trailsize = aAllocSize - leadsize - aSize;
      if (trailsize != 0) {
        // Trim trailing space.
        MOZ_ASSERT(trailsize < aAllocSize);
        TrimRunTail(chunk, (arena_run_t*)ret, aSize + trailsize, aSize, false);
      }
    }

    mStats.allocated_large += aSize;
  }

  ApplyZeroOrJunk(ret, aSize);
  return ret;
}

void* arena_t::Palloc(size_t aAlignment, size_t aSize) {
  void* ret;
  size_t ceil_size;

  // Round size up to the nearest multiple of alignment.
  //
  // This done, we can take advantage of the fact that for each small
  // size class, every object is aligned at the smallest power of two
  // that is non-zero in the base two representation of the size.  For
  // example:
  //
  //   Size |   Base 2 | Minimum alignment
  //   -----+----------+------------------
  //     96 |  1100000 |  32
  //    144 | 10100000 |  32
  //    192 | 11000000 |  64
  //
  // Depending on runtime settings, it is possible that arena_malloc()
  // will further round up to a power of two, but that never causes
  // correctness issues.
  ceil_size = ALIGNMENT_CEILING(aSize, aAlignment);

  // (ceil_size < aSize) protects against the combination of maximal
  // alignment and size greater than maximal alignment.
  if (ceil_size < aSize) {
    // size_t overflow.
    return nullptr;
  }

  if (ceil_size <= gPageSize ||
      (aAlignment <= gPageSize && ceil_size <= gMaxLargeClass)) {
    ret = Malloc(ceil_size, false);
  } else {
    size_t run_size;

    // We can't achieve sub-page alignment, so round up alignment
    // permanently; it makes later calculations simpler.
    aAlignment = PAGE_CEILING(aAlignment);
    ceil_size = PAGE_CEILING(aSize);

    // (ceil_size < aSize) protects against very large sizes within
    // pagesize of SIZE_T_MAX.
    //
    // (ceil_size + aAlignment < ceil_size) protects against the
    // combination of maximal alignment and ceil_size large enough
    // to cause overflow.  This is similar to the first overflow
    // check above, but it needs to be repeated due to the new
    // ceil_size value, which may now be *equal* to maximal
    // alignment, whereas before we only detected overflow if the
    // original size was *greater* than maximal alignment.
    if (ceil_size < aSize || ceil_size + aAlignment < ceil_size) {
      // size_t overflow.
      return nullptr;
    }

    // Calculate the size of the over-size run that arena_palloc()
    // would need to allocate in order to guarantee the alignment.
    if (ceil_size >= aAlignment) {
      run_size = ceil_size + aAlignment - gPageSize;
    } else {
      // It is possible that (aAlignment << 1) will cause
      // overflow, but it doesn't matter because we also
      // subtract pagesize, which in the case of overflow
      // leaves us with a very large run_size.  That causes
      // the first conditional below to fail, which means
      // that the bogus run_size value never gets used for
      // anything important.
      run_size = (aAlignment << 1) - gPageSize;
    }

    if (run_size <= gMaxLargeClass) {
      ret = PallocLarge(aAlignment, ceil_size, run_size);
    } else if (aAlignment <= kChunkSize) {
      ret = MallocHuge(ceil_size, false);
    } else {
      ret = PallocHuge(ceil_size, aAlignment, false);
    }
  }

  MOZ_ASSERT((uintptr_t(ret) & (aAlignment - 1)) == 0);
  return ret;
}

class AllocInfo {
 public:
  template <bool Validate = false>
  static inline AllocInfo Get(const void* aPtr) {
    // If the allocator is not initialized, the pointer can't belong to it.
    if (Validate && malloc_initialized == false) {
      return AllocInfo();
    }

    auto chunk = GetChunkForPtr(aPtr);
    if (Validate) {
      if (!chunk || !gChunkRTree.Get(chunk)) {
        return AllocInfo();
      }
    }

    if (chunk != aPtr) {
      MOZ_DIAGNOSTIC_ASSERT(chunk->arena->mMagic == ARENA_MAGIC);

      size_t pageind = (((uintptr_t)aPtr - (uintptr_t)chunk) >> gPageSize2Pow);
      size_t mapbits = chunk->map[pageind].bits;
      MOZ_DIAGNOSTIC_ASSERT((mapbits & CHUNK_MAP_ALLOCATED) != 0);

      size_t size;
      if ((mapbits & CHUNK_MAP_LARGE) == 0) {
        arena_run_t* run = (arena_run_t*)(mapbits & ~gPageSizeMask);
        MOZ_DIAGNOSTIC_ASSERT(run->mMagic == ARENA_RUN_MAGIC);
        size = run->mBin->mSizeClass;
      } else {
        size = mapbits & ~gPageSizeMask;
        MOZ_DIAGNOSTIC_ASSERT(size != 0);
      }

      return AllocInfo(size, chunk);
    }

    extent_node_t key;

    // Huge allocation
    key.mAddr = chunk;
    MutexAutoLock lock(huge_mtx);
    extent_node_t* node = huge.Search(&key);
    if (Validate && !node) {
      return AllocInfo();
    }
    return AllocInfo(node->mSize, node);
  }

  // Validate ptr before assuming that it points to an allocation.  Currently,
  // the following validation is performed:
  //
  // + Check that ptr is not nullptr.
  //
  // + Check that ptr lies within a mapped chunk.
  static inline AllocInfo GetValidated(const void* aPtr) {
    return Get<true>(aPtr);
  }

  AllocInfo() : mSize(0), mChunk(nullptr) {}

  explicit AllocInfo(size_t aSize, arena_chunk_t* aChunk)
      : mSize(aSize), mChunk(aChunk) {
    MOZ_ASSERT(mSize <= gMaxLargeClass);
  }

  explicit AllocInfo(size_t aSize, extent_node_t* aNode)
      : mSize(aSize), mNode(aNode) {
    MOZ_ASSERT(mSize > gMaxLargeClass);
  }

  size_t Size() { return mSize; }

  arena_t* Arena() {
    if (mSize <= gMaxLargeClass) {
      return mChunk->arena;
    }
    // Best effort detection that we're not trying to access an already
    // disposed arena. In the case of a disposed arena, the memory location
    // pointed by mNode->mArena is either free (but still a valid memory
    // region, per TypedBaseAlloc<arena_t>), in which case its id was reset,
    // or has been reallocated for a new region, and its id is very likely
    // different (per randomness). In both cases, the id is unlikely to
    // match what it was for the disposed arena.
    MOZ_RELEASE_ASSERT(mNode->mArenaId == mNode->mArena->mId);
    return mNode->mArena;
  }

 private:
  size_t mSize;
  union {
    // Pointer to the chunk associated with the allocation for small
    // and large allocations.
    arena_chunk_t* mChunk;

    // Pointer to the extent node for huge allocations.
    extent_node_t* mNode;
  };
};

template <>
inline void MozJemalloc::jemalloc_ptr_info(const void* aPtr,
                                           jemalloc_ptr_info_t* aInfo) {
  arena_chunk_t* chunk = GetChunkForPtr(aPtr);

  // Is the pointer null, or within one chunk's size of null?
  // Alternatively, if the allocator is not initialized yet, the pointer
  // can't be known.
  if (!chunk || !malloc_initialized) {
    *aInfo = {TagUnknown, nullptr, 0, 0};
    return;
  }

  // Look for huge allocations before looking for |chunk| in gChunkRTree.
  // This is necessary because |chunk| won't be in gChunkRTree if it's
  // the second or subsequent chunk in a huge allocation.
  extent_node_t* node;
  extent_node_t key;
  {
    MutexAutoLock lock(huge_mtx);
    key.mAddr = const_cast<void*>(aPtr);
    node =
        reinterpret_cast<RedBlackTree<extent_node_t, ExtentTreeBoundsTrait>*>(
            &huge)
            ->Search(&key);
    if (node) {
      *aInfo = {TagLiveAlloc, node->mAddr, node->mSize, node->mArena->mId};
      return;
    }
  }

  // It's not a huge allocation. Check if we have a known chunk.
  if (!gChunkRTree.Get(chunk)) {
    *aInfo = {TagUnknown, nullptr, 0, 0};
    return;
  }

  MOZ_DIAGNOSTIC_ASSERT(chunk->arena->mMagic == ARENA_MAGIC);

  // Get the page number within the chunk.
  size_t pageind = (((uintptr_t)aPtr - (uintptr_t)chunk) >> gPageSize2Pow);
  if (pageind < gChunkHeaderNumPages) {
    // Within the chunk header.
    *aInfo = {TagUnknown, nullptr, 0, 0};
    return;
  }

  size_t mapbits = chunk->map[pageind].bits;

  if (!(mapbits & CHUNK_MAP_ALLOCATED)) {
    void* pageaddr = (void*)(uintptr_t(aPtr) & ~gPageSizeMask);
    *aInfo = {TagFreedPage, pageaddr, gPageSize, chunk->arena->mId};
    return;
  }

  if (mapbits & CHUNK_MAP_LARGE) {
    // It's a large allocation. Only the first page of a large
    // allocation contains its size, so if the address is not in
    // the first page, scan back to find the allocation size.
    size_t size;
    while (true) {
      size = mapbits & ~gPageSizeMask;
      if (size != 0) {
        break;
      }

      // The following two return paths shouldn't occur in
      // practice unless there is heap corruption.
      pageind--;
      MOZ_DIAGNOSTIC_ASSERT(pageind >= gChunkHeaderNumPages);
      if (pageind < gChunkHeaderNumPages) {
        *aInfo = {TagUnknown, nullptr, 0, 0};
        return;
      }

      mapbits = chunk->map[pageind].bits;
      MOZ_DIAGNOSTIC_ASSERT(mapbits & CHUNK_MAP_LARGE);
      if (!(mapbits & CHUNK_MAP_LARGE)) {
        *aInfo = {TagUnknown, nullptr, 0, 0};
        return;
      }
    }

    void* addr = ((char*)chunk) + (pageind << gPageSize2Pow);
    *aInfo = {TagLiveAlloc, addr, size, chunk->arena->mId};
    return;
  }

  // It must be a small allocation.
  auto run = (arena_run_t*)(mapbits & ~gPageSizeMask);
  MOZ_DIAGNOSTIC_ASSERT(run->mMagic == ARENA_RUN_MAGIC);

  // The allocation size is stored in the run metadata.
  size_t size = run->mBin->mSizeClass;

  // Address of the first possible pointer in the run after its headers.
  uintptr_t reg0_addr = (uintptr_t)run + run->mBin->mRunFirstRegionOffset;
  if (aPtr < (void*)reg0_addr) {
    // In the run header.
    *aInfo = {TagUnknown, nullptr, 0, 0};
    return;
  }

  // Position in the run.
  unsigned regind = ((uintptr_t)aPtr - reg0_addr) / size;

  // Pointer to the allocation's base address.
  void* addr = (void*)(reg0_addr + regind * size);

  // Check if the allocation has been freed.
  unsigned elm = regind >> (LOG2(sizeof(int)) + 3);
  unsigned bit = regind - (elm << (LOG2(sizeof(int)) + 3));
  PtrInfoTag tag =
      ((run->mRegionsMask[elm] & (1U << bit))) ? TagFreedAlloc : TagLiveAlloc;

  *aInfo = {tag, addr, size, chunk->arena->mId};
}

namespace Debug {
// Helper for debuggers. We don't want it to be inlined and optimized out.
MOZ_NEVER_INLINE jemalloc_ptr_info_t* jemalloc_ptr_info(const void* aPtr) {
  static jemalloc_ptr_info_t info;
  MozJemalloc::jemalloc_ptr_info(aPtr, &info);
  return &info;
}
}  // namespace Debug

void arena_t::DallocSmall(arena_chunk_t* aChunk, void* aPtr,
                          arena_chunk_map_t* aMapElm) {
  arena_run_t* run;
  arena_bin_t* bin;
  size_t size;

  run = (arena_run_t*)(aMapElm->bits & ~gPageSizeMask);
  MOZ_DIAGNOSTIC_ASSERT(run->mMagic == ARENA_RUN_MAGIC);
  bin = run->mBin;
  size = bin->mSizeClass;
  MOZ_DIAGNOSTIC_ASSERT(uintptr_t(aPtr) >=
                        uintptr_t(run) + bin->mRunFirstRegionOffset);

  memset(aPtr, kAllocPoison, size);

  arena_run_reg_dalloc(run, bin, aPtr, size);
  run->mNumFree++;

  if (run->mNumFree == bin->mRunNumRegions) {
    // Deallocate run.
    if (run == bin->mCurrentRun) {
      bin->mCurrentRun = nullptr;
    } else if (bin->mRunNumRegions != 1) {
      size_t run_pageind =
          (uintptr_t(run) - uintptr_t(aChunk)) >> gPageSize2Pow;
      arena_chunk_map_t* run_mapelm = &aChunk->map[run_pageind];

      // This block's conditional is necessary because if the
      // run only contains one region, then it never gets
      // inserted into the non-full runs tree.
      MOZ_DIAGNOSTIC_ASSERT(bin->mNonFullRuns.Search(run_mapelm) == run_mapelm);
      bin->mNonFullRuns.Remove(run_mapelm);
    }
#if defined(MOZ_DIAGNOSTIC_ASSERT_ENABLED)
    run->mMagic = 0;
#endif
    DallocRun(run, true);
    bin->mNumRuns--;
  } else if (run->mNumFree == 1 && run != bin->mCurrentRun) {
    // Make sure that bin->mCurrentRun always refers to the lowest
    // non-full run, if one exists.
    if (!bin->mCurrentRun) {
      bin->mCurrentRun = run;
    } else if (uintptr_t(run) < uintptr_t(bin->mCurrentRun)) {
      // Switch mCurrentRun.
      if (bin->mCurrentRun->mNumFree > 0) {
        arena_chunk_t* runcur_chunk = GetChunkForPtr(bin->mCurrentRun);
        size_t runcur_pageind =
            (uintptr_t(bin->mCurrentRun) - uintptr_t(runcur_chunk)) >>
            gPageSize2Pow;
        arena_chunk_map_t* runcur_mapelm = &runcur_chunk->map[runcur_pageind];

        // Insert runcur.
        MOZ_DIAGNOSTIC_ASSERT(!bin->mNonFullRuns.Search(runcur_mapelm));
        bin->mNonFullRuns.Insert(runcur_mapelm);
      }
      bin->mCurrentRun = run;
    } else {
      size_t run_pageind =
          (uintptr_t(run) - uintptr_t(aChunk)) >> gPageSize2Pow;
      arena_chunk_map_t* run_mapelm = &aChunk->map[run_pageind];

      MOZ_DIAGNOSTIC_ASSERT(bin->mNonFullRuns.Search(run_mapelm) == nullptr);
      bin->mNonFullRuns.Insert(run_mapelm);
    }
  }
  mStats.allocated_small -= size;
}

void arena_t::DallocLarge(arena_chunk_t* aChunk, void* aPtr) {
  MOZ_DIAGNOSTIC_ASSERT((uintptr_t(aPtr) & gPageSizeMask) == 0);
  size_t pageind = (uintptr_t(aPtr) - uintptr_t(aChunk)) >> gPageSize2Pow;
  size_t size = aChunk->map[pageind].bits & ~gPageSizeMask;

  memset(aPtr, kAllocPoison, size);
  mStats.allocated_large -= size;

  DallocRun((arena_run_t*)aPtr, true);
}

static inline void arena_dalloc(void* aPtr, size_t aOffset, arena_t* aArena) {
  MOZ_ASSERT(aPtr);
  MOZ_ASSERT(aOffset != 0);
  MOZ_ASSERT(GetChunkOffsetForPtr(aPtr) == aOffset);

  auto chunk = (arena_chunk_t*)((uintptr_t)aPtr - aOffset);
  auto arena = chunk->arena;
  MOZ_ASSERT(arena);
  MOZ_DIAGNOSTIC_ASSERT(arena->mMagic == ARENA_MAGIC);
  MOZ_RELEASE_ASSERT(!aArena || arena == aArena);

  MutexAutoLock lock(arena->mLock);
  size_t pageind = aOffset >> gPageSize2Pow;
  arena_chunk_map_t* mapelm = &chunk->map[pageind];
  MOZ_RELEASE_ASSERT((mapelm->bits & CHUNK_MAP_DECOMMITTED) == 0,
                     "Freeing in decommitted page.");
  MOZ_RELEASE_ASSERT((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0, "Double-free?");
  if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
    // Small allocation.
    arena->DallocSmall(chunk, aPtr, mapelm);
  } else {
    // Large allocation.
    arena->DallocLarge(chunk, aPtr);
  }
}

static inline void idalloc(void* ptr, arena_t* aArena) {
  size_t offset;

  MOZ_ASSERT(ptr);

  offset = GetChunkOffsetForPtr(ptr);
  if (offset != 0) {
    arena_dalloc(ptr, offset, aArena);
  } else {
    huge_dalloc(ptr, aArena);
  }
}

void arena_t::RallocShrinkLarge(arena_chunk_t* aChunk, void* aPtr, size_t aSize,
                                size_t aOldSize) {
  MOZ_ASSERT(aSize < aOldSize);

  // Shrink the run, and make trailing pages available for other
  // allocations.
  MutexAutoLock lock(mLock);
  TrimRunTail(aChunk, (arena_run_t*)aPtr, aOldSize, aSize, true);
  mStats.allocated_large -= aOldSize - aSize;
}

// Returns whether reallocation was successful.
bool arena_t::RallocGrowLarge(arena_chunk_t* aChunk, void* aPtr, size_t aSize,
                              size_t aOldSize) {
  size_t pageind = (uintptr_t(aPtr) - uintptr_t(aChunk)) >> gPageSize2Pow;
  size_t npages = aOldSize >> gPageSize2Pow;

  MutexAutoLock lock(mLock);
  MOZ_DIAGNOSTIC_ASSERT(aOldSize ==
                        (aChunk->map[pageind].bits & ~gPageSizeMask));

  // Try to extend the run.
  MOZ_ASSERT(aSize > aOldSize);
  if (pageind + npages < gChunkNumPages - 1 &&
      (aChunk->map[pageind + npages].bits & CHUNK_MAP_ALLOCATED) == 0 &&
      (aChunk->map[pageind + npages].bits & ~gPageSizeMask) >=
          aSize - aOldSize) {
    // The next run is available and sufficiently large.  Split the
    // following run, then merge the first part with the existing
    // allocation.
    if (!SplitRun((arena_run_t*)(uintptr_t(aChunk) +
                                 ((pageind + npages) << gPageSize2Pow)),
                  aSize - aOldSize, true, false)) {
      return false;
    }

    aChunk->map[pageind].bits = aSize | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED;
    aChunk->map[pageind + npages].bits = CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED;

    mStats.allocated_large += aSize - aOldSize;
    return true;
  }

  return false;
}

void* arena_t::RallocSmallOrLarge(void* aPtr, size_t aSize, size_t aOldSize) {
  void* ret;
  size_t copysize;
  SizeClass sizeClass(aSize);

  // Try to avoid moving the allocation.
  if (aOldSize <= gMaxLargeClass && sizeClass.Size() == aOldSize) {
    if (aSize < aOldSize) {
      memset((void*)(uintptr_t(aPtr) + aSize), kAllocPoison, aOldSize - aSize);
    }
    return aPtr;
  }
  if (sizeClass.Type() == SizeClass::Large && aOldSize > gMaxBinClass &&
      aOldSize <= gMaxLargeClass) {
    arena_chunk_t* chunk = GetChunkForPtr(aPtr);
    if (sizeClass.Size() < aOldSize) {
      // Fill before shrinking in order to avoid a race.
      memset((void*)((uintptr_t)aPtr + aSize), kAllocPoison, aOldSize - aSize);
      RallocShrinkLarge(chunk, aPtr, sizeClass.Size(), aOldSize);
      return aPtr;
    }
    if (RallocGrowLarge(chunk, aPtr, sizeClass.Size(), aOldSize)) {
      ApplyZeroOrJunk((void*)((uintptr_t)aPtr + aOldSize), aSize - aOldSize);
      return aPtr;
    }
  }

  // If we get here, then aSize and aOldSize are different enough that we
  // need to move the object.  In that case, fall back to allocating new
  // space and copying. Allow non-private arenas to switch arenas.
  ret = (mIsPrivate ? this : choose_arena(aSize))->Malloc(aSize, false);
  if (!ret) {
    return nullptr;
  }

  // Junk/zero-filling were already done by arena_t::Malloc().
  copysize = (aSize < aOldSize) ? aSize : aOldSize;
#ifdef VM_COPY_MIN
  if (copysize >= VM_COPY_MIN) {
    pages_copy(ret, aPtr, copysize);
  } else
#endif
  {
    memcpy(ret, aPtr, copysize);
  }
  idalloc(aPtr, this);
  return ret;
}

void* arena_t::Ralloc(void* aPtr, size_t aSize, size_t aOldSize) {
  MOZ_DIAGNOSTIC_ASSERT(mMagic == ARENA_MAGIC);
  MOZ_ASSERT(aPtr);
  MOZ_ASSERT(aSize != 0);

  return (aSize <= gMaxLargeClass) ? RallocSmallOrLarge(aPtr, aSize, aOldSize)
                                   : RallocHuge(aPtr, aSize, aOldSize);
}

void* arena_t::operator new(size_t aCount, const fallible_t&) noexcept {
  MOZ_ASSERT(aCount == sizeof(arena_t));
  return TypedBaseAlloc<arena_t>::alloc();
}

void arena_t::operator delete(void* aPtr) {
  TypedBaseAlloc<arena_t>::dealloc((arena_t*)aPtr);
}

arena_t::arena_t(arena_params_t* aParams, bool aIsPrivate) {
  unsigned i;

  MOZ_RELEASE_ASSERT(mLock.Init());

  memset(&mLink, 0, sizeof(mLink));
  memset(&mStats, 0, sizeof(arena_stats_t));
  mId = 0;

  // Initialize chunks.
  mChunksDirty.Init();
#ifdef MALLOC_DOUBLE_PURGE
  new (&mChunksMAdvised) DoublyLinkedList<arena_chunk_t>();
#endif
  mSpare = nullptr;

  mRandomizeSmallAllocations = opt_randomize_small;
  if (aParams) {
    uint32_t flags = aParams->mFlags & ARENA_FLAG_RANDOMIZE_SMALL_MASK;
    switch (flags) {
      case ARENA_FLAG_RANDOMIZE_SMALL_ENABLED:
        mRandomizeSmallAllocations = true;
        break;
      case ARENA_FLAG_RANDOMIZE_SMALL_DISABLED:
        mRandomizeSmallAllocations = false;
        break;
      case ARENA_FLAG_RANDOMIZE_SMALL_DEFAULT:
      default:
        break;
    }
  }
  mPRNG = nullptr;

  mIsPrivate = aIsPrivate;

  mNumDirty = 0;
  // The default maximum amount of dirty pages allowed on arenas is a fraction
  // of opt_dirty_max.
  mMaxDirty = (aParams && aParams->mMaxDirty) ? aParams->mMaxDirty
                                              : (opt_dirty_max / 8);

  mRunsAvail.Init();

  // Initialize bins.
  SizeClass sizeClass(1);

  for (i = 0;; i++) {
    arena_bin_t& bin = mBins[i];
    bin.Init(sizeClass);

    // SizeClass doesn't want sizes larger than gMaxSubPageClass for now.
    if (sizeClass.Size() == gMaxSubPageClass) {
      break;
    }
    sizeClass = sizeClass.Next();
  }
  MOZ_ASSERT(i == NUM_SMALL_CLASSES - 1);

#if defined(MOZ_DIAGNOSTIC_ASSERT_ENABLED)
  mMagic = ARENA_MAGIC;
#endif
}

arena_t::~arena_t() {
  size_t i;
  MutexAutoLock lock(mLock);
  MOZ_RELEASE_ASSERT(!mLink.Left() && !mLink.Right(),
                     "Arena is still registered");
  MOZ_RELEASE_ASSERT(!mStats.allocated_small && !mStats.allocated_large,
                     "Arena is not empty");
  if (mSpare) {
    chunk_dealloc(mSpare, kChunkSize, ARENA_CHUNK);
  }
  for (i = 0; i < NUM_SMALL_CLASSES; i++) {
    MOZ_RELEASE_ASSERT(!mBins[i].mNonFullRuns.First(), "Bin is not empty");
  }
#ifdef MOZ_DEBUG
  {
    MutexAutoLock lock(huge_mtx);
    // This is an expensive check, so we only do it on debug builds.
    for (auto node : huge.iter()) {
      MOZ_RELEASE_ASSERT(node->mArenaId != mId, "Arena has huge allocations");
    }
  }
#endif
  mId = 0;
}

arena_t* ArenaCollection::CreateArena(bool aIsPrivate,
                                      arena_params_t* aParams) {
  arena_t* ret = new (fallible) arena_t(aParams, aIsPrivate);
  if (!ret) {
    // Only reached if there is an OOM error.

    // OOM here is quite inconvenient to propagate, since dealing with it
    // would require a check for failure in the fast path.  Instead, punt
    // by using the first arena.
    // In practice, this is an extremely unlikely failure.
    _malloc_message(_getprogname(), ": (malloc) Error initializing arena\n");

    return mDefaultArena;
  }

  MutexAutoLock lock(mLock);

  // For public arenas, it's fine to just use incrementing arena id
  if (!aIsPrivate) {
    ret->mId = mLastPublicArenaId++;
    mArenas.Insert(ret);
    return ret;
  }

  // For private arenas, generate a cryptographically-secure random id for the
  // new arena. If an attacker manages to get control of the process, this
  // should make it more difficult for them to "guess" the ID of a memory
  // arena, stopping them from getting data they may want

  while (true) {
    mozilla::Maybe<uint64_t> maybeRandomId = mozilla::RandomUint64();
    MOZ_RELEASE_ASSERT(maybeRandomId.isSome());

    // Avoid 0 as an arena Id. We use 0 for disposed arenas.
    if (!maybeRandomId.value()) {
      continue;
    }

    // Keep looping until we ensure that the random number we just generated
    // isn't already in use by another active arena
    arena_t* existingArena =
        GetByIdInternal(maybeRandomId.value(), true /*aIsPrivate*/);

    if (!existingArena) {
      ret->mId = static_cast<arena_id_t>(maybeRandomId.value());
      mPrivateArenas.Insert(ret);
      return ret;
    }
  }
}

// End arena.
// ***************************************************************************
// Begin general internal functions.

void* arena_t::MallocHuge(size_t aSize, bool aZero) {
  return PallocHuge(aSize, kChunkSize, aZero);
}

void* arena_t::PallocHuge(size_t aSize, size_t aAlignment, bool aZero) {
  void* ret;
  size_t csize;
  size_t psize;
  extent_node_t* node;
  bool zeroed;

  // We're going to configure guard pages in the region between the
  // page-aligned size and the chunk-aligned size, so if those are the same
  // then we need to force that region into existence.
  csize = CHUNK_CEILING(aSize + gPageSize);
  if (csize < aSize) {
    // size is large enough to cause size_t wrap-around.
    return nullptr;
  }

  // Allocate an extent node with which to track the chunk.
  node = ExtentAlloc::alloc();
  if (!node) {
    return nullptr;
  }

  // Allocate one or more contiguous chunks for this request.
  ret = chunk_alloc(csize, aAlignment, false, &zeroed);
  if (!ret) {
    ExtentAlloc::dealloc(node);
    return nullptr;
  }
  psize = PAGE_CEILING(aSize);
  if (aZero) {
    // We will decommit anything past psize so there is no need to zero
    // further.
    chunk_ensure_zero(ret, psize, zeroed);
  }

  // Insert node into huge.
  node->mAddr = ret;
  node->mSize = psize;
  node->mArena = this;
  node->mArenaId = mId;

  {
    MutexAutoLock lock(huge_mtx);
    huge.Insert(node);

    // Although we allocated space for csize bytes, we indicate that we've
    // allocated only psize bytes.
    //
    // If DECOMMIT is defined, this is a reasonable thing to do, since
    // we'll explicitly decommit the bytes in excess of psize.
    //
    // If DECOMMIT is not defined, then we're relying on the OS to be lazy
    // about how it allocates physical pages to mappings.  If we never
    // touch the pages in excess of psize, the OS won't allocate a physical
    // page, and we won't use more than psize bytes of physical memory.
    //
    // A correct program will only touch memory in excess of how much it
    // requested if it first calls malloc_usable_size and finds out how
    // much space it has to play with.  But because we set node->mSize =
    // psize above, malloc_usable_size will return psize, not csize, and
    // the program will (hopefully) never touch bytes in excess of psize.
    // Thus those bytes won't take up space in physical memory, and we can
    // reasonably claim we never "allocated" them in the first place.
    huge_allocated += psize;
    huge_mapped += csize;
  }

  pages_decommit((void*)((uintptr_t)ret + psize), csize - psize);

  if (!aZero) {
    ApplyZeroOrJunk(ret, psize);
  }

  return ret;
}

void* arena_t::RallocHuge(void* aPtr, size_t aSize, size_t aOldSize) {
  void* ret;
  size_t copysize;

  // Avoid moving the allocation if the size class would not change.
  if (aOldSize > gMaxLargeClass &&
      CHUNK_CEILING(aSize + gPageSize) == CHUNK_CEILING(aOldSize + gPageSize)) {
    size_t psize = PAGE_CEILING(aSize);
    if (aSize < aOldSize) {
      memset((void*)((uintptr_t)aPtr + aSize), kAllocPoison, aOldSize - aSize);
    }
    if (psize < aOldSize) {
      extent_node_t key;

      pages_decommit((void*)((uintptr_t)aPtr + psize), aOldSize - psize);

      // Update recorded size.
      MutexAutoLock lock(huge_mtx);
      key.mAddr = const_cast<void*>(aPtr);
      extent_node_t* node = huge.Search(&key);
      MOZ_ASSERT(node);
      MOZ_ASSERT(node->mSize == aOldSize);
      MOZ_RELEASE_ASSERT(node->mArena == this);
      huge_allocated -= aOldSize - psize;
      // No need to change huge_mapped, because we didn't (un)map anything.
      node->mSize = psize;
    } else if (psize > aOldSize) {
      if (!pages_commit((void*)((uintptr_t)aPtr + aOldSize),
                        psize - aOldSize)) {
        return nullptr;
      }

      // We need to update the recorded size if the size increased,
      // so malloc_usable_size doesn't return a value smaller than
      // what was requested via realloc().
      extent_node_t key;
      MutexAutoLock lock(huge_mtx);
      key.mAddr = const_cast<void*>(aPtr);
      extent_node_t* node = huge.Search(&key);
      MOZ_ASSERT(node);
      MOZ_ASSERT(node->mSize == aOldSize);
      MOZ_RELEASE_ASSERT(node->mArena == this);
      huge_allocated += psize - aOldSize;
      // No need to change huge_mapped, because we didn't
      // (un)map anything.
      node->mSize = psize;
    }

    if (aSize > aOldSize) {
      ApplyZeroOrJunk((void*)((uintptr_t)aPtr + aOldSize), aSize - aOldSize);
    }
    return aPtr;
  }

  // If we get here, then aSize and aOldSize are different enough that we
  // need to use a different size class.  In that case, fall back to allocating
  // new space and copying. Allow non-private arenas to switch arenas.
  ret = (mIsPrivate ? this : choose_arena(aSize))->MallocHuge(aSize, false);
  if (!ret) {
    return nullptr;
  }

  copysize = (aSize < aOldSize) ? aSize : aOldSize;
#ifdef VM_COPY_MIN
  if (copysize >= VM_COPY_MIN) {
    pages_copy(ret, aPtr, copysize);
  } else
#endif
  {
    memcpy(ret, aPtr, copysize);
  }
  idalloc(aPtr, this);
  return ret;
}

static void huge_dalloc(void* aPtr, arena_t* aArena) {
  extent_node_t* node;
  size_t mapped = 0;
  {
    extent_node_t key;
    MutexAutoLock lock(huge_mtx);

    // Extract from tree of huge allocations.
    key.mAddr = aPtr;
    node = huge.Search(&key);
    MOZ_RELEASE_ASSERT(node, "Double-free?");
    MOZ_ASSERT(node->mAddr == aPtr);
    MOZ_RELEASE_ASSERT(!aArena || node->mArena == aArena);
    // See AllocInfo::Arena.
    MOZ_RELEASE_ASSERT(node->mArenaId == node->mArena->mId);
    huge.Remove(node);

    mapped = CHUNK_CEILING(node->mSize + gPageSize);
    huge_allocated -= node->mSize;
    huge_mapped -= mapped;
  }

  // Unmap chunk.
  chunk_dealloc(node->mAddr, mapped, HUGE_CHUNK);

  ExtentAlloc::dealloc(node);
}

static size_t GetKernelPageSize() {
  static size_t kernel_page_size = ([]() {
#ifdef XP_WIN
    SYSTEM_INFO info;
    GetSystemInfo(&info);
    return info.dwPageSize;
#else
    long result = sysconf(_SC_PAGESIZE);
    MOZ_ASSERT(result != -1);
    return result;
#endif
  })();
  return kernel_page_size;
}

// Returns whether the allocator was successfully initialized.
static bool malloc_init_hard() {
  unsigned i;
  const char* opts;
  long result;

  AutoLock<StaticMutex> lock(gInitLock);

  if (malloc_initialized) {
    // Another thread initialized the allocator before this one
    // acquired gInitLock.
    return true;
  }

  if (!thread_arena.init()) {
    return true;
  }

  // Get page size and number of CPUs
  result = GetKernelPageSize();
  // We assume that the page size is a power of 2.
  MOZ_ASSERT(((result - 1) & result) == 0);
#ifdef MALLOC_STATIC_PAGESIZE
  if (gPageSize % (size_t)result) {
    _malloc_message(
        _getprogname(),
        "Compile-time page size does not divide the runtime one.\n");
    MOZ_CRASH();
  }
#else
  gPageSize = (size_t)result;
  DefineGlobals();
#endif

  MOZ_RELEASE_ASSERT(JEMALLOC_MAX_STATS_BINS >= NUM_SMALL_CLASSES);

  // Get runtime configuration.
  if ((opts = getenv("MALLOC_OPTIONS"))) {
    for (i = 0; opts[i] != '\0'; i++) {
      unsigned j, nreps;
      bool nseen;

      // Parse repetition count, if any.
      for (nreps = 0, nseen = false;; i++, nseen = true) {
        switch (opts[i]) {
          case '0':
          case '1':
          case '2':
          case '3':
          case '4':
          case '5':
          case '6':
          case '7':
          case '8':
          case '9':
            nreps *= 10;
            nreps += opts[i] - '0';
            break;
          default:
            goto MALLOC_OUT;
        }
      }
    MALLOC_OUT:
      if (nseen == false) {
        nreps = 1;
      }

      for (j = 0; j < nreps; j++) {
        switch (opts[i]) {
          case 'f':
            opt_dirty_max >>= 1;
            break;
          case 'F':
            if (opt_dirty_max == 0) {
              opt_dirty_max = 1;
            } else if ((opt_dirty_max << 1) != 0) {
              opt_dirty_max <<= 1;
            }
            break;
#ifdef MOZ_DEBUG
          case 'j':
            opt_junk = false;
            break;
          case 'J':
            opt_junk = true;
            break;
#endif
#ifdef MOZ_DEBUG
          case 'z':
            opt_zero = false;
            break;
          case 'Z':
            opt_zero = true;
            break;
#endif
          case 'r':
            opt_randomize_small = false;
            break;
          case 'R':
            opt_randomize_small = true;
            break;
          default: {
            char cbuf[2];

            cbuf[0] = opts[i];
            cbuf[1] = '\0';
            _malloc_message(_getprogname(),
                            ": (malloc) Unsupported character "
                            "in malloc options: '",
                            cbuf, "'\n");
          }
        }
      }
    }
  }

  gRecycledSize = 0;

  // Initialize chunks data.
  chunks_mtx.Init();
  gChunksBySize.Init();
  gChunksByAddress.Init();

  // Initialize huge allocation data.
  huge_mtx.Init();
  huge.Init();
  huge_allocated = 0;
  huge_mapped = 0;

  // Initialize base allocation data structures.
  base_mapped = 0;
  base_committed = 0;
  base_mtx.Init();

  // Initialize arenas collection here.
  if (!gArenas.Init()) {
    return false;
  }

  // Assign the default arena to the initial thread.
  thread_arena.set(gArenas.GetDefault());

  if (!gChunkRTree.Init()) {
    return false;
  }

  malloc_initialized = true;

  // Dummy call so that the function is not removed by dead-code elimination
  Debug::jemalloc_ptr_info(nullptr);

#if !defined(XP_WIN) && !defined(XP_DARWIN)
  // Prevent potential deadlock on malloc locks after fork.
  pthread_atfork(_malloc_prefork, _malloc_postfork_parent,
                 _malloc_postfork_child);
#endif

  return true;
}

// End general internal functions.
// ***************************************************************************
// Begin malloc(3)-compatible functions.

// The BaseAllocator class is a helper class that implements the base allocator
// functions (malloc, calloc, realloc, free, memalign) for a given arena,
// or an appropriately chosen arena (per choose_arena()) when none is given.
struct BaseAllocator {
#define MALLOC_DECL(name, return_type, ...) \
  inline return_type name(__VA_ARGS__);

#define MALLOC_FUNCS MALLOC_FUNCS_MALLOC_BASE
#include "malloc_decls.h"

  explicit BaseAllocator(arena_t* aArena) : mArena(aArena) {}

 private:
  arena_t* mArena;
};

#define MALLOC_DECL(name, return_type, ...)                  \
  template <>                                                \
  inline return_type MozJemalloc::name(                      \
      ARGS_HELPER(TYPED_ARGS, ##__VA_ARGS__)) {              \
    BaseAllocator allocator(nullptr);                        \
    return allocator.name(ARGS_HELPER(ARGS, ##__VA_ARGS__)); \
  }
#define MALLOC_FUNCS MALLOC_FUNCS_MALLOC_BASE
#include "malloc_decls.h"

inline void* BaseAllocator::malloc(size_t aSize) {
  void* ret;
  arena_t* arena;

  if (!malloc_init()) {
    ret = nullptr;
    goto RETURN;
  }

  if (aSize == 0) {
    aSize = 1;
  }
  arena = mArena ? mArena : choose_arena(aSize);
  ret = arena->Malloc(aSize, /* zero = */ false);

RETURN:
  if (!ret) {
    errno = ENOMEM;
  }

  return ret;
}

inline void* BaseAllocator::memalign(size_t aAlignment, size_t aSize) {
  MOZ_ASSERT(((aAlignment - 1) & aAlignment) == 0);

  if (!malloc_init()) {
    return nullptr;
  }

  if (aSize == 0) {
    aSize = 1;
  }

  aAlignment = aAlignment < sizeof(void*) ? sizeof(void*) : aAlignment;
  arena_t* arena = mArena ? mArena : choose_arena(aSize);
  return arena->Palloc(aAlignment, aSize);
}

inline void* BaseAllocator::calloc(size_t aNum, size_t aSize) {
  void* ret;

  if (malloc_init()) {
    CheckedInt<size_t> checkedSize = CheckedInt<size_t>(aNum) * aSize;
    if (checkedSize.isValid()) {
      size_t allocSize = checkedSize.value();
      if (allocSize == 0) {
        allocSize = 1;
      }
      arena_t* arena = mArena ? mArena : choose_arena(allocSize);
      ret = arena->Malloc(allocSize, /* zero = */ true);
    } else {
      ret = nullptr;
    }
  } else {
    ret = nullptr;
  }

  if (!ret) {
    errno = ENOMEM;
  }

  return ret;
}

inline void* BaseAllocator::realloc(void* aPtr, size_t aSize) {
  void* ret;

  if (aSize == 0) {
    aSize = 1;
  }

  if (aPtr) {
    MOZ_RELEASE_ASSERT(malloc_initialized);

    auto info = AllocInfo::Get(aPtr);
    auto arena = info.Arena();
    MOZ_RELEASE_ASSERT(!mArena || arena == mArena);
    ret = arena->Ralloc(aPtr, aSize, info.Size());
  } else {
    if (!malloc_init()) {
      ret = nullptr;
    } else {
      arena_t* arena = mArena ? mArena : choose_arena(aSize);
      ret = arena->Malloc(aSize, /* zero = */ false);
    }
  }

  if (!ret) {
    errno = ENOMEM;
  }
  return ret;
}

inline void BaseAllocator::free(void* aPtr) {
  size_t offset;

  // A version of idalloc that checks for nullptr pointer.
  offset = GetChunkOffsetForPtr(aPtr);
  if (offset != 0) {
    MOZ_RELEASE_ASSERT(malloc_initialized);
    arena_dalloc(aPtr, offset, mArena);
  } else if (aPtr) {
    MOZ_RELEASE_ASSERT(malloc_initialized);
    huge_dalloc(aPtr, mArena);
  }
}

template <void* (*memalign)(size_t, size_t)>
struct AlignedAllocator {
  static inline int posix_memalign(void** aMemPtr, size_t aAlignment,
                                   size_t aSize) {
    void* result;

    // alignment must be a power of two and a multiple of sizeof(void*)
    if (((aAlignment - 1) & aAlignment) != 0 || aAlignment < sizeof(void*)) {
      return EINVAL;
    }

    // The 0-->1 size promotion is done in the memalign() call below
    result = memalign(aAlignment, aSize);

    if (!result) {
      return ENOMEM;
    }

    *aMemPtr = result;
    return 0;
  }

  static inline void* aligned_alloc(size_t aAlignment, size_t aSize) {
    if (aSize % aAlignment) {
      return nullptr;
    }
    return memalign(aAlignment, aSize);
  }

  static inline void* valloc(size_t aSize) {
    return memalign(GetKernelPageSize(), aSize);
  }
};

template <>
inline int MozJemalloc::posix_memalign(void** aMemPtr, size_t aAlignment,
                                       size_t aSize) {
  return AlignedAllocator<memalign>::posix_memalign(aMemPtr, aAlignment, aSize);
}

template <>
inline void* MozJemalloc::aligned_alloc(size_t aAlignment, size_t aSize) {
  return AlignedAllocator<memalign>::aligned_alloc(aAlignment, aSize);
}

template <>
inline void* MozJemalloc::valloc(size_t aSize) {
  return AlignedAllocator<memalign>::valloc(aSize);
}

// End malloc(3)-compatible functions.
// ***************************************************************************
// Begin non-standard functions.

// This was added by Mozilla for use by SQLite.
template <>
inline size_t MozJemalloc::malloc_good_size(size_t aSize) {
  if (aSize <= gMaxLargeClass) {
    // Small or large
    aSize = SizeClass(aSize).Size();
  } else {
    // Huge.  We use PAGE_CEILING to get psize, instead of using
    // CHUNK_CEILING to get csize.  This ensures that this
    // malloc_usable_size(malloc(n)) always matches
    // malloc_good_size(n).
    aSize = PAGE_CEILING(aSize);
  }
  return aSize;
}

template <>
inline size_t MozJemalloc::malloc_usable_size(usable_ptr_t aPtr) {
  return AllocInfo::GetValidated(aPtr).Size();
}

template <>
inline void MozJemalloc::jemalloc_stats_internal(
    jemalloc_stats_t* aStats, jemalloc_bin_stats_t* aBinStats) {
  size_t non_arena_mapped, chunk_header_size;

  if (!aStats) {
    return;
  }
  if (!malloc_init()) {
    memset(aStats, 0, sizeof(*aStats));
    return;
  }
  if (aBinStats) {
    // An assertion in malloc_init_hard will guarantee that
    // JEMALLOC_MAX_STATS_BINS >= NUM_SMALL_CLASSES.
    memset(aBinStats, 0,
           sizeof(jemalloc_bin_stats_t) * JEMALLOC_MAX_STATS_BINS);
  }

  // Gather runtime settings.
  aStats->opt_junk = opt_junk;
  aStats->opt_zero = opt_zero;
  aStats->quantum = kQuantum;
  aStats->quantum_max = kMaxQuantumClass;
  aStats->large_max = gMaxLargeClass;
  aStats->chunksize = kChunkSize;
  aStats->page_size = gPageSize;
  aStats->dirty_max = opt_dirty_max;

  // Gather current memory usage statistics.
  aStats->narenas = 0;
  aStats->mapped = 0;
  aStats->allocated = 0;
  aStats->waste = 0;
  aStats->page_cache = 0;
  aStats->bookkeeping = 0;
  aStats->bin_unused = 0;

  non_arena_mapped = 0;

  // Get huge mapped/allocated.
  {
    MutexAutoLock lock(huge_mtx);
    non_arena_mapped += huge_mapped;
    aStats->allocated += huge_allocated;
    MOZ_ASSERT(huge_mapped >= huge_allocated);
  }

  // Get base mapped/allocated.
  {
    MutexAutoLock lock(base_mtx);
    non_arena_mapped += base_mapped;
    aStats->bookkeeping += base_committed;
    MOZ_ASSERT(base_mapped >= base_committed);
  }

  gArenas.mLock.Lock();
  // Iterate over arenas.
  for (auto arena : gArenas.iter()) {
    size_t arena_mapped, arena_allocated, arena_committed, arena_dirty, j,
        arena_unused, arena_headers;

    arena_headers = 0;
    arena_unused = 0;

    {
      MutexAutoLock lock(arena->mLock);

      arena_mapped = arena->mStats.mapped;

      // "committed" counts dirty and allocated memory.
      arena_committed = arena->mStats.committed << gPageSize2Pow;

      arena_allocated =
          arena->mStats.allocated_small + arena->mStats.allocated_large;

      arena_dirty = arena->mNumDirty << gPageSize2Pow;

      for (j = 0; j < NUM_SMALL_CLASSES; j++) {
        arena_bin_t* bin = &arena->mBins[j];
        size_t bin_unused = 0;
        size_t num_non_full_runs = 0;

        for (auto mapelm : bin->mNonFullRuns.iter()) {
          arena_run_t* run = (arena_run_t*)(mapelm->bits & ~gPageSizeMask);
          bin_unused += run->mNumFree * bin->mSizeClass;
          num_non_full_runs++;
        }

        if (bin->mCurrentRun) {
          bin_unused += bin->mCurrentRun->mNumFree * bin->mSizeClass;
          num_non_full_runs++;
        }

        arena_unused += bin_unused;
        arena_headers += bin->mNumRuns * bin->mRunFirstRegionOffset;
        if (aBinStats) {
          aBinStats[j].size = bin->mSizeClass;
          aBinStats[j].num_non_full_runs += num_non_full_runs;
          aBinStats[j].num_runs += bin->mNumRuns;
          aBinStats[j].bytes_unused += bin_unused;
          aBinStats[j].bytes_total +=
              bin->mNumRuns * (bin->mRunSize - bin->mRunFirstRegionOffset);
          aBinStats[j].bytes_per_run = bin->mRunSize;
        }
      }
    }

    MOZ_ASSERT(arena_mapped >= arena_committed);
    MOZ_ASSERT(arena_committed >= arena_allocated + arena_dirty);

    // "waste" is committed memory that is neither dirty nor
    // allocated.
    aStats->mapped += arena_mapped;
    aStats->allocated += arena_allocated;
    aStats->page_cache += arena_dirty;
    aStats->waste += arena_committed - arena_allocated - arena_dirty -
                     arena_unused - arena_headers;
    aStats->bin_unused += arena_unused;
    aStats->bookkeeping += arena_headers;
    aStats->narenas++;
  }
  gArenas.mLock.Unlock();

  // Account for arena chunk headers in bookkeeping rather than waste.
  chunk_header_size =
      ((aStats->mapped / aStats->chunksize) * gChunkHeaderNumPages)
      << gPageSize2Pow;

  aStats->mapped += non_arena_mapped;
  aStats->bookkeeping += chunk_header_size;
  aStats->waste -= chunk_header_size;

  MOZ_ASSERT(aStats->mapped >= aStats->allocated + aStats->waste +
                                   aStats->page_cache + aStats->bookkeeping);
}

#ifdef MALLOC_DOUBLE_PURGE

// Explicitly remove all of this chunk's MADV_FREE'd pages from memory.
static void hard_purge_chunk(arena_chunk_t* aChunk) {
  // See similar logic in arena_t::Purge().
  for (size_t i = gChunkHeaderNumPages; i < gChunkNumPages; i++) {
    // Find all adjacent pages with CHUNK_MAP_MADVISED set.
    size_t npages;
    for (npages = 0; aChunk->map[i + npages].bits & CHUNK_MAP_MADVISED &&
                     i + npages < gChunkNumPages;
         npages++) {
      // Turn off the chunk's MADV_FREED bit and turn on its
      // DECOMMITTED bit.
      MOZ_DIAGNOSTIC_ASSERT(
          !(aChunk->map[i + npages].bits & CHUNK_MAP_DECOMMITTED));
      aChunk->map[i + npages].bits ^= CHUNK_MAP_MADVISED_OR_DECOMMITTED;
    }

    // We could use mincore to find out which pages are actually
    // present, but it's not clear that's better.
    if (npages > 0) {
      pages_decommit(((char*)aChunk) + (i << gPageSize2Pow),
                     npages << gPageSize2Pow);
      Unused << pages_commit(((char*)aChunk) + (i << gPageSize2Pow),
                             npages << gPageSize2Pow);
    }
    i += npages;
  }
}

// Explicitly remove all of this arena's MADV_FREE'd pages from memory.
void arena_t::HardPurge() {
  MutexAutoLock lock(mLock);

  while (!mChunksMAdvised.isEmpty()) {
    arena_chunk_t* chunk = mChunksMAdvised.popFront();
    hard_purge_chunk(chunk);
  }
}

template <>
inline void MozJemalloc::jemalloc_purge_freed_pages() {
  if (malloc_initialized) {
    MutexAutoLock lock(gArenas.mLock);
    for (auto arena : gArenas.iter()) {
      arena->HardPurge();
    }
  }
}

#else  // !defined MALLOC_DOUBLE_PURGE

template <>
inline void MozJemalloc::jemalloc_purge_freed_pages() {
  // Do nothing.
}

#endif  // defined MALLOC_DOUBLE_PURGE

template <>
inline void MozJemalloc::jemalloc_free_dirty_pages(void) {
  if (malloc_initialized) {
    MutexAutoLock lock(gArenas.mLock);
    for (auto arena : gArenas.iter()) {
      MutexAutoLock arena_lock(arena->mLock);
      arena->Purge(true);
    }
  }
}

inline arena_t* ArenaCollection::GetByIdInternal(arena_id_t aArenaId,
                                                 bool aIsPrivate) {
  // Use AlignedStorage2 to avoid running the arena_t constructor, while
  // we only need it as a placeholder for mId.
  mozilla::AlignedStorage2<arena_t> key;
  key.addr()->mId = aArenaId;
  return (aIsPrivate ? mPrivateArenas : mArenas).Search(key.addr());
}

inline arena_t* ArenaCollection::GetById(arena_id_t aArenaId, bool aIsPrivate) {
  if (!malloc_initialized) {
    return nullptr;
  }

  MutexAutoLock lock(mLock);
  arena_t* result = GetByIdInternal(aArenaId, aIsPrivate);
  MOZ_RELEASE_ASSERT(result);
  return result;
}

template <>
inline arena_id_t MozJemalloc::moz_create_arena_with_params(
    arena_params_t* aParams) {
  if (malloc_init()) {
    arena_t* arena = gArenas.CreateArena(/* IsPrivate = */ true, aParams);
    return arena->mId;
  }
  return 0;
}

template <>
inline void MozJemalloc::moz_dispose_arena(arena_id_t aArenaId) {
  arena_t* arena = gArenas.GetById(aArenaId, /* IsPrivate = */ true);
  MOZ_RELEASE_ASSERT(arena);
  gArenas.DisposeArena(arena);
}

#define MALLOC_DECL(name, return_type, ...)                          \
  template <>                                                        \
  inline return_type MozJemalloc::moz_arena_##name(                  \
      arena_id_t aArenaId, ARGS_HELPER(TYPED_ARGS, ##__VA_ARGS__)) { \
    BaseAllocator allocator(                                         \
        gArenas.GetById(aArenaId, /* IsPrivate = */ true));          \
    return allocator.name(ARGS_HELPER(ARGS, ##__VA_ARGS__));         \
  }
#define MALLOC_FUNCS MALLOC_FUNCS_MALLOC_BASE
#include "malloc_decls.h"

// End non-standard functions.
// ***************************************************************************
#ifndef XP_WIN
// Begin library-private functions, used by threading libraries for protection
// of malloc during fork().  These functions are only called if the program is
// running in threaded mode, so there is no need to check whether the program
// is threaded here.
#  ifndef XP_DARWIN
static
#  endif
    void
    _malloc_prefork(void) {
  // Acquire all mutexes in a safe order.
  gArenas.mLock.Lock();

  for (auto arena : gArenas.iter()) {
    arena->mLock.Lock();
  }

  base_mtx.Lock();

  huge_mtx.Lock();
}

#  ifndef XP_DARWIN
static
#  endif
    void
    _malloc_postfork_parent(void) {
  // Release all mutexes, now that fork() has completed.
  huge_mtx.Unlock();

  base_mtx.Unlock();

  for (auto arena : gArenas.iter()) {
    arena->mLock.Unlock();
  }

  gArenas.mLock.Unlock();
}

#  ifndef XP_DARWIN
static
#  endif
    void
    _malloc_postfork_child(void) {
  // Reinitialize all mutexes, now that fork() has completed.
  huge_mtx.Init();

  base_mtx.Init();

  for (auto arena : gArenas.iter()) {
    arena->mLock.Init();
  }

  gArenas.mLock.Init();
}
#endif  // XP_WIN

// End library-private functions.
// ***************************************************************************
#ifdef MOZ_REPLACE_MALLOC
// Windows doesn't come with weak imports as they are possible with
// LD_PRELOAD or DYLD_INSERT_LIBRARIES on Linux/OSX. On this platform,
// the replacement functions are defined as variable pointers to the
// function resolved with GetProcAddress() instead of weak definitions
// of functions. On Android, the same needs to happen as well, because
// the Android linker doesn't handle weak linking with non LD_PRELOADed
// libraries, but LD_PRELOADing is not very convenient on Android, with
// the zygote.
#  ifdef XP_DARWIN
#    define MOZ_REPLACE_WEAK __attribute__((weak_import))
#  elif defined(XP_WIN) || defined(ANDROID)
#    define MOZ_DYNAMIC_REPLACE_INIT
#    define replace_init replace_init_decl
#  elif defined(__GNUC__)
#    define MOZ_REPLACE_WEAK __attribute__((weak))
#  endif

#  include "replace_malloc.h"

#  define MALLOC_DECL(name, return_type, ...) MozJemalloc::name,

// The default malloc table, i.e. plain allocations. It never changes. It's
// used by init(), and not used after that.
static const malloc_table_t gDefaultMallocTable = {
#  include "malloc_decls.h"
};

// The malloc table installed by init(). It never changes from that point
// onward. It will be the same as gDefaultMallocTable if no replace-malloc tool
// is enabled at startup.
static malloc_table_t gOriginalMallocTable = {
#  include "malloc_decls.h"
};

// The malloc table installed by jemalloc_replace_dynamic(). (Read the
// comments above that function for more details.)
static malloc_table_t gDynamicMallocTable = {
#  include "malloc_decls.h"
};

// This briefly points to gDefaultMallocTable at startup. After that, it points
// to either gOriginalMallocTable or gDynamicMallocTable. It's atomic to avoid
// races when switching between tables.
static Atomic<malloc_table_t const*, mozilla::MemoryOrdering::Relaxed>
    gMallocTablePtr;

#  ifdef MOZ_DYNAMIC_REPLACE_INIT
#    undef replace_init
typedef decltype(replace_init_decl) replace_init_impl_t;
static replace_init_impl_t* replace_init = nullptr;
#  endif

#  ifdef XP_WIN
typedef HMODULE replace_malloc_handle_t;

static replace_malloc_handle_t replace_malloc_handle() {
  wchar_t replace_malloc_lib[1024];
  if (GetEnvironmentVariableW(L"MOZ_REPLACE_MALLOC_LIB", replace_malloc_lib,
                              ArrayLength(replace_malloc_lib)) > 0) {
    return LoadLibraryW(replace_malloc_lib);
  }
  return nullptr;
}

#    define REPLACE_MALLOC_GET_INIT_FUNC(handle) \
      (replace_init_impl_t*)GetProcAddress(handle, "replace_init")

#  elif defined(ANDROID)
#    include <dlfcn.h>

typedef void* replace_malloc_handle_t;

static replace_malloc_handle_t replace_malloc_handle() {
  const char* replace_malloc_lib = getenv("MOZ_REPLACE_MALLOC_LIB");
  if (replace_malloc_lib && *replace_malloc_lib) {
    return dlopen(replace_malloc_lib, RTLD_LAZY);
  }
  return nullptr;
}

#    define REPLACE_MALLOC_GET_INIT_FUNC(handle) \
      (replace_init_impl_t*)dlsym(handle, "replace_init")

#  endif

static void replace_malloc_init_funcs(malloc_table_t*);

#  ifdef MOZ_REPLACE_MALLOC_STATIC
extern "C" void logalloc_init(malloc_table_t*, ReplaceMallocBridge**);

extern "C" void dmd_init(malloc_table_t*, ReplaceMallocBridge**);

extern "C" void phc_init(malloc_table_t*, ReplaceMallocBridge**);
#  endif

bool Equals(const malloc_table_t& aTable1, const malloc_table_t& aTable2) {
  return memcmp(&aTable1, &aTable2, sizeof(malloc_table_t)) == 0;
}

// Below is the malloc implementation overriding jemalloc and calling the
// replacement functions if they exist.
static ReplaceMallocBridge* gReplaceMallocBridge = nullptr;
static void init() {
  malloc_table_t tempTable = gDefaultMallocTable;

#  ifdef MOZ_DYNAMIC_REPLACE_INIT
  replace_malloc_handle_t handle = replace_malloc_handle();
  if (handle) {
    replace_init = REPLACE_MALLOC_GET_INIT_FUNC(handle);
  }
#  endif

  // Set this *before* calling replace_init, otherwise if replace_init calls
  // malloc() we'll get an infinite loop.
  gMallocTablePtr = &gDefaultMallocTable;

  // Pass in the default allocator table so replace functions can copy and use
  // it for their allocations. The replace_init() function should modify the
  // table if it wants to be active, otherwise leave it unmodified.
  if (replace_init) {
    replace_init(&tempTable, &gReplaceMallocBridge);
  }
#  ifdef MOZ_REPLACE_MALLOC_STATIC
  if (Equals(tempTable, gDefaultMallocTable)) {
    logalloc_init(&tempTable, &gReplaceMallocBridge);
  }
#    ifdef MOZ_DMD
  if (Equals(tempTable, gDefaultMallocTable)) {
    dmd_init(&tempTable, &gReplaceMallocBridge);
  }
#    endif
#    ifdef MOZ_PHC
  if (Equals(tempTable, gDefaultMallocTable)) {
    phc_init(&tempTable, &gReplaceMallocBridge);
  }
#    endif
#  endif
  if (!Equals(tempTable, gDefaultMallocTable)) {
    replace_malloc_init_funcs(&tempTable);
  }
  gOriginalMallocTable = tempTable;
  gMallocTablePtr = &gOriginalMallocTable;
}

// WARNING WARNING WARNING: this function should be used with extreme care. It
// is not as general-purpose as it looks. It is currently used by
// tools/profiler/core/memory_hooks.cpp for counting allocations and probably
// should not be used for any other purpose.
//
// This function allows the original malloc table to be temporarily replaced by
// a different malloc table. Or, if the argument is nullptr, it switches back to
// the original malloc table.
//
// Limitations:
//
// - It is not threadsafe. If multiple threads pass it the same
//   `replace_init_func` at the same time, there will be data races writing to
//   the malloc_table_t within that function.
//
// - Only one replacement can be installed. No nesting is allowed.
//
// - The new malloc table must be able to free allocations made by the original
//   malloc table, and upon removal the original malloc table must be able to
//   free allocations made by the new malloc table. This means the new malloc
//   table can only do simple things like recording extra information, while
//   delegating actual allocation/free operations to the original malloc table.
//
MOZ_JEMALLOC_API void jemalloc_replace_dynamic(
    jemalloc_init_func replace_init_func) {
  if (replace_init_func) {
    malloc_table_t tempTable = gOriginalMallocTable;
    (*replace_init_func)(&tempTable, &gReplaceMallocBridge);
    if (!Equals(tempTable, gOriginalMallocTable)) {
      replace_malloc_init_funcs(&tempTable);

      // Temporarily switch back to the original malloc table. In the
      // (supported) non-nested case, this is a no-op. But just in case this is
      // a (unsupported) nested call, it makes the overwriting of
      // gDynamicMallocTable less racy, because ongoing calls to malloc() and
      // friends won't go through gDynamicMallocTable.
      gMallocTablePtr = &gOriginalMallocTable;

      gDynamicMallocTable = tempTable;
      gMallocTablePtr = &gDynamicMallocTable;
      // We assume that dynamic replaces don't occur close enough for a
      // thread to still have old copies of the table pointer when the 2nd
      // replace occurs.
    }
  } else {
    // Switch back to the original malloc table.
    gMallocTablePtr = &gOriginalMallocTable;
  }
}

#  define MALLOC_DECL(name, return_type, ...)                           \
    template <>                                                         \
    inline return_type ReplaceMalloc::name(                             \
        ARGS_HELPER(TYPED_ARGS, ##__VA_ARGS__)) {                       \
      if (MOZ_UNLIKELY(!gMallocTablePtr)) {                             \
        init();                                                         \
      }                                                                 \
      return (*gMallocTablePtr).name(ARGS_HELPER(ARGS, ##__VA_ARGS__)); \
    }
#  include "malloc_decls.h"

MOZ_JEMALLOC_API struct ReplaceMallocBridge* get_bridge(void) {
  if (MOZ_UNLIKELY(!gMallocTablePtr)) {
    init();
  }
  return gReplaceMallocBridge;
}

// posix_memalign, aligned_alloc, memalign and valloc all implement some kind
// of aligned memory allocation. For convenience, a replace-malloc library can
// skip defining replace_posix_memalign, replace_aligned_alloc and
// replace_valloc, and default implementations will be automatically derived
// from replace_memalign.
static void replace_malloc_init_funcs(malloc_table_t* table) {
  if (table->posix_memalign == MozJemalloc::posix_memalign &&
      table->memalign != MozJemalloc::memalign) {
    table->posix_memalign =
        AlignedAllocator<ReplaceMalloc::memalign>::posix_memalign;
  }
  if (table->aligned_alloc == MozJemalloc::aligned_alloc &&
      table->memalign != MozJemalloc::memalign) {
    table->aligned_alloc =
        AlignedAllocator<ReplaceMalloc::memalign>::aligned_alloc;
  }
  if (table->valloc == MozJemalloc::valloc &&
      table->memalign != MozJemalloc::memalign) {
    table->valloc = AlignedAllocator<ReplaceMalloc::memalign>::valloc;
  }
  if (table->moz_create_arena_with_params ==
          MozJemalloc::moz_create_arena_with_params &&
      table->malloc != MozJemalloc::malloc) {
#  define MALLOC_DECL(name, ...) \
    table->name = DummyArenaAllocator<ReplaceMalloc>::name;
#  define MALLOC_FUNCS MALLOC_FUNCS_ARENA_BASE
#  include "malloc_decls.h"
  }
  if (table->moz_arena_malloc == MozJemalloc::moz_arena_malloc &&
      table->malloc != MozJemalloc::malloc) {
#  define MALLOC_DECL(name, ...) \
    table->name = DummyArenaAllocator<ReplaceMalloc>::name;
#  define MALLOC_FUNCS MALLOC_FUNCS_ARENA_ALLOC
#  include "malloc_decls.h"
  }
}

#endif  // MOZ_REPLACE_MALLOC
// ***************************************************************************
// Definition of all the _impl functions
// GENERIC_MALLOC_DECL2_MINGW is only used for the MinGW build, and aliases
// the malloc funcs (e.g. malloc) to the je_ versions. It does not generate
// aliases for the other functions (jemalloc and arena functions).
//
// We do need aliases for the other mozglue.def-redirected functions though,
// these are done at the bottom of mozmemory_wrap.cpp
#define GENERIC_MALLOC_DECL2_MINGW(name, name_impl, return_type, ...) \
  return_type name(ARGS_HELPER(TYPED_ARGS, ##__VA_ARGS__))            \
      __attribute__((alias(MOZ_STRINGIFY(name_impl))));

#define GENERIC_MALLOC_DECL2(attributes, name, name_impl, return_type, ...)  \
  return_type name_impl(ARGS_HELPER(TYPED_ARGS, ##__VA_ARGS__)) attributes { \
    return DefaultMalloc::name(ARGS_HELPER(ARGS, ##__VA_ARGS__));            \
  }

#ifndef __MINGW32__
#  define GENERIC_MALLOC_DECL(attributes, name, return_type, ...)    \
    GENERIC_MALLOC_DECL2(attributes, name, name##_impl, return_type, \
                         ##__VA_ARGS__)
#else
#  define GENERIC_MALLOC_DECL(attributes, name, return_type, ...)    \
    GENERIC_MALLOC_DECL2(attributes, name, name##_impl, return_type, \
                         ##__VA_ARGS__)                              \
    GENERIC_MALLOC_DECL2_MINGW(name, name##_impl, return_type, ##__VA_ARGS__)
#endif

#define NOTHROW_MALLOC_DECL(...) \
  MOZ_MEMORY_API MACRO_CALL(GENERIC_MALLOC_DECL, (noexcept(true), __VA_ARGS__))
#define MALLOC_DECL(...) \
  MOZ_MEMORY_API MACRO_CALL(GENERIC_MALLOC_DECL, (, __VA_ARGS__))
#define MALLOC_FUNCS MALLOC_FUNCS_MALLOC
#include "malloc_decls.h"

#undef GENERIC_MALLOC_DECL
#define GENERIC_MALLOC_DECL(attributes, name, return_type, ...) \
  GENERIC_MALLOC_DECL2(attributes, name, name, return_type, ##__VA_ARGS__)

#define MALLOC_DECL(...) \
  MOZ_JEMALLOC_API MACRO_CALL(GENERIC_MALLOC_DECL, (, __VA_ARGS__))
#define MALLOC_FUNCS (MALLOC_FUNCS_JEMALLOC | MALLOC_FUNCS_ARENA)
#include "malloc_decls.h"
// ***************************************************************************

#ifdef HAVE_DLOPEN
#  include <dlfcn.h>
#endif

#if defined(__GLIBC__) && !defined(__UCLIBC__)
// glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible
// to inconsistently reference libc's malloc(3)-compatible functions
// (bug 493541).
//
// These definitions interpose hooks in glibc.  The functions are actually
// passed an extra argument for the caller return address, which will be
// ignored.

extern "C" {
MOZ_EXPORT void (*__free_hook)(void*) = free_impl;
MOZ_EXPORT void* (*__malloc_hook)(size_t) = malloc_impl;
MOZ_EXPORT void* (*__realloc_hook)(void*, size_t) = realloc_impl;
MOZ_EXPORT void* (*__memalign_hook)(size_t, size_t) = memalign_impl;
}

#elif defined(RTLD_DEEPBIND)
// XXX On systems that support RTLD_GROUP or DF_1_GROUP, do their
// implementations permit similar inconsistencies?  Should STV_SINGLETON
// visibility be used for interposition where available?
#  error \
      "Interposing malloc is unsafe on this system without libc malloc hooks."
#endif

#ifdef XP_WIN
MOZ_EXPORT void* _recalloc(void* aPtr, size_t aCount, size_t aSize) {
  size_t oldsize = aPtr ? AllocInfo::Get(aPtr).Size() : 0;
  CheckedInt<size_t> checkedSize = CheckedInt<size_t>(aCount) * aSize;

  if (!checkedSize.isValid()) {
    return nullptr;
  }

  size_t newsize = checkedSize.value();

  // In order for all trailing bytes to be zeroed, the caller needs to
  // use calloc(), followed by recalloc().  However, the current calloc()
  // implementation only zeros the bytes requested, so if recalloc() is
  // to work 100% correctly, calloc() will need to change to zero
  // trailing bytes.
  aPtr = DefaultMalloc::realloc(aPtr, newsize);
  if (aPtr && oldsize < newsize) {
    memset((void*)((uintptr_t)aPtr + oldsize), 0, newsize - oldsize);
  }

  return aPtr;
}

// This impl of _expand doesn't ever actually expand or shrink blocks: it
// simply replies that you may continue using a shrunk block.
MOZ_EXPORT void* _expand(void* aPtr, size_t newsize) {
  if (AllocInfo::Get(aPtr).Size() >= newsize) {
    return aPtr;
  }

  return nullptr;
}

MOZ_EXPORT size_t _msize(void* aPtr) {
  return DefaultMalloc::malloc_usable_size(aPtr);
}
#endif