1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
/*
* SHA-1 in C
* By Steve Reid <sreid@sea-to-sky.net>
* 100% Public Domain
*
* -----------------
* Modified 7/98
* By James H. Brown <jbrown@burgoyne.com>
* Still 100% Public Domain
*
* Corrected a problem which generated improper hash values on 16 bit machines
* Routine SHA1Update changed from
* void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned int
* len)
* to
* void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned
* long len)
*
* The 'len' parameter was declared an int which works fine on 32 bit machines.
* However, on 16 bit machines an int is too small for the shifts being done
* against
* it. This caused the hash function to generate incorrect values if len was
* greater than 8191 (8K - 1) due to the 'len << 3' on line 3 of SHA1Update().
*
* Since the file IO in main() reads 16K at a time, any file 8K or larger would
* be guaranteed to generate the wrong hash (e.g. Test Vector #3, a million
* "a"s).
*
* I also changed the declaration of variables i & j in SHA1Update to
* unsigned long from unsigned int for the same reason.
*
* These changes should make no difference to any 32 bit implementations since
* an
* int and a long are the same size in those environments.
*
* --
* I also corrected a few compiler warnings generated by Borland C.
* 1. Added #include <process.h> for exit() prototype
* 2. Removed unused variable 'j' in SHA1Final
* 3. Changed exit(0) to return(0) at end of main.
*
* ALL changes I made can be located by searching for comments containing 'JHB'
* -----------------
* Modified 8/98
* By Steve Reid <sreid@sea-to-sky.net>
* Still 100% public domain
*
* 1- Removed #include <process.h> and used return() instead of exit()
* 2- Fixed overwriting of finalcount in SHA1Final() (discovered by Chris Hall)
* 3- Changed email address from steve@edmweb.com to sreid@sea-to-sky.net
*
* -----------------
* Modified 4/01
* By Saul Kravitz <Saul.Kravitz@celera.com>
* Still 100% PD
* Modified to run on Compaq Alpha hardware.
*
* -----------------
* Modified 07/2002
* By Ralph Giles <giles@ghostscript.com>
* Still 100% public domain
* modified for use with stdint types, autoconf
* code cleanup, removed attribution comments
* switched SHA1Final() argument order for consistency
* use SHA1_ prefix for public api
* move public api to sha1.h
*
* -----------------
* Modified 02/2012
* By Justin Uberti <juberti@google.com>
* Remove underscore from SHA1 prefix to avoid conflict with OpenSSL
* Remove test code
* Untabify
*
* -----------------
* Modified 03/2012
* By Ronghua Wu <ronghuawu@google.com>
* Change the typedef of uint32(8)_t to uint32(8). We need this because in the
* chromium android build, the stdio.h will include stdint.h which already
* defined uint32(8)_t.
*
* -----------------
* Modified 04/2012
* By Frank Barchard <fbarchard@google.com>
* Ported to C++, Google style, change len to size_t, enable SHA1HANDSOFF
*
* Test Vectors (from FIPS PUB 180-1)
* "abc"
* A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
* "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
* 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
* A million repetitions of "a"
* 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
*
* -----------------
* Modified 05/2015
* By Sergey Ulanov <sergeyu@chromium.org>
* Removed static buffer to make computation thread-safe.
*
* -----------------
* Modified 10/2015
* By Peter Boström <pbos@webrtc.org>
* Change uint32(8) back to uint32(8)_t (undoes (03/2012) change).
*/
// Enabling SHA1HANDSOFF preserves the caller's data buffer.
// Disabling SHA1HANDSOFF the buffer will be modified (end swapped).
#define SHA1HANDSOFF
#include "rtc_base/sha1.h"
#include <stdio.h>
#include <string.h>
namespace rtc {
namespace {
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
// blk0() and blk() perform the initial expand.
// I got the idea of expanding during the round function from SSLeay
// FIXME: can we do this in an endian-proof way?
#ifdef RTC_ARCH_CPU_BIG_ENDIAN
#define blk0(i) block->l[i]
#else
#define blk0(i) (block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) | \
(rol(block->l[i], 8) & 0x00FF00FF))
#endif
#define blk(i) (block->l[i & 15] = rol(block->l[(i + 13) & 15] ^ \
block->l[(i + 8) & 15] ^ block->l[(i + 2) & 15] ^ block->l[i & 15], 1))
// (R0+R1), R2, R3, R4 are the different operations used in SHA1.
#define R0(v, w, x, y, z, i) \
z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + rol(v, 5); \
w = rol(w, 30);
#define R1(v, w, x, y, z, i) \
z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \
w = rol(w, 30);
#define R2(v, w, x, y, z, i) \
z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5);\
w = rol(w, 30);
#define R3(v, w, x, y, z, i) \
z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \
w = rol(w, 30);
#define R4(v, w, x, y, z, i) \
z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \
w = rol(w, 30);
#ifdef VERBOSE // SAK
void SHAPrintContext(SHA1_CTX *context, char *msg) {
printf("%s (%d,%d) %x %x %x %x %x\n",
msg,
context->count[0], context->count[1],
context->state[0],
context->state[1],
context->state[2],
context->state[3],
context->state[4]);
}
#endif /* VERBOSE */
// Hash a single 512-bit block. This is the core of the algorithm.
void SHA1Transform(uint32_t state[5], const uint8_t buffer[64]) {
union CHAR64LONG16 {
uint8_t c[64];
uint32_t l[16];
};
#ifdef SHA1HANDSOFF
uint8_t workspace[64];
memcpy(workspace, buffer, 64);
CHAR64LONG16* block = reinterpret_cast<CHAR64LONG16*>(workspace);
#else
// Note(fbarchard): This option does modify the user's data buffer.
CHAR64LONG16* block = const_cast<CHAR64LONG16*>(
reinterpret_cast<const CHAR64LONG16*>(buffer));
#endif
// Copy context->state[] to working vars.
uint32_t a = state[0];
uint32_t b = state[1];
uint32_t c = state[2];
uint32_t d = state[3];
uint32_t e = state[4];
// 4 rounds of 20 operations each. Loop unrolled.
// Note(fbarchard): The following has lint warnings for multiple ; on
// a line and no space after , but is left as-is to be similar to the
// original code.
R0(a,b,c,d,e,0); R0(e,a,b,c,d,1); R0(d,e,a,b,c,2); R0(c,d,e,a,b,3);
R0(b,c,d,e,a,4); R0(a,b,c,d,e,5); R0(e,a,b,c,d,6); R0(d,e,a,b,c,7);
R0(c,d,e,a,b,8); R0(b,c,d,e,a,9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
// Add the working vars back into context.state[].
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
}
} // namespace
// SHA1Init - Initialize new context.
void SHA1Init(SHA1_CTX* context) {
// SHA1 initialization constants.
context->state[0] = 0x67452301;
context->state[1] = 0xEFCDAB89;
context->state[2] = 0x98BADCFE;
context->state[3] = 0x10325476;
context->state[4] = 0xC3D2E1F0;
context->count[0] = context->count[1] = 0;
}
// Run your data through this.
void SHA1Update(SHA1_CTX* context, const uint8_t* data, size_t input_len) {
size_t i = 0;
#ifdef VERBOSE
SHAPrintContext(context, "before");
#endif
// Compute number of bytes mod 64.
size_t index = (context->count[0] >> 3) & 63;
// Update number of bits.
// TODO: Use uint64_t instead of 2 uint32_t for count.
// count[0] has low 29 bits for byte count + 3 pad 0's making 32 bits for
// bit count.
// Add bit count to low uint32_t
context->count[0] += static_cast<uint32_t>(input_len << 3);
if (context->count[0] < static_cast<uint32_t>(input_len << 3)) {
++context->count[1]; // if overlow (carry), add one to high word
}
context->count[1] += static_cast<uint32_t>(input_len >> 29);
if ((index + input_len) > 63) {
i = 64 - index;
memcpy(&context->buffer[index], data, i);
SHA1Transform(context->state, context->buffer);
for (; i + 63 < input_len; i += 64) {
SHA1Transform(context->state, data + i);
}
index = 0;
}
memcpy(&context->buffer[index], &data[i], input_len - i);
#ifdef VERBOSE
SHAPrintContext(context, "after ");
#endif
}
// Add padding and return the message digest.
void SHA1Final(SHA1_CTX* context, uint8_t digest[SHA1_DIGEST_SIZE]) {
uint8_t finalcount[8];
for (int i = 0; i < 8; ++i) {
// Endian independent
finalcount[i] = static_cast<uint8_t>(
(context->count[(i >= 4 ? 0 : 1)] >> ((3 - (i & 3)) * 8)) & 255);
}
SHA1Update(context, reinterpret_cast<const uint8_t*>("\200"), 1);
while ((context->count[0] & 504) != 448) {
SHA1Update(context, reinterpret_cast<const uint8_t*>("\0"), 1);
}
SHA1Update(context, finalcount, 8); // Should cause a SHA1Transform().
for (int i = 0; i < SHA1_DIGEST_SIZE; ++i) {
digest[i] = static_cast<uint8_t>(
(context->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255);
}
// Wipe variables.
memset(context->buffer, 0, 64);
memset(context->state, 0, 20);
memset(context->count, 0, 8);
memset(finalcount, 0, 8); // SWR
#ifdef SHA1HANDSOFF // Make SHA1Transform overwrite its own static vars.
SHA1Transform(context->state, context->buffer);
#endif
}
} // namespace rtc
|