1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ProfileBuffer.h"
#include "mozilla/MathAlgorithms.h"
#include "BaseProfiler.h"
namespace mozilla {
namespace baseprofiler {
ProfileBuffer::ProfileBuffer(ProfileChunkedBuffer& aBuffer)
: mEntries(aBuffer) {
// Assume the given buffer is in-session.
MOZ_ASSERT(mEntries.IsInSession());
}
/* static */
ProfileBufferBlockIndex ProfileBuffer::AddEntry(
ProfileChunkedBuffer& aProfileChunkedBuffer,
const ProfileBufferEntry& aEntry) {
switch (aEntry.GetKind()) {
#define SWITCH_KIND(KIND, TYPE, SIZE) \
case ProfileBufferEntry::Kind::KIND: { \
return aProfileChunkedBuffer.PutFrom(&aEntry, 1 + (SIZE)); \
break; \
}
FOR_EACH_PROFILE_BUFFER_ENTRY_KIND(SWITCH_KIND)
#undef SWITCH_KIND
default:
MOZ_ASSERT(false, "Unhandled baseprofiler::ProfilerBuffer entry KIND");
return ProfileBufferBlockIndex{};
}
}
// Called from signal, call only reentrant functions
uint64_t ProfileBuffer::AddEntry(const ProfileBufferEntry& aEntry) {
return AddEntry(mEntries, aEntry).ConvertToProfileBufferIndex();
}
/* static */
ProfileBufferBlockIndex ProfileBuffer::AddThreadIdEntry(
ProfileChunkedBuffer& aProfileChunkedBuffer, int aThreadId) {
return AddEntry(aProfileChunkedBuffer,
ProfileBufferEntry::ThreadId(aThreadId));
}
uint64_t ProfileBuffer::AddThreadIdEntry(int aThreadId) {
return AddThreadIdEntry(mEntries, aThreadId).ConvertToProfileBufferIndex();
}
void ProfileBuffer::CollectCodeLocation(
const char* aLabel, const char* aStr, uint32_t aFrameFlags,
uint64_t aInnerWindowID, const Maybe<uint32_t>& aLineNumber,
const Maybe<uint32_t>& aColumnNumber,
const Maybe<ProfilingCategoryPair>& aCategoryPair) {
AddEntry(ProfileBufferEntry::Label(aLabel));
AddEntry(ProfileBufferEntry::FrameFlags(uint64_t(aFrameFlags)));
if (aStr) {
// Store the string using one or more DynamicStringFragment entries.
size_t strLen = strlen(aStr) + 1; // +1 for the null terminator
// If larger than the prescribed limit, we will cut the string and end it
// with an ellipsis.
const bool tooBig = strLen > kMaxFrameKeyLength;
if (tooBig) {
strLen = kMaxFrameKeyLength;
}
char chars[ProfileBufferEntry::kNumChars];
for (size_t j = 0;; j += ProfileBufferEntry::kNumChars) {
// Store up to kNumChars characters in the entry.
size_t len = ProfileBufferEntry::kNumChars;
const bool last = j + len >= strLen;
if (last) {
// Only the last entry may be smaller than kNumChars.
len = strLen - j;
if (tooBig) {
// That last entry is part of a too-big string, replace the end
// characters with an ellipsis "...".
len = std::max(len, size_t(4));
chars[len - 4] = '.';
chars[len - 3] = '.';
chars[len - 2] = '.';
chars[len - 1] = '\0';
// Make sure the memcpy will not overwrite our ellipsis!
len -= 4;
}
}
memcpy(chars, &aStr[j], len);
AddEntry(ProfileBufferEntry::DynamicStringFragment(chars));
if (last) {
break;
}
}
}
if (aInnerWindowID) {
AddEntry(ProfileBufferEntry::InnerWindowID(aInnerWindowID));
}
if (aLineNumber) {
AddEntry(ProfileBufferEntry::LineNumber(*aLineNumber));
}
if (aColumnNumber) {
AddEntry(ProfileBufferEntry::ColumnNumber(*aColumnNumber));
}
if (aCategoryPair.isSome()) {
AddEntry(ProfileBufferEntry::CategoryPair(int(*aCategoryPair)));
}
}
size_t ProfileBuffer::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
// Measurement of the following members may be added later if DMD finds it
// is worthwhile:
// - memory pointed to by the elements within mEntries
return mEntries.SizeOfExcludingThis(aMallocSizeOf);
}
size_t ProfileBuffer::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
void ProfileBuffer::CollectOverheadStats(TimeDuration aSamplingTime,
TimeDuration aLocking,
TimeDuration aCleaning,
TimeDuration aCounters,
TimeDuration aThreads) {
double timeUs = aSamplingTime.ToMilliseconds() * 1000.0;
if (mFirstSamplingTimeUs == 0.0) {
mFirstSamplingTimeUs = timeUs;
} else {
// Note that we'll have 1 fewer interval than other numbers (because
// we need both ends of an interval to know its duration). The final
// difference should be insignificant over the expected many thousands
// of iterations.
mIntervalsUs.Count(timeUs - mLastSamplingTimeUs);
}
mLastSamplingTimeUs = timeUs;
// Time to take the lock before sampling.
double lockingUs = aLocking.ToMilliseconds() * 1000.0;
// Time to discard expired data.
double cleaningUs = aCleaning.ToMilliseconds() * 1000.0;
// Time to gather all counters.
double countersUs = aCounters.ToMilliseconds() * 1000.0;
// Time to sample all threads.
double threadsUs = aThreads.ToMilliseconds() * 1000.0;
// Add to our gathered stats.
mOverheadsUs.Count(lockingUs + cleaningUs + countersUs + threadsUs);
mLockingsUs.Count(lockingUs);
mCleaningsUs.Count(cleaningUs);
mCountersUs.Count(countersUs);
mThreadsUs.Count(threadsUs);
// Record details in buffer.
AddEntry(ProfileBufferEntry::ProfilerOverheadTime(timeUs));
AddEntry(ProfileBufferEntry::ProfilerOverheadDuration(lockingUs));
AddEntry(ProfileBufferEntry::ProfilerOverheadDuration(cleaningUs));
AddEntry(ProfileBufferEntry::ProfilerOverheadDuration(countersUs));
AddEntry(ProfileBufferEntry::ProfilerOverheadDuration(threadsUs));
}
ProfilerBufferInfo ProfileBuffer::GetProfilerBufferInfo() const {
return {BufferRangeStart(),
BufferRangeEnd(),
static_cast<uint32_t>(*mEntries.BufferLength() /
8), // 8 bytes per entry.
mIntervalsUs,
mOverheadsUs,
mLockingsUs,
mCleaningsUs,
mCountersUs,
mThreadsUs};
}
/* ProfileBufferCollector */
void ProfileBufferCollector::CollectNativeLeafAddr(void* aAddr) {
mBuf.AddEntry(ProfileBufferEntry::NativeLeafAddr(aAddr));
}
void ProfileBufferCollector::CollectProfilingStackFrame(
const ProfilingStackFrame& aFrame) {
// WARNING: this function runs within the profiler's "critical section".
MOZ_ASSERT(aFrame.isLabelFrame() ||
(aFrame.isJsFrame() && !aFrame.isOSRFrame()));
const char* label = aFrame.label();
const char* dynamicString = aFrame.dynamicString();
Maybe<uint32_t> line;
Maybe<uint32_t> column;
MOZ_ASSERT(aFrame.isLabelFrame());
mBuf.CollectCodeLocation(label, dynamicString, aFrame.flags(),
aFrame.realmID(), line, column,
Some(aFrame.categoryPair()));
}
} // namespace baseprofiler
} // namespace mozilla
|