1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <vector>
#include "modules/video_coding/encoded_frame.h"
#include "modules/video_coding/generic_encoder.h"
#include "modules/video_coding/include/video_coding_defines.h"
#include "test/gtest.h"
namespace webrtc {
namespace test {
namespace {
inline size_t FrameSize(const size_t& min_frame_size,
const size_t& max_frame_size,
const int& s,
const int& i) {
return min_frame_size + (s + 1) * i % (max_frame_size - min_frame_size);
}
class FakeEncodedImageCallback : public EncodedImageCallback {
public:
FakeEncodedImageCallback()
: last_frame_was_timing_(false),
num_frames_dropped_(0),
last_capture_timestamp_(-1) {}
Result OnEncodedImage(const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragmentation) override {
last_frame_was_timing_ =
encoded_image.timing_.flags != TimingFrameFlags::kInvalid &&
encoded_image.timing_.flags != TimingFrameFlags::kNotTriggered;
last_capture_timestamp_ = encoded_image.capture_time_ms_;
return Result(Result::OK);
};
void OnDroppedFrame(DropReason reason) override { ++num_frames_dropped_; }
bool WasTimingFrame() { return last_frame_was_timing_; }
size_t GetNumFramesDropped() { return num_frames_dropped_; }
int64_t GetLastCaptureTimestamp() { return last_capture_timestamp_; }
private:
bool last_frame_was_timing_;
size_t num_frames_dropped_;
int64_t last_capture_timestamp_;
};
enum class FrameType {
kNormal,
kTiming,
kDropped,
};
// Emulates |num_frames| on |num_streams| frames with capture timestamps
// increased by 1 from 0. Size of each frame is between
// |min_frame_size| and |max_frame_size|, outliers are counted relatevely to
// |average_frame_sizes[]| for each stream.
std::vector<std::vector<FrameType>> GetTimingFrames(
const int64_t delay_ms,
const size_t min_frame_size,
const size_t max_frame_size,
std::vector<size_t> average_frame_sizes,
const int num_streams,
const int num_frames) {
FakeEncodedImageCallback sink;
VCMEncodedFrameCallback callback(&sink, nullptr);
const size_t kFramerate = 30;
callback.SetTimingFramesThresholds(
{delay_ms, kDefaultOutlierFrameSizePercent});
callback.OnFrameRateChanged(kFramerate);
int s, i;
std::vector<std::vector<FrameType>> result(num_streams);
for (s = 0; s < num_streams; ++s)
callback.OnTargetBitrateChanged(average_frame_sizes[s] * kFramerate, s);
int64_t current_timestamp = 0;
for (i = 0; i < num_frames; ++i) {
current_timestamp += 1;
for (s = 0; s < num_streams; ++s) {
// every (5+s)-th frame is dropped on s-th stream by design.
bool dropped = i % (5 + s) == 0;
EncodedImage image;
CodecSpecificInfo codec_specific;
image._length = FrameSize(min_frame_size, max_frame_size, s, i);
image.capture_time_ms_ = current_timestamp;
image._timeStamp = static_cast<uint32_t>(current_timestamp * 90);
codec_specific.codecType = kVideoCodecGeneric;
codec_specific.codecSpecific.generic.simulcast_idx = s;
callback.OnEncodeStarted(static_cast<uint32_t>(current_timestamp * 90),
current_timestamp, s);
if (dropped) {
result[s].push_back(FrameType::kDropped);
continue;
}
callback.OnEncodedImage(image, &codec_specific, nullptr);
if (sink.WasTimingFrame()) {
result[s].push_back(FrameType::kTiming);
} else {
result[s].push_back(FrameType::kNormal);
}
}
}
return result;
}
} // namespace
TEST(TestVCMEncodedFrameCallback, MarksTimingFramesPeriodicallyTogether) {
const int64_t kDelayMs = 29;
const size_t kMinFrameSize = 10;
const size_t kMaxFrameSize = 20;
const int kNumFrames = 1000;
const int kNumStreams = 3;
// No outliers as 1000 is larger than anything from range [10,20].
const std::vector<size_t> kAverageSize = {1000, 1000, 1000};
auto frames = GetTimingFrames(kDelayMs, kMinFrameSize, kMaxFrameSize,
kAverageSize, kNumStreams, kNumFrames);
// Timing frames should be tirggered every delayMs.
// As no outliers are expected, frames on all streams have to be
// marked together.
int last_timing_frame = -1;
for (int i = 0; i < kNumFrames; ++i) {
int num_normal = 0;
int num_timing = 0;
int num_dropped = 0;
for (int s = 0; s < kNumStreams; ++s) {
if (frames[s][i] == FrameType::kTiming) {
++num_timing;
} else if (frames[s][i] == FrameType::kNormal) {
++num_normal;
} else {
++num_dropped;
}
}
// Can't have both normal and timing frames at the same timstamp.
EXPECT_TRUE(num_timing == 0 || num_normal == 0);
if (num_dropped < kNumStreams) {
if (last_timing_frame == -1 || i >= last_timing_frame + kDelayMs) {
// If didn't have timing frames for a period, current sent frame has to
// be one. No normal frames should be sent.
EXPECT_EQ(num_normal, 0);
} else {
// No unneeded timing frames should be sent.
EXPECT_EQ(num_timing, 0);
}
}
if (num_timing > 0)
last_timing_frame = i;
}
}
TEST(TestVCMEncodedFrameCallback, MarksOutliers) {
const int64_t kDelayMs = 29;
const size_t kMinFrameSize = 2495;
const size_t kMaxFrameSize = 2505;
const int kNumFrames = 1000;
const int kNumStreams = 3;
// Possible outliers as 1000 lies in range [995, 1005].
const std::vector<size_t> kAverageSize = {998, 1000, 1004};
auto frames = GetTimingFrames(kDelayMs, kMinFrameSize, kMaxFrameSize,
kAverageSize, kNumStreams, kNumFrames);
// All outliers should be marked.
for (int i = 0; i < kNumFrames; ++i) {
for (int s = 0; s < kNumStreams; ++s) {
if (FrameSize(kMinFrameSize, kMaxFrameSize, s, i) >=
kAverageSize[s] * kDefaultOutlierFrameSizePercent / 100) {
// Too big frame. May be dropped or timing, but not normal.
EXPECT_NE(frames[s][i], FrameType::kNormal);
}
}
}
}
TEST(TestVCMEncodedFrameCallback, NoTimingFrameIfNoEncodeStartTime) {
EncodedImage image;
CodecSpecificInfo codec_specific;
int64_t timestamp = 1;
image._length = 500;
image.capture_time_ms_ = timestamp;
image._timeStamp = static_cast<uint32_t>(timestamp * 90);
codec_specific.codecType = kVideoCodecGeneric;
codec_specific.codecSpecific.generic.simulcast_idx = 0;
FakeEncodedImageCallback sink;
VCMEncodedFrameCallback callback(&sink, nullptr);
VideoCodec::TimingFrameTriggerThresholds thresholds;
thresholds.delay_ms = 1; // Make all frames timing frames.
callback.SetTimingFramesThresholds(thresholds);
callback.OnTargetBitrateChanged(500, 0);
// Verify a single frame works with encode start time set.
callback.OnEncodeStarted(static_cast<uint32_t>(timestamp * 90), timestamp, 0);
callback.OnEncodedImage(image, &codec_specific, nullptr);
EXPECT_TRUE(sink.WasTimingFrame());
// New frame, now skip OnEncodeStarted. Should not result in timing frame.
image.capture_time_ms_ = ++timestamp;
image._timeStamp = static_cast<uint32_t>(timestamp * 90);
callback.OnEncodedImage(image, &codec_specific, nullptr);
EXPECT_FALSE(sink.WasTimingFrame());
}
TEST(TestVCMEncodedFrameCallback, NotifiesAboutDroppedFrames) {
EncodedImage image;
CodecSpecificInfo codec_specific;
const int64_t kTimestampMs1 = 47721840;
const int64_t kTimestampMs2 = 47721850;
const int64_t kTimestampMs3 = 47721860;
const int64_t kTimestampMs4 = 47721870;
codec_specific.codecType = kVideoCodecGeneric;
codec_specific.codecSpecific.generic.simulcast_idx = 0;
FakeEncodedImageCallback sink;
VCMEncodedFrameCallback callback(&sink, nullptr);
// Any non-zero bitrate needed to be set before the first frame.
callback.OnTargetBitrateChanged(500, 0);
image.capture_time_ms_ = kTimestampMs1;
image._timeStamp = static_cast<uint32_t>(image.capture_time_ms_ * 90);
callback.OnEncodeStarted(image._timeStamp, image.capture_time_ms_, 0);
EXPECT_EQ(0u, sink.GetNumFramesDropped());
callback.OnEncodedImage(image, &codec_specific, nullptr);
image.capture_time_ms_ = kTimestampMs2;
image._timeStamp = static_cast<uint32_t>(image.capture_time_ms_ * 90);
callback.OnEncodeStarted(image._timeStamp, image.capture_time_ms_, 0);
// No OnEncodedImageCall for timestamp2. Yet, at this moment it's not known
// that frame with timestamp2 was dropped.
EXPECT_EQ(0u, sink.GetNumFramesDropped());
image.capture_time_ms_ = kTimestampMs3;
image._timeStamp = static_cast<uint32_t>(image.capture_time_ms_ * 90);
callback.OnEncodeStarted(image._timeStamp, image.capture_time_ms_, 0);
callback.OnEncodedImage(image, &codec_specific, nullptr);
EXPECT_EQ(1u, sink.GetNumFramesDropped());
image.capture_time_ms_ = kTimestampMs4;
image._timeStamp = static_cast<uint32_t>(image.capture_time_ms_ * 90);
callback.OnEncodeStarted(image._timeStamp, image.capture_time_ms_, 0);
callback.OnEncodedImage(image, &codec_specific, nullptr);
EXPECT_EQ(1u, sink.GetNumFramesDropped());
}
TEST(TestVCMEncodedFrameCallback, RestoresCaptureTimestamps) {
EncodedImage image;
CodecSpecificInfo codec_specific;
const int64_t kTimestampMs = 123456;
codec_specific.codecType = kVideoCodecGeneric;
codec_specific.codecSpecific.generic.simulcast_idx = 0;
FakeEncodedImageCallback sink;
VCMEncodedFrameCallback callback(&sink, nullptr);
// Any non-zero bitrate needed to be set before the first frame.
callback.OnTargetBitrateChanged(500, 0);
image.capture_time_ms_ = kTimestampMs; // Incorrect timesetamp.
image._timeStamp = static_cast<uint32_t>(image.capture_time_ms_ * 90);
callback.OnEncodeStarted(image._timeStamp, image.capture_time_ms_, 0);
image.capture_time_ms_ = 0; // Incorrect timesetamp.
callback.OnEncodedImage(image, &codec_specific, nullptr);
EXPECT_EQ(kTimestampMs, sink.GetLastCaptureTimestamp());
}
} // namespace test
} // namespace webrtc
|